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Introduction: The presence of multiple genetically distinct variants (lineages)

within an infection (multiplicity of infection, MOI) is common in infectious

diseases such as malaria. MOI is considered an epidemiologically and clinically

relevant quantity that scales with transmission intensity and potentially impacts the

clinical pathogenesis of the disease. Several statistical methods to estimate MOI

assume that the number of infectious events per person follows a Poisson

distribution. However, this has been criticized since empirical evidence suggests

that the number of mosquito bites per person is over-dispersed compared to the

Poisson distribution.

Methods: We introduce a statistical model that does not assume that MOI

follows a parametric distribution, i.e., the most flexible possible approach. The

method is designed to estimate the distribution of MOI and allele frequency

distributions from a single molecular marker. We derive the likelihood function

and propose a maximum likelihood approach to estimate the desired

parameters. The expectation maximization algorithm (EM algorithm) is used to

numerically calculate the maximum likelihood estimate.

Results: By numerical simulations, we evaluate the performance of the proposed

method in comparison to an established method that assumes a Poisson

distribution for MOI. Our results suggest that the Poisson model performs

sufficiently well if MOI is not highly over-dispersed. Hence, any model

extension will not greatly improve the estimation of MOI. However, if MOI is

highly over-dispersed, the method is less biased. We exemplify the method by

analyzing three empirical evidence in P. falciparum data sets from drug resistance

studies in Venezuela, Cameroon, and Kenya. Based on the allele frequency

estimates, we estimate the heterozygosity and the average MOI for the

respective microsatellite markers.

Discussion: In conclusion, the proposed non-parametric method to estimate the

distribution of MOI is appropriate when the transmission intensities in the

population are heterogeneous, yielding an over-dispersed distribution. If MOI
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is not highly over-dispersed, the Poisson model is sufficiently accurate and

cannot be improved by other methods. The EM algorithm provides a

numerically stable method to derive MOI estimates and is made available as an

R script.
KEYWORDS

malaria, complexity of infection, molecular surveillance, drug resistance, prevalence,
transmission intensities, superinfection, co-infection
1 Introduction

Malaria and similar infectious diseases often exhibit a complex

landscape of pathogen genetic diversity within individual infections.

In malaria, the presence of multiple genetically distinct pathogen

variants within a single infection is typically referred to as

complexity of infection (COI) or multiplicity of infection (MOI)

(Read and Taylor, 2001; Chang et al., 2017; Schneider, 2018). MOI

is commonly reported in the context of malaria molecular

surveillance, which has become increasingly popular in the last

years as molecular assays become more affordable in endemic

settings and due to WHO recommendations (World Health

Organization, 2022; Sinha et al., 2023).

Epidemiologically, MOI is an important parameter as it scales

with transmission intensities, however not necessarily in a linear

way (Pacheco et al., 2020; Sinha et al., 2023). The effect of

interactions of different pathogen variants within infections

(intra-host dynamics) has been considered important in several

theoretical models (e.g., Hastings and Watkins, 2005; Gurarie and

McKenzie, 2006). However, so far, empirical evidence on the impact

of MOI on the clinical pathogenesis of malaria remains inconclusive

(Pacheco et al., 2016). Nevertheless, the distribution of MOI

influences the evolutionary dynamics of malaria (Schneider, 2021;

Schneider and Salas, 2022) and mediates evolutionary–genetic

patterns and pathogen genetic diversity (e.g., patterns of genetic

hitchhiking and linkage disequilibrium) as it affects the effective rate

of recombination as illustrated in Figure 1 (Schneider and Kim,

2010; Alizon et al., 2013). Moreover, there is an important link

between the frequency distribution of pathogen variants, their

occurrence within infections (i.e., prevalence), and MOI.

Specifically, given the frequency of a certain pathogen variant, its

prevalence increases with MOI. This is particularly relevant in the

context of anti-malarial drug resistance and seasonal malaria with

varying transmission intensities (Geiger et al., 2014; Schneider,

2021; Schneider et al., 2022).

Importantly, MOI or COI is not unambiguously defined.

Several formulations of MOI exist, with discrepancies between

verbal and formal definitions (which typically underlay statistical

models) as discussed in detail in Schneider et al. (2022). Here we

follow the suggested definition in Schneider et al. (2022), which is

used in most theoretical frameworks. Particularly, MOI is not
02
defined as the number of distinct pathogen variants within an

infection but as the number of “super-infections” during one

disease episode. More precisely, MOI is the number of

independent infectious events, assuming that exactly one

pathogen variant (lineage) is transmitted per event (Hill and

Babiker, 1995; Schneider and Escalante, 2014). This implies that

MOI is an unobservable quantity because a host can be infected

multiple times with the same pathogen variant (Figure 1), and these

infectious events cannot be reconstructed from molecular assays

(Figure 2). Notably, as pointed out in Schneider et al. (2022), if the

distribution of MOI in the population is known or estimated, the

distribution of different pathogen variants within infections can be

derived (but not vice versa). The definition of MOI used here only

approximately accounts for “co-infections”, i.e., the co-transmission

of several pathogenic variants during an infective episode

(Schneider, 2021). Focusing on super-infections (and only

approximately covering co-infections) has the pragmatic

advantage that no explicit model of vector–host transmission has

to be specified (Schneider, 2021) considering that a co-infection is

particularly relevant if one aims to determine the genetic relatedness

of pathogen variants within an infection. To obtain enough

resolution to study genetic relatedness, these approaches require

high-quality genomic data. Although such approaches have become

increasingly popular in the last years (cf. Nkhoma et al., 2012; Wong

et al., 2018; Zhu et al., 2019; Nkhoma et al., 2020; Dia and

Cheeseman, 2021; Neafsey et al., 2021), these approaches are

inappropriate if only a handful of genetic markers are available.

Heuristic methods to estimate the distribution of MOI are

typically biased; methods based on a solid statistical framework

are preferable (Schneider, 2021). Several such methods (which are

essentially based on the same statistical framework) have been

proposed to estimate the MOI and lineage frequencies for various

assumptions concerning the genetic architecture of the underlying

molecular data. All these methods make certain assumptions on the

distribution of MOI in the population. The maximum likelihood-

based method of Hill and Babiker (1995) assumes that MOI follows

either a (conditional) Poisson or negative binomial distribution and

is based on one or two genetic markers. In the case of MOI

following a positive Poisson distribution, this method was refined

by applying a bias correction in the case of a single molecular

marker by Hashemi and Schneider (2021) and to an arbitrary
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number of biallelic molecular markers (Tsoungui Obama and

Schneider, 2022). Moreover, the approach of Li et al. (2007)

assumes that MOI follows a (conditional) Poisson distribution.

The Bayesian method in the program COIL (Galinsky et al., 2015)
Frontiers in Malaria 03
and its generalization THE REAL McCOIL (Chang et al., 2017)

does not explicitly specify a specific distribution for MOI per se, but

the implementation imposes a uniform distribution, which

constrains the resulting posterior distribution of MOI.
FIGURE 2

Infections and observations: Illustrated are three infections from four lineages circulating in the pathogen population. The first infection has MOI = 2
and contains two distinct pathogen variants. The second infection has MOI = 3, but only with two distinct pathogen variants, and the third has
MOI = 4 and contains three distinct pathogen variants. Only the presence or absence of variants can be observed by molecular assays. The number
of times that each lineage was transmitted cannot be reconstructed from a sample; generally, MOI is unobservable.
FIGURE 1

Illustration of MOI: Illustrated are two infections with MOI = 1 (single infection) shown on the top and MOI = 4 (multiple infection) shown on the
bottom. Single infections lead effectively to no recombination. Note that the host on the bottom is infected twice with the same lineage. Because
there are three different lineages in the infection, recombination can happen during host–vector transmission.
frontiersin.org
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Under the assumption that infective mosquito bites are rare and

independent in a population with homogeneous exposure, MOI

follows a Poisson distribution. This renders this parametric choice

an important null model. However, if mosquito biting rates are

heterogeneous in the population, the distribution of MOI will more

likely follow a mixture of Poisson or a negative binomial

distribution (Schneider et al., 2022). In fact, empirical evidence

indicates that mosquito biting patterns are heterogeneous, with

certain individuals experiencing more bites than others. This is

influenced by confounding factors such as environmental

conditions or individual attractiveness to mosquitoes (Noor et al.,

2014; Guelbeogo et al., 2018). Consequently, the number of

mosquito bites per person tends to be over-dispersed compared

to the Poisson distribution (Irvine et al., 2018). (Note, however, that

an over-dispersed mosquito biting rate does not imply that the MOI

distribution is over-dispersed, as it is concerned only with the

number of infective bites.) In any case, significant deviations from

the Poisson assumptions suggest that the negative binomial

distribution might be more suitable (Lloyd-Smith, 2007).

However, maximum likelihood estimation of the negative

binomial distribution in general is problematic. As mentioned in

Adamidis (1999), if the empirical variance is not larger than the

mean of count data, the maximum likelihood estimates of the

parameters of the negative binomial distribution are degenerate.

A way to overcome the problem that estimation of both parameters

can compromise the stability and interpretability of a negative

binomial model (Bandara et al., 2019) is to estimate only one

parameter, while fixing the other, as suggested in Piegorsch

(1990), Saha and Paul (2005), and Lloyd-Smith (2007). In

practice, this means that there needs to be prior information on

one parameter. However, this is typically not feasible in the context

of MOI because it would require additional information such as

mosquito biting rates or host exposure to mosquitoes. Such

information is typically beyond the scope of malaria

molecular surveillance.

If there is a prior belief that MOI does not follow a Poisson

distribution, rather than assuming that MOI falls into a different

class of parametric distributions, such as the negative binomial

distribution, no particular class of distributions has to be imposed.

Such a non-parametric approach offers a valid alternative if the

MOI is completely unknown because of its flexibility. In fact, a non-

parametric approach is the most flexible approach in this context.

Here we introduce a non-parametric statistical model to

estimate the distribution of MOI and pathogen lineage (allele)

frequencies from a single molecular marker by maximum

likelihood. Non-parametric refers to the fact that the MOI

distribution is not assumed to fall into a class of parametric

distributions. The statistical model is first introduced in

“Materials and methods”. Because the resulting likelihood

function is too complex to have a closed-form solution, we derive

the expectation maximization algorithm (EM algorithm) to derive

the maximum likelihood estimate (MLE) numerically (Couvreur,

1997; Ng et al., 2012). The EM algorithm provides a numerically

stable iteration to derive the MLE. By numerical simulations, we

further investigate the performance of the non-parametric

estimator in terms of bias and variance and contrast it to MOI
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estimates based on the assumption of an underlying Poisson

distribution. The method proposed here is further applied to

three data sets from Cameroon, Kenya, and Venezuela as an

illustration. The method is implemented as an R script available

in the Supplementary Material and at https://github.com/Maths-

against-Malaria/Non-parametric-MOI-estimation.
2 Materials and methods

In the following mathematical notation, we use oblique letters,

e.g.,m, p, x, to indicate vectors, and italic fonts, e.g., m, p, x, to refer

to integers or scalars.

We consider a pathogen population with lineages A1, …, An,

detected at a single marker locus. Each lineage (or allele) Ai has

relative frequency pi in the pathogen population, jointly denoted by

the vector p = (p1, …, pn). We assume that at each infective event,

the mosquito vector transmits exactly one lineage to the host. This

corresponds to randomly sampling one lineage from the pathogen

population. Hence, co-infections (cf. Figure 1 in Schneider et al.,

2022), i.e., the co-transmission of several distinct lineages during

one infective event, are ignored. However, hosts can be infected

multiple times by different mosquitoes (super-infections) during

one disease episode. It is assumed that super-infections occur

during relatively short time periods, e.g., a few days, so that all

infecting variants reach detectable concentrations. Infective events,

in which the variants do not reach detectable frequencies, do not

count as super-infection as these (i) are irrelevant for the clinical

pathogenesis of the disease and (ii) are undetectable by molecular

assays. Following Schneider et al. (2022), we refer to the number of

infective events during one disease episode as multiplicity of

infection (MOI). Importantly, the hosts might be infected

multiple times with the same lineage. Formally, if mi represents

the number of times an individual was infected with lineage Ai, then

mi = 0 if the host was not infected with lineage Ai. Summing over all

mi yields MOI m, i.e., MOI m is defined by:

m : =o
n

i=1
mi = mj j,

where m = (m1, …, mn). The m lineages infecting a host are

randomly sampled (with replacement) from the pathogen

population. Therefore, within an infection, the configuration of

pathogen lineages m follows a multinomial distribution with

parameters m = |m| and p, i.e., m ∼ Multi (m,p). Hence, given

that a host has MOI m, the probability of configuration m, i.e., of

being infected mi times with lineage Ai (i = 1,…, n), is:

P½mjMOI = m� = m !
m1 !…mn !

pm1
1 … pmn

n = (mm)pm, (1)

where (mm) : = m !
m1 !…mn !

in Equation 1 is the multinomial

coefficient and pm : = pm1
1 … pmn

n .

The configuration of infecting pathogen lineages (m) and even

MOI (m = |m|) is unobservable. Specifically, from a blood sample of

an infected person, the observation is limited to the absence/

presence of the infecting lineages (Figure 2). Formally, we
frontiersin.org
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represent an observation as the vector x = (xi), i = 1,…, n, such that

the entries xi are 0 or 1 (formally, xi ∈ {0,1}), where 0 denotes the

absence and 1 denotes the presence of the lineages in the infection

(Figure 2). Thus, xi is the sign of mi, i.e., xi = 0 if mi = 0 and xi = 1 if

mi≥ 1 (formally, xi := sign mi, or in compact notation x = sign m).

Because we consider only disease-positive samples, the

observations x correspond to vectors of length n with entries 0

and 1 excluding the vector that contains only zeros, 0, which

corresponds to a disease-negative sample. In mathematical

notation, x are elements of the set O := {0,1}n \ {0}.

The underlying assumption is that molecular/genetic methods

are not quantifying the concentration of lineages but rather detect

their presence. Here it is ignored that lineages remain undetected.

While this can be included in a statistical model (see, e.g., Hashemi

and Schneider, 2024), here it is ignored. For more discussion on

undetected or erroneously detected variants, see Schneider

et al. (2022).

To express the probability of x, further notation is needed. We

call an observation y ∈O a sub-observation of x (denoted y ≼ x); all
lineages observed in y are also observed in x, i.e., if yi ≤ xi for i = 1,…,

n. The set of all sub-observations of x is denoted by:

Ax : = y ∈ O j y≼ xf g :
We define km := P[MOI = m] as the probability that a host is

infected exactly m times (MOI = m) and collectively denote the

MOI distribution by k : = (k1,k2,…). Furthermore, the probability

generating function (PGF) of the MOI distribution evaluated at a

point z is denoted by G(z) (see “Probability distribution of

observations” in the Appendix); the probability of observation x
is derived to be as:

P½xjq� : = P½x� = o
y∈Ax

( − 1) xj j− yj jG o
i : yi=1

pi

 !
, (2)

where we jointly denote the model parameters by q = (k , p) and
P½xjq� for P½x� to emphasize the dependency on the model

parameters whenever necessary. Clearly, the probability in

(Equation 2) depends on the model parameters p and k (through

the PGF).

Note that while piis the frequency of lineage Ai, as shown in

Schneider et al. (2022), its prevalence, i.e., the probability that this

lineage occurs in an infection, is given by

qi = 1 − G(1 − pi),

i .e. , the PGF of the MOI distribution links frequency

and prevalence.

The model parameters q, i.e., the distribution of MOI and the

lineage frequency distribution, can be estimated from the

probabilistic model (Equation 2). We proceed with maximum

likelihood (ML) estimation.
2.1 Likelihood function

Considering N independent observations x(1), …, x(N) from

disease-positive hosts, collectively denoted as X, the likelihood
Frontiers in Malaria 05
function L (q; X) is given by

L(q ;X) =
YN
k=1

P½x(k)jq� :

In practice, the same allele configuration x can be observed in

several hosts. Let nx be the number of times observation x occurs in
the data. (Clearly, the total sample size N must be the sum over all

nx , i.e., S
x∈O

nx = N , where the sum runs over all possible

observations.) With this notation, the likelihood function can be

rewritten as

L(q ;X) =
Y
x∈O

P½xjq�nx ,

and the log-likelihood function becomes

l(q ;X) = o
x∈O

nxlog P½xjq�

= o
x∈O

nxlog  o
y∈Ax ,

(− 1) xj j− yj jG o
i : yi=1

pi

 !" #
:

The maximum likelihood estimate (MLE) of the true unknown

parameter q̂ is the parameter vector that maximizes the likelihood

or, equivalently, the log-likelihood function, i.e.,

q̂ = arg   max
θ

 L(q ;X) = arg  max
θ

 l(q ;X) :

Maximizing the log-likelihood function is infeasible without

further restrictions because the model parameters q are infinite-

dimensional. The reason is that the distribution of MOI (km) is

infinite-dimensional. However, there are several meaningful

strategies to restrict oneself to a finite-dimensional parameter

space. A standard strategy is to assume that the MOI distribution

falls into a parametric family and is hence characterized by finitely

many model parameters—for instance, the simplest case is to

assume that MOI follows a positive Poisson distribution and is

hence characterized by a single parameter (cf. Hill and Babiker,

1995; Schneider and Escalante, 2014; Schneider, 2018; Hashemi and

Schneider, 2021; Schneider, 2021; Schneider et al., 2022; Tsoungui

Obama and Schneider, 2022). This, however, requires the additional

assumption that infectious bites are rare and independent. A similar

assumption is that MOI follows a positive negative binomial

distribution and is hence characterized by two parameters (cf.

Hill and Babiker, 1995; Schneider et al., 2022). The negative

binomial distribution allows modeling over-dispersion in the

number of infectious bites. However, since the observations will

tend to look under-dispersed (because only absence/presence rather

than MOI is observed), one needs to estimate the amount of over-

dispersion from an additional data source. In principle, any other

parametric distribution can be used.

In case there is no empirical argument that justifies the use of a

specific parametric distribution, the MOI distribution can be just

truncated by assuming a maximum MOI valueM, i.e., km = 0 for m

> M. This is a reasonable assumption since km will be negligible for

large m anyway. We denote the MOI distribution by k = (k1, …,

kM). In the following, we will pursue this non-parametric approach

by restricting the admissible parameter space to the set of all
frontiersin.org
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possible MOI distributions with MOI values 1,2, … , M and all

possible lineage frequency distributions, i.e.,

Q : =f(k , p)j 0 ≤ km for m = 1,…,M, o
M

m=1
km = 1, 0 ≤ pi 

for i = 1,…, n,  and o
n

i=1
 pi = 1g 

= SM � Sn,

where SM and Sn denote the (M−1)− and (n−1)−dimensional

simplices, respectively.

If there was no restriction on the maximum MOI value, the

probabilistic model would be correct. The restriction renders the

model to be only approximately correct—for instance, if the true

MOI distribution follows a Poisson or negative binomial
Frontiers in Malaria 06
distribution, MOI can be any integer. Such a distribution can

only be approximated by the probabilistic model above restricted

to the parameter space Q. However, by choosing the maximum

MOI value M that is sufficiently large, any distribution can be

approximated to any level of accuracy (cf. also Figure 3).

Unfortunately, the complexity of the log-likelihood function

does not allow for an explicit solution of the MLE. The reason is that

the derivatives of the log-likelihood function are polynomials in the

lineage frequencies of degree up to M. Hence, the MLE must be

derived numerically. We will further make use of the EM algorithm

for this purpose.

The EM algorithm is derived in “Derivation of the Q-function”

in the Appendix. In the present case, the algorithm estimates each

probability k1 = P[MOI = 1], k2 = P[MOI = 2],…, kM = P[MOI =
FIGURE 3

Illustration of simulated data: Illustrated is the simulation scheme for the numerical investigations. A sample of size N (N = 3 in the illustration) is
created as follows: For a given MOI distribution, e.g., Poisson distribution (illustrated in red) or the negative binomial distribution (illustrated in blue),
characterized by parameters, first N MOI values are randomly drawn (left-hand side for Poisson distribution and right-hand side for negative binomial
distribution). For each of the MOI values, N infections are drawn. For MOI = m, exactly m lineages are drawn randomly from the lineage distribution,
with replacement (multinomial distribution). The data of sample size N is then obtained by retaining only the information of absence and presence of
lineages in the infection. From the resulting data, the model parameters are estimated. First, they are estimated by the non-parametric method,
which is approximately correct, as it imposes a maximum MOI value M, which neither the Poisson nor the negative binomial distribution does.
Therefore, these true underlying distributions are only approximated by the model. Second, the model parameters are estimated by the Poisson
model, which estimates the lineage frequency distribution and the MOI parameter l. This is the correct model if the true underlying distribution is
actually a Poisson distribution (left-hand side), but it is incorrect if it is not (right-hand side). In the illustration, the negative binomial distribution is
“approximated” by a Poisson distribution. The true (in practice unknown) parameter of the Poisson distribution was chosen to be l = 0.5, and the
parameters of the negative binomial distribution (µ = 0.67, w = 2.08) were chosen; thus, the distribution is over-dispersed by 50%.
frontiersin.org
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M] separately as well as the lineage frequencies p1,…, pn. The

method is only approximately correct as we impose that M is the

maximum possible MOI, i.e., km = 0 for m > M.
2.2 Numerical investigations

Since there is no closed form for the MLE, we investigate the

performance of the ML estimator by numerical simulations for a

representative set of parameters. We further compare the

performance of the ML estimator with that of Schneider and

Escalante (2014), which assumes that the MOI follows a

conditional Poisson distribution. Figure 3 illustrates how a data

set is simulated, assuming that the true (in practice unknown) MOI

distribution is either conditionally Poisson or negative

binomially distributed.

For each choice of model parameters q = (k, p), we constructed
K = 25, 000 data sets of sample size N = 50, 100, 200, and 300

according to the probabilistic model (Equation 2) (see Figure 3 for

the construction of a data set of sample sizeN = 3, assuming that the

underlying MOI distribution is either conditionally Poisson or

negative binomially distributed). More precisely, for each of the N

samples, first, the MOI value m was chosen randomly according to

the distribution k. For each MOI value m the MOI vector m was

chosen randomly from a multinomial distribution with parameters

m and p, and the corresponding observation was derived as x = sign

m. This procedure was repeated K times. For a given set of

parameters (N, k, p), this resulted in K data sets X (1), …, X (K).

For data set X(k), we calculated the MLE (k
∼ (k)

, p
∼(k)

) from the non-

parametric model according to Result 1, assuming a maximum

MOI of M = 6 and the MLE (k
∼ (k)

, p
∼(k)

) according to the parametric

model (Poisson model) of Schneider and Escalante (2014) using the

implementation of Schneider (2018).

Let q denote a component of the parameter vector q. The
relative bias of q, defined by E½q̂ �−q

q , was approximated by

�q − q
q

; (3A)

where

�q =
1
K o

K

k=1

q̂ (k) (3B)

i.e., the expectation E½q̂ �, which cannot be calculated because the

MLE that has no closed form was approximated by the empirical

mean over the K-simulated data sets.

Similarly, the variability of the estimator relative to the true

parameters was assessed by the coefficient of variation (CV), i.e., as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K−1oK
k=1(q̂ (k) − �q)2

q
q

: (4)

The bias and variance for the parametric estimator were

calculated in the same way with the necessary modifications.

The bias and variance of rare lineages might be substantial.

However, the estimates of rare lineages that will be unlikely
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observed in practice have limited relevance. Therefore, we focus

on reporting the bias and variance of the predominant lineage, i.e.,

of the largest lineage frequency, which is in practice an important

quantity. Similarly, concerning the distribution of MOI k, reporting
bias and variance of small km are not meaningful. However, also

reporting on the MOI value with the highest frequency is not

meaningful. Summary statistics such as the average MOI y =

S
M

m=1
mkm are of practical interest. The average MOI is not a model

parameter but can be readily estimated by the plug-in estimator.

ŷ = o
M

m=1
mk̂ m : (5)

In the case of the parametric model, conditional Poisson model,

the average MOI is estimated as ŷ = l̂
1−e−l̂

. Here we report on the

bias and variance of the average MOI estimated by the respective

plug-in estimators.
2.3 Parameter choice

Besides the choices of K = 25, 000, sample sizesN = 50, 100, 200,

and 300, as well as maximum MOI M = 6, we chose the model

parameters p and k as follows.

Concerning the lineage frequencies for n = 4 and n = 5 lineages,

we chose the balanced and unbalanced frequency distributions

(reported in Tables 1, 2). By balanced frequency distributions, we

refer to instances in which each lineage has approximately the same

frequency, whereas we refer to unbalanced distributions if there are

one or more dominating lineages and one or more rare lineages.

Concerning the distribution of MOI (k), we assumed either a

conditional Poisson distribution with parameter l ranging from 0.1

to 2.9 in steps of 0.1 or a conditional negative binomial distribution

with different degrees of over-dispersion. The parameters of the

conditional negative binomial distribution were chosen such that

the mean MOI matched those of the conditional Poisson

distributions. For the Poisson distribution, the mean equals the

variance (this is no longer true for the conditional Poisson
TABLE 1 Choice of n = 4 lineages and their corresponding balanced and
unbalanced frequency distributions.

Lineages A1 A2 A3 A4

Balanced distribution 0.25 0.25 0.25 0.25

Unbalanced distribution 0.70 0.20 0.07 0.03
fro
TABLE 2 Choice of n = 5 lineages and their corresponding balanced and
unbalanced frequency distributions.

Lineages A1 A2 A3 A4 A5

Balanced
distribution 0.20 0.20 0.20 0.20 0.20

Unbalanced
distribution 0.60 0.20 0.14 0.05 0.01
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distribution). For the negative binomial distribution with a scale

parameter (w) and shape parameter (μ), the variance is larger than

the mean, i.e., it is over-dispersed. The amount of over-dispersion is

w(1 − m)
m2 = w(1 − m)

m
=
1
m
:

Regarding the parameter choices, we first chose 1
m as 1.05, 1.50,

and 2, corresponding to 5%, 50%, and 100% over-dispersion. Then,

we numerically matched the scale parameters such that the mean

MOI of the corresponding conditional negative binomial

distribution equals that of the conditional Poisson distribution.

As an example, the conditional Poisson distribution in Figure 3 is l
= 0.9, and the corresponding negative binomial distribution is over-

dispersed by 50%. Notably, it is impossible to find matching

distributions if the mean MOI is too small. In other words, over-

dispersion requires a sufficiently large mean MOI.
2.4 Model implementation

The statistical model is implemented in R (R Core Team, 2023)

and available in the Supplementary Materials and on GitHub

https://github.com/Maths-against-Malaria/Non-parametric-MOI-

estimation, alongside a user-friendly documentation.
3 Results

First, it is shown how the maximum likelihood estimate (MLE)

is derived. This is followed by results on the estimator’s

performance in terms of bias and variance.
3.1 Deriving the MLE

The specific form of the likelihood function does not allow

obtaining an explicit solution for the MLE. Specifically, assuming a

maximum MOI of M, the derivatives of the likelihood function are

polynomials in the model parameters of degreeM − 1, for which no

general solution of the roots exists. However, the MLE can be easily

calculated numerically from the EM algorithm, which is derived in

the Supplementary Materials [expectation maximization (EM)

algorithm]. The EM algorithm provides a numerically stable and

efficient iteration to calculate the MLE.

RESULT 1. Assume molecular information from N samples x(1),
…, x(N). Furthermore, assume a maximum MOI value M. The MLE

of the lineage frequency distribution p = (p1,…,pn) and the

distribution of MOI k = (k1,…, kM), is calculated by the EM

algorithm by performing the following steps:

1. Choose arbitrary initial conditions p(0) and k(0);
2. In step t + 1, update the parameter choice p(t) and k(t) by

p(t+1)i =
T (t)
i

o
n

k=1

T (t)
k
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and

k (t+1)
m =

R(t)
m

o
M

u=1
R(t)
u

,

where

T (t)
i = p(t)i o

x∈O

nx
P½xjq (t)� oy∈Ax

(− 1) xj j− yj jG0(t) o
i : yi=1

p(t)i

 !
,

and

R(t)
m = k (t)

m o
x∈O

nx
P½xjq (t)� oy∈Ax

(− 1) xj j− yj j o
i : yi=1

p(t)i

 !m

with P[x|q(t)] given by Equation 2 and G′ being the derivative of the

PGF given by (A5).

3. Repeat step 2 until numerical convergence, e.g., ∥q(t+1) − q(t)∥<
ϵ for some specified error threshold e.

The EM algorithm converges fast in practice and is

implemented as an R script.
3.2 Performance of the estimator

Only results for n = 4 lineages are presented here. The results for

n = 5 lineages are similar and presented in the Supplementary

Material (Appendix, Additional results; Supplementary Figures

S2–S6).

3.2.1 Bias of lineage frequencies
The MLE of the lineage frequencies has very little bias

(Equation 3) (Figures 4A, B, 5A–C, and 6A–C). Shown is only

the bias of the dominant lineage (lineage 1). Bias is typically small

for small average MOI, while the dominant lineage frequency tends

to be overestimated if the true average MOI is large. However, bias

vanishes with increasing sample size N. Bias tends to be larger

for unbalanced lineage frequency distributions (cf. Figures 4A, B,

5A–C, and 6A–C). This is not surprising since for balanced

frequency distributions all lineages are equivalent and should be

present in equal amounts throughout the data. Importantly, the

results are relatively robust with respect to the underlying true MOI

distribution. While the bias is lowest from data generated from a

conditional Poisson distribution (Figure 4), the bias remains similar

if the data is generated from a conditional negative binomial

distribution (Figures 5 and 6). However, the bias increases with

increasing over-dispersion for unbalanced frequency distributions.

3.2.2 Variation of lineage frequencies
Not surprisingly, the variance of the MLE for the dominating

lineage frequency—measured by the coefficient of variation (CV)

(Equation 4)—decreases substantially with increasing sample size

(Figures 4C, D, 5D, F, and 6D–F). For higher MOI, the CV tends to

decrease slightly, which is not surprising since the data contains

more information on the lineages. The CV tends to be smaller for
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unbalanced frequency distributions (cf. Figures 4C, D, 5D–F, and

6D–F) because the dominating lineage is present in more samples,

increasing the information about its true frequency. The results

seem to be robust with respect to the underlying true model, i.e.,

conditional Poisson and negative binomial model (Figures 5 and 6).

3.2.3 Frequency estimates by the non-parametric
vs. conditional Poisson model

Given that MOI in infections follows a conditional Poisson

distribution, the non-parametric model introduced here performs

almost as good as the conditional Poisson model (Schneider and

Escalante, 2014) (the correct model in this case). If the lineage

frequency distributions are balanced, the two estimators perform

equally well (Figures 4A, C). For unbalanced distributions, the

correct model has only a slightly lower coefficient of variation and

only for high average MOI. However, for a small sample size and

high average MOI, the bias of the non-parametric model is higher

(but still small) (Figures 4B, D).

Not surprisingly, if the true MOI distribution is over-dispersed

compared to the Poisson distribution, the non-parametric model

performs similarly to the conditional Poisson model if the lineage

frequency distribution is balanced (Figure 5). However, the model

outperforms the conditional Poisson model if the lineage frequency

distributions are unbalanced. While the variances of the two
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estimators are comparable, the non-parametric estimates are less

biased. This is intuitive because it is not constrained to an incorrect

model. In fact, the Poisson model underestimates the dominant

allele frequency (Figure 6; Supplementary Figure S7 for a

comparison of the absolute bias). Importantly, while the relative

bias decreases for the non-parametric model with increasing sample

size, the opposite is observed for the conditional Poisson model

(Figures 6B, C)

3.2.4 Bias of the estimates of average MOI
The bias of the average MOI (y) estimated by the non-

parametric model is generally small (Figures 7A, B, 8A–C, and

9A–C) if the true average MOI is low to intermediate. There is a

tendency for the average MOI to be overestimated for most of the

parameters explored, with the bias decreasing with increasing

sample size. Only for large average MOI does the true parameter

tend to be underestimated. This underestimation is more

pronounced for more over-dispersed MOI distributions (cf.

Figures 7A, B, 8A, and 9A with Figures 8B, C and 9B, C). More

precisely, the average MOI parameter is not underestimated if the

MOI follows a conditional Poisson distribution for (almost) the

whole range of parameters simulated, and the more over-dispersed

the MOI distribution, the lower the threshold for which the average

MOI is underestimated.
A C

DB

FIGURE 4

Relative bias and variation of MLE for pathogen lineage frequencies if MOI follows a Poisson distribution: Assumed are four lineages following the
distributions in Table 1. (A, C) Balanced frequency distribution. (B, D) Unbalanced lineage frequency distribution. The dominant lineage frequency is
shown at the top of the plot panels. The true MOI distribution in all panels follows a Poisson distribution with varying average MOI (x-axis). The
panels show the relative bias (A, B) and CV (C, D) of the ML estimators of the dominant lineage frequency, based either on the non-parametric
model (NP; solid lines) or the conditional Poisson model (CP; dashed lines) as functions of the true average MOI (cf. Figure 3) (note that the non-
parametric model is only approximately correct in this case because a maximum MOI of M = 6 is assumed, while the Poisson model is correct).
Colors correspond to different sample sizes.
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3.2.5 Variation of the estimates of average MOI
The variation of the estimator of the average MOI (y)

(Equation 5) measured by the CV increases with increasing true

average MOI (Figures 7C, D, 8D–F, and 9D–F). The reason is that

the variance of the underlying true MOI distribution is increasing.

Moreover, the CV decreases substantially for larger sample

sizes (N).

Notably, the CV tends to be smaller for a balanced lineage

frequency distribution (cf. Figures 7C, 8D–F, and 9D–F). This is not

surprising since the occurrence of different lineages within a sample is

more likely for a balanced lineage frequency distribution. Hence, the

data tends to harbor more accurate information on the MOI

distribution. Particularly, each lineage tends to be represented

similarly in the data, thereby reducing the variability of the data.

The CV is insensitive to the amount of over-dispersion in the MOI

distribution (cf. Figures 7C and 8D–F as well as Figures 7D and 9D–F).
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3.2.6 Average MOI estimated by the non-
parametric model vs. the conditional
Poisson model

Assuming that MOI follows a conditional Poisson distribution,

the non-parametric model performs similarly as the conditional

Poisson model in terms of bias and variance (i.e., the correct model

in this case; cf. Figure 7). However, the variance of the conditional

Poisson model tends to be slightly lower than that of the non-

parametric model, particularly for unbalanced frequency

distributions. However, the differences vanish with increasing

sample size. For small and large true average MOI values, the bias

of the estimates is lower for the non-parametric model (Figures 7A,

B). The same holds true if the true MOI distribution is slightly over-

dispersed (Figures 8A, 9A). For highly over-dispersed MOI

distributions, the non-parametric model still has a similar

variance as the Poisson model, but bias behaves differently. For
A

B

D

E
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FIGURE 5

Relative bias and variation of MLE for balanced pathogen lineage frequencies if MOI follows a negative binomial distribution: similar as in Figure 4.
However, a balanced lineage frequency distribution is assumed here in each panel, and the true MOI distribution is a conditional negative binomial
distribution with 5% (A, D), 50% (B, E), and 100% (C, F) over-dispersion. The gray-shaded areas indicate the parameter range which is impossible for
a negative binomial distribution with the respective amount of over-dispersion. Note here that the non-parametric model (NP; solid lines) is still
approximately correct, while the Poisson model (CP; dashed lines) is incorrect.
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intermediate average MOI, the Poisson model tends to

underestimate the true parameter, with the undesirable property

of higher bias for larger sample sizes. For larger average MOI,

the Poisson model tends to overestimate the true parameter by

roughly the same amount by which the non-parametric model

underestimates this parameter (Figures 8B, C and 9B, C).
3.3 Data application

In this section, we apply the non-parametric model introduced

here and the alternative Poisson model to three empirical data sets

from Cameroon, Kenya, and Venezuela collected during drug

resistance studies. The data from Cameroon is described in

McCollum et al. (2007) and consists of N = 166 P. falciparum

samples collected in Yaoundé between 2001 and 2002. The samples

were collected randomly from patients older than 12 years of age at

the Nlongkak Catholic missionary dispensary in Yaoundé,

Cameroon. The data contains information on 14 neutral
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microsatellite markers on chromosomes 2 and 3 (for details, see

McCollum et al., 2008). At that time, the sampling location was an

area of intense and perennial transmission. Although the data

consists of random samples, the sampling point and inclusion

criteria render the population rather homogeneous. Given the

results from the numerical investigations, a good agreement

between the two alternative statistical models is expected.

The data set from Kenya is described in McCollum et al. (2012). It

contains molecular information from nine neutral microsatellite

markers at chromosomes 2 and 3 from N = 43 P. falciparum

positive samples collected in Asembo Bay, Kenya, a holoendemic P.

falciparum transmission region across 15 villages between April 1992

and March 1993 (see McCollum et al., 2012). Although we would

expect transmission to be heterogeneous in this setting because of the

small sample size, it is expected that the Poisson model performs

similar or even slightly better than the non-parametric model.

The data from Venezuela consists of N = 97 samples collected

from 2003 to 2004 in Sifontes municipality in Bolivar State,

Venezuela and is described in McCollum et al. (2007). The study
A

B

D

E
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FIGURE 6

Relative bias and variation of MLE for unbalanced pathogen lineage frequencies if MOI follows a negative binomial distribution (A–F): see Figure 5,
but for an unbalanced pathogen lineage distribution.
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area has a population size below 40,000 then and was the epicenter

of multi-drug resistance in Venezuela, which accounted for a large

proportion of malaria infections in Venezuela (McCollum et al.,

2007). However, at the time the samples were collected, the study

area was an area of low transmission. Here we included five

microsatellite markers, namely, those from the original data that

showed evidence of super-infections in at least one sample. Given

the low transmission intensity in combination with the sample size

(cf. Figures 7A, B), we expect the non-parametric model and the

Poisson model to give very similar results.

The maximum likelihood estimate for the MOI distribution and

allele frequency distributions were calculated for each molecular

marker separately with the non-parametric model and the

conditional Poisson model of (Hill and Babiker, 1995; Schneider

and Escalante, 2014). These estimates were used as plug-ins to

calculate estimates for the average MOI and heterozygosity. These

estimates are reported in Figure 10 alongside 95% bootstrap

confidence intervals (see Efron and Tibshirani, 1994).

As expected from the above-mentioned considerations and seen

from Figure 10, both methods yield very similar results. There is a

tendency for the non-parametric model to have slightly lower point

estimates of average MOI, particularly for the data set from Kenya,

which has a small sample size. This observation is not surprising

given the numerical investigations reported above. There are hardly

any differences in the estimates of heterozygosity.
Frontiers in Malaria 12
Note that the bootstrap confidence intervals do not have

satisfying properties, particularly for the data from Venezuela

(which hardly has indications of super-infections) and marker u7

in the Kenya data (which also hardly has indications of super-

infections). Specifically, the lower confidence points are at 1, which

is the minimum possible MOI value. The reason is that the

bootstrap frequently repeats samples that have no signs of super-

infections, such that the average MOI is estimated to be 1 by both

methods. Hence, the nominal coverage of the lower confidence

point does not coincide with the actual coverage. This can be

resolved by using bias-corrected and accelerated bootstrap

confidence intervals or profile-likelihood confidence intervals (cf.

Schneider and Escalante, 2014).
4 Discussion

Estimating the multiplicity of infection (MOI) became popular

in malaria molecular surveillance. Ad hoc methods are generally

biased and have undesirable statistical properties. Methods based

on probabilistic models are often based on similar assumptions. A

popular assumption in many models is that MOI follows a Poisson

distribution. This corresponds to the assumption that infectious

events are rare and independent. (Remember, MOI is defined here

as the number of super-infections within one disease episode.)
A

B D

C

FIGURE 7

Relative bias and variation of the average MOI, if MOI follows a Poisson distribution: Assumed are four lineages with the distributions shown at the
top of each panel [(A, C)—balanced; (B, D)—unbalanced distributions]. The true MOI distribution in all panels follows a Poisson distribution with
varying average MOI (x-axis). The panels show the relative bias (A, B) and CV (C, D) of the ML estimators of the average MOI based either on the
non-parametric model (NP; solid lines) or the conditional Poisson model (CP; dashed lines) as functions of the true average MOI (cf. Figure 3) (note
that the non-parametric model is only approximately correct in this case because a maximum MOI of M = 6 is assumed, while the Poisson model is
correct). Colors correspond to different sample sizes.
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Because there is empirical evidence that mosquito biting rates are

over-dispersed, the Poisson assumption is challenged.

Here we explored the most flexible alternative, namely, the

situation where no parametric assumption about the distribution of

MOI is made (except that a maximum MOI exists). Note that the

statistical model itself makes a number of simplifying assumptions.

First, the duration of how long individuals are infected is not

considered. Rather, it is assumed that super-infections occur

within a short period of time, such that all variants which were

successfully transmitted to a host, reach sufficient frequencies in the

infection to be detectable by PCR. Thus, super-infections which do

not contribute to the clinical pathogenesis of an infection are

ignored. Furthermore, it is assumed that molecular assays have

perfect sensitivity and specificity for all relevant lineages in an

infection. Notably, the statistical model can be extended to account

for missing information (imperfect sensitivity) as in Hashemi and

Schneider (2024) (for the Poisson model); however, if all samples
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contain molecular information (i.e., no sample with missing data),

the extended model reduces to the present one. More alternatives

can be found in Okell et al. (2017). Extending the model to include

imperfect specificity, i.e., including erroneously detected variants, is

more challenging. A model that yields appropriate estimates is the

one given by Plucinski et al. (2015). However, it is designed to

distinguish recrudescence of reinfections and hence requires paired

samples (i.e., two or more sample points for at least some patients).

Furthermore, it is assumed that the molecular assays used can only

provide absence/presence data but cannot quantify the relative

abundance of lineages within an infection.

Given this framework, the resulting non-parametric model is

more complicated than the corresponding Poisson model (cf.

Schneider and Escalante, 2014), which falls into the class of

exponential families (Hashemi and Schneider, 2024). This implies

the usual desirable properties of maximum likelihood estimators for

the Poisson model (existence and uniqueness of the MLE, efficiency,
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FIGURE 8

Relative bias and variation of the average MOI for balanced lineage frequencies if MOI follows a negative binomial distribution: similar as in Figure 7,
but the true MOI distribution follows a negative binomial distribution with 5% (A, D), 50% (B, E), and 100% (C, F) over-dispersion and average MOI
given on the x-axes. The corresponding model parameter µ is given at the top of each panel. All panels assume the same true balanced lineage
frequency distribution (top of each panel). Note that the non-parametric model is approximately correct, while the Poisson model is incorrect.
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and consistency, cf. Hashemi and Schneider, 2024). Unfortunately,

the non-parametric model is no longer within an exponential family

and there is no proof for the same desirable theoretical properties.

However, our numerical investigations suggest that they hold. In

the case of the Poisson model, the MLE has an intuitive

interpretation. Namely, the MLE is the parameter choice for

which the empirical prevalences coincide with the expected

prevalences. Moreover, the empirical prevalences form a sufficient

statistic for the parameter estimation. For the non-parametric

model, this interpretation is lost and the prevalences no longer

form a sufficient statistic. In fact, the model used more information,

namely not just how often lineages occur in infections but also in

which configuration they are observed. As for the Poisson model,

there exists no closed solution for the MLE of the non-parametric

model, and it has to be derived numerically. For this purpose, the

EM algorithm was employed here. It is a numerically stable and

efficient algorithm to derive the MLE.

Notably, the non-parametric model also has certain advantages

compared to the Poisson model. If the data lies on the boundary of
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the closed convex hull of the admissible sample space (when

rewritten as a natural exponential family), the MLE of the

Poisson model is degenerate (or does not exist; Hashemi and

Schneider, 2023). This corresponds to the cases where only a

single lineage is detected in every sample (i.e., no evidence of

super-infections), or if one lineage is observed in all samples. In

such a situation, an MLE is still numerically found for the non-

parametric model.

The performance of the non-parametric estimator is

comparably good to that of the Poisson model even if the true

MOI distribution is well approximated by a Poisson distribution.

Despite the Poisson model being the true model for low true MOI,

the non-parametric model yields less biased estimates of this

parameter. This is also true for high average MOI, at least for a

sufficiently large sample size. Moreover, if the true MOI distribution

is highly over-dispersed, the non-parametric estimator is

preferential. Irrespective of the differences, the results obtained by

both models for the empirical examples from Cameroon, Kenya,

and Venezuela are very similar. This and the fact that the differences
A
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FIGURE 9

Relative bias and variation of the average MOI for unbalanced lineage frequencies if MOI follows a negative binomial distribution (A–F): see Figure 8
but for an unbalanced lineage frequency distribution (top of each panel).
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between the estimators are small suggests that there is no need to

drop the Poisson assumption, except for extreme parameters or in

cases, in which there is clear evidence that the Poisson assumption

is unjustified. Therefore, as a recommendation, it seems appropriate

to use the non-parametric model in areas of low transmission,

particularly, if transmission is highly heterogeneous. In such

situations, the Poisson model is highly sensitive to outliers

(Schneider, 2018). Areas of low transmission are becoming

increasingly important with the ongoing malaria eradication

efforts to decrease the global malaria burden by 90% and

eradicate the disease in at least 35 countries by 2023 (World

Health Organization, 2021). However, in the empirical example

from Venezuela, at a time of low transmission, both methods

yielded comparable results. In the example, this was due to the

relatively large sample size (N = 97). In practice, molecular

surveillance data might not always appropriately reflect the

heterogeneity in transmission but is rather conducted in

homogeneous populations. This renders the Poisson model to be

sufficiently accurate.
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The results here suggest that the non-parametric approach to

estimating MOI is comparably good as the Poisson model. A

particularly convenient property of the Poisson distribution is

that it is characterized by a single parameter. This is no longer

true for the non-parametric model, where the complete probability

mass function of MOI needs to be estimated. Although there are

many other parametric alternatives to the Poisson model, every

other meaningful distribution is characterized by more than a single

parameter. Moreover, from the structure outlined in Tsoungui

Obama and Schneider (2022), such alternatives also do not retain

the desirable properties of the Poisson model.

Given the data, i.e., the absence and presence of alleles in

samples, the non-parametric model, is the most flexible

assumption for MOI, since it does not require a certain

distribution. In principle, the model should be able to

approximate any parametric distribution, such as the conditional

Poisson or conditional negative binomial distributions. Given that

the non-parametric model does not clearly outperform the Poisson

model implies that the latter already utilizes the information of data
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FIGURE 10

Data application: Shown are the estimated heterozygosity (A, B) and average MOI (C, D) by the non-parametric model (NP) and the conditional
Poisson model (CP) with 95% bootstrap CIs for each molecular marker in the data set from Cameroon (A, D), Kenya (B, E), and Venezuela (C, F).
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effectively, and any other model assumptions regarding over-

dispersion (e.g., assuming a negative binomial distribution) will

not outperform the Poisson model either. However, the statistical

model can be extended to include further information in addition to

the original data—for instance, one could extend the non-

parametric model to account for patient-specific risks (e.g., one

could group patients into different risk strata based on patient

queries determining the risk of exposure, such as the use of bed nets,

indoor residual spraying, window screens, etc., or recent malaria

cases within the household). In the case of the Poisson model, it

could be extended to estimate different MOI parameters for each

stratum (risk group). Notably, such information has to be collected

in addition to molecular data. In any case, our results suggest that,

unless transmission is very heterogeneous, it is not necessary to

extend the non-parametric approach to the case in which multiple

genetic markers are studies at the same time as it was done for the

Poisson model (e.g. Tsoungui Obama and Schneider, 2022;

Obama and Schneider, 2023).

In summary, our results suggest that the non-parametric model

to estimate MOI and lineage frequencies from single molecular

markers (e.g., microsatellites, SNPs, and micro-haplotypes)

introduced here is a valid approach. An implementation of the

method as an R script is available in the Supplementary Materials

and at GitHub https://github.com/Maths-against-Malaria/Non-

parametric-MOI-estimation. Clearly, it is possible to extend the

non-parametric model to more complex genetic architectures than

a single molecular marker following the methodology in Tsoungui

Obama and Schneider (2022).
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