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Metrics to guide development of
machine learning algorithms for
malaria diagnosis
Charles B. Delahunt*, Noni Gachuhi and Matthew P. Horning

Global Health Labs, Bellevue, WA, United States
Automated malaria diagnosis is a difficult but high-value target for machine

learning (ML), and effective algorithms could save many thousands of children’s

lives. However, current ML efforts largely neglect crucial use case constraints and

are thus not clinically useful. Two factors in particular are crucial to developing

algorithms translatable to clinical field settings: (i) clear understanding of the

clinical needs that ML solutions must accommodate; and (ii) task-relevant

metrics for guiding and evaluating ML models. Neglect of these factors has

seriously hampered past ML work on malaria, because the resulting algorithms

do not align with clinical needs. In this paper we address these two issues in the

context of automated malaria diagnosis via microscopy on Giemsa-stained

blood films. The intended audience are ML researchers as well as anyone

evaluating the performance of ML models for malaria. First, we describe why

domain expertise is crucial to effectively apply ML to malaria, and list technical

documents and other resources that provide this domain knowledge. Second,

we detail performance metrics tailored to the clinical requirements of malaria

diagnosis, to guide development of ML models and evaluate model performance

through the lens of clinical needs (versus a generic ML lens). We highlight the

importance of a patient-level perspective, interpatient variability, false positive

rates, limit of detection, and different types of error. We also discuss reasons why

ROC curves, AUC, and F1, as commonly used in ML work, are poorly suited to this

context. These findings also apply to other diseases involving parasite loads,

including neglected tropical diseases (NTDs) such as schistosomiasis.
KEYWORDS

malaria, NTDs, schistosomiasis, metrics, machine learning, sensitivity, specificity, limit
of detection
1 Introduction

Malaria and some neglected tropical diseases (e.g., schistosomiasis) involve parasite

loads that can be detected in microscopy images of a substrate (e.g., blood or filtered urine).

They are thus amenable, though difficult, targets for automated diagnosis via machine

learning (ML) methods. These diseases are also very high-value ML targets: They are
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serious global health challenges affecting hundreds of millions of

people, especially children, in underserved populations (WHO,

2019; BMGF, 2023; WHO, 2023). Because microscopy on

Giemsa-stained blood films is a widespread clinical diagnostic,

effective automated ML systems have great potential benefit since

they can naturally fit into clinical workflow and enable hard-pressed

clinics to treat more patients. In addition, drug resistance sentinel

sites have a heavy demand for parasite quantitation on Giemsa-

stained blood films, a use case well-suited to automated microscopy.

However, ML methods developed for malaria diagnosis1 using

Giemsa-stained blood films have so far largely failed to translate to

useful deployment, for several reasons.
1 D

Plasm

Fron
(i) The task is difficult: malaria parasites are small and closely

resemble certain artifact types; field blood films are highly

variable in stain color, types and numbers of artifacts, and

parasite appearance; digital microscopy images vary in

color, quality, and resolution; images are often full of

distractor objects; and the low limits of detection required

for clinical use result in low signal-to-noise ratios (e.g., one

parasite per 30 large fields of view).

(ii) ML development has typically proceeded in a heavily ML-

centric mindset, without careful attention to (or even

knowledge of) the domain specifics, use cases, and clinical

requirements of malaria. This yields algorithms that, almost

by design, fail to meet clinical needs and cannot be built

upon (see Figure 1).

(iii) ML development can only optimize what is measured, so a

crucial prerequisite for successful development is a set of

task-relevant metrics (Maier-Hein et al., 2022; Reinke and

Tizabi, 2024). These tailored metrics have largely been

lacking for malaria, for which ML development has

instead been guided by generic and ill-suited ML metrics

such as object-level ROC curves.
This paper seeks to accelerate the ML community’s progress

toward translatable solutions for malaria diagnosis, by describing

tools and techniques which we have found to be essential for

development of clinically effective ML algorithms. The intended

audience are ML researchers as well as anyone evaluating the

performance of ML models for malaria. It captures lessons

learned by our group over a decade of applying ML to malaria

diagnosis. The resulting algorithms (Delahunt et al., 2014a;

Mehanian et al., 2017; Delahunt et al., 2019) are, to our

knowledge, the most effective and also the most extensively field

tested in clinical trials (Torres et al., 2018; Vongpromek et al., 2019;

Horning et al., 2021; Das et al., 2022; Rees-Channer et al., 2023) yet

built for fully automated diagnosis of malaria on Giemsa-stained

blood films in clinical settings (we note that in medicine the gold

standard of evidence is the third-party clinical trial, not the ML-

style comparison). These field trials showed that our algorithms,

though state-of-the-art, still fall short of the clinical demands, and
efined here as detecting, quantitating, and identifying the species of

odium parasites in peripheral blood (CDC, 2023).
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highlight the need for more robust algorithms to truly impact this

category of malaria diagnosis.

The paper is structured as follows: Section 2 details aspects of

ML work that depend on a grasp of the clinical use-case (e.g., how

the disease is diagnosed in the field), lists malaria documents

especially relevant to ML work, and discusses other domain

knowledge resources. Section 3 first describes serious problems

with commonly-used ML metrics, then describes ML metrics

tailored specifically to malaria and NTDs that can be applied

during development of ML algorithms to optimize and evaluate

their clinical effectiveness. We focus throughout on malaria, but

sometimes mention NTDs (e.g., schistosomiasis) because the same

principles and methods apply.
2 The clinical use case

To be clinically useful an ML solution must fit into a larger, ML-

independent context. It must interlock with other pieces that are

shaped by clinician needs, site requirements, protocols currently in

use, patient needs, business environment, etc (Wiens et al., 2019).

This strong constraint to mesh with non-ML considerations is often

overlooked by ML practitioners, leading to algorithms that are

elegant (from an ML perspective) but ill-suited for use (from a

clinical perspective) (Koller and Bengio, 2018).

In particular, a clinically useful ML algorithm must fit into an

existing care structure and meet or exceed existing clinical

performance targets. So understanding these clinical constraints is

a basic prerequisite for algorithm development. (We set aside the

complex case of a disruptive technology potentially altering existing

care protocols. Such cases of course require careful analysis.)

This section discusses some crucial points to consider, and lists

resources for learning about malaria use cases.
2.1 Important domain specifics

Several domain-specific details are fundamental to effective

algorithm development:

2.1.1 Basic facts about the clinical needs
For example, what are the proper uses of thick vs. thin blood

films for malaria?

2.1.2 Performance metrics relevant in the clinic
Examples include patient-level sensitivity and specificity, and

limit of detection (LoD). This knowledge enables ML researchers to

tailor salient metrics to guide algorithm development (like those we

give in Section 3), define objective functions, do internal

assessment, and report algorithm results meaningfully.

2.1.3 Performance specifications
Clinicians are unwilling to reduce patient care standards, so ML

models must perform at least as well as current practice to be

deployable. Field performance requirements are thus vital concerns,
frontiersin.org
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even if a particular model iteration does not attain them (since the

work can then be built upon or extended).

2.1.4 Domain-specific obstacles and shortcuts
Some difficult details need special treatment, and others allow

for valuable shortcuts. For example, malaria parasites can exist at

various depths of a thick blood film, so a single image plane will not

capture all parasites in focus. On the plus side, the nuclei of white

blood cells (WBCs) are plentiful in thick films and stain similarly to

malaria parasite nuclei, so they can serve as a ready-made color

reference for the rare (or absent) parasites. Shortcuts matter because

generic methods applied as-is are unlikely to hit clinical

performance requirements, which is a much harder task than

simply outdoing another generic method in a ML-style comparison.

2.1.5 Structuring annotations and training sets
Annotations and training data are central to ML success, and must

be tailored to the task. For example, malaria ring forms (the youngest
Frontiers in Malaria 03
parasite stage) typically have both a round nucleus and a crescent-

shaped cytoplasm (examples in Figure 2). However, after drug

treatment the rings often lack visible cytoplasm, appearing in thick

films as dark round dots which are very similar to a common distractor

type. As a result, they have outsized impact on decision boundaries and

require special care as to annotation and inclusion in training sets.

Avenues to acquire vital domain expertise include (i)

documentation and (ii) connecting with domain experts.
2.2 Documentation

Effective ML solutions need to design in accommodations to

non-ML (e.g., clinical) constraints. Therefore, literature review to

inform ML work should extend well beyond ML methods and focus

on the clinical use-case itself, without an ML-centric filter.

Documentation of use cases and standards of care are published

by various agencies, including the World Health Organization
A B C

FIGURE 2

Examples of interpatient variability, thin blood films. Red arrows point to parasites, green arrow is a white blood cell. (A) Typical “ideal” blood film.
(B) Poor quality. (C) Malaria-negative, with numerous stain and debris artifacts. By permission from Delahunt et al. (2019).
FIGURE 1

Left: Effective ML (AI) solutions must interlock with domain requirements and will be shaped by non-ML pressures arising from the use case. Right:
Solutions developed with an ML-centric perspective, neglecting the use case, will be mainly shaped by purely ML concerns and will thus fail to
match clinical needs (“interlocking” metaphor due to Dr. Scott McClelland; jigsaw outline from https://draradech.github.io/jigsaw/jigsaw-hex.html).
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(WHO), ministries of health, and non-government organizations

(e.g., the Bill and Melinda Gates Foundation, the Global Fund, and

the Worldwide Antimalarial Resistance Network).

Below we list some references that are especially relevant to ML

researchers designing algorithms for automated malaria diagnosis

using Giemsa-stained blood films.

2.2.1 Appropriate evidence for ML
Fron
• The WHO has issued guidelines on how to generate

meaningful evidence for ML-based medical tools (WHO,

2021a, especially section 1). This document is important for

ML as applied to any medical use case. Crucially, evidence

of algorithm performance during development must be

firmly grounded in the clinical use case. This requirement

underpins the metrics described below in 3.2–3.11.
2.2.2 Protocols for malaria microscopy
Various groups have published diagnosis protocols which detail

the clinical task.
• WHO’s guidelines are an essential resource (WHO, 2010)

and (WHO, 2016a) (see especially SOPs 8 and 9 for

diagnosis and quantitation).

• Ministries of Health also have useful protocols, e.g., Peru

(Ministerio de Salud, 2003) and USA (CDC, 2023a).

• WWARN and the WHO have developed protocols tailored

to research contexts (e.g., drug resistance sentinel sites)

(WHO, 2016b).
2.2.3 Evaluation tests
• The WHO has developed a system to evaluate malaria

microscopists. This uses a set of 56 blood slides with

carefully specified parasitemias and species (WHO, 2016c,

section 6). The “WHO 56” evaluation reflects the tasks and

accuracies required in the clinic and is thus a valuable and

challenging test for ML algorithms. Its difficulty gives an

appreciation of the skills of human field microscopists. The

defined competency levels offer clear and clinically

meaningful performance targets for ML algorithms. Note

that the “WHO 56” differs slightly from the previous

version (the “WHO 55”) found in (WHO, 2009).

• A similar but distinct evaluation set of blood slides, tailored

to research rather than clinical contexts, is detailed in

(WHO, 2016b).

• Peru’s quality control protocols implicitly describe

performance requirements (Ministerio de Salud, 2003,

sections 7.2 and 9.2).
2.2.4 Neglected tropical diseases
• The WHO has defined target product profiles, including

sensitivity and specificity requirements, that are relevant to
tiers in Malaria 04
automated ML systems targeting schistosomiasis (WHO,

2002; WHO, 2021b).
2.2.5 Other performance specifications
• The above documents also provide detail concerning other

general product requirements relevant to any ML solution

that aims for translation to clinics. These issues include

time-to-result, throughput, electricity/battery constraints,

price, and (implicitly) computational constraints.
2.2.6 ML publications
• Some ML papers (e.g., Horning et al., 2021; Oyibo et al.,

2023) cite non-ML documents relevant to use case, but this

is not (yet) common practice. So ML-based literature search

is insufficient.
2.3 Domain experts

Domain experts are a vital source of guidance and collaboration.

They include field experts, i.e. those who work in field clinics or who

do field-based research; and subject matter experts, such as WHO

personnel and long-time researchers in the space (these groups

overlap). The value of their experience and insight to effective

algorithm development cannot be overstated.

As an example, our group’s entire ML program for malaria

diagnosis has depended absolutely upon expert input from a

technical advisory panel, as well as on continued contacts and advice

from field clinics. To the degree that our work has succeeded, this

expert input has been the key ingredient (along with the closely

entwined matter of data collection and curation). We would argue

that ML development can only progress toward clinically useful

algorithms when domain expertise is somehow integrated into the

team (recent examples include Yang et al., 2020; Manescu et al., 2020a,

b; Kassim et al., 2021; Poostchi et al., 2018a; Yu et al., 2023; and, for

schistosomiasis, Armstrong et al., 2022; Oyibo et al., 2022, 2023).

Connecting with such experts is made easier by two things.

First, people (on average) love to talk about their work. Second, field

experts are often (again, on average) open to engaging with ML

solutions and happy to co-author serious research.

Sources for contacts include: (i) published work, e.g., who is

leading and authoring/co-authoring relevant studies; (ii) academic

institutions with concentrations of research in the space; (iii) online

interest groups, e.g., on LinkedIn; and (iv) non-ML conferences,

their attendees, and proceedings, e.g., the American Society of

Tropical Medicine and Hygiene.
3 Salient metrics for ML work

Salient metrics are essential to ML work, both to guide

development and to report results meaningfully. Unfortunately,
frontiersin.org
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the metrics routinely applied to ML work on malaria (e.g., object-

level precision, recall, AUC, and F1 score) have disqualifying

drawbacks in the malaria context.

A 2018 review of automated malaria detection papers (Poostchi

et al., 2018b) described serious problems (which still persist):

reported metrics are incomplete and not comparable between

studies; metrics are object-based (not patient-based) and are thus

not relevant to the clinical task; train and test sets contain objects

from the same patient, which contradicts the patient-level focus;

and datasets are too small. We note that in addition, incorrect

assumptions are built into algorithms: for example, diagnosis on

thin blood films is common in ML papers, despite being contrary to

clinical practice due to practical obstacles (Long, 2015; WHO,

2016a; though see recent work on thin film spreaders in Noul,

2023; Nowak et al., 2023).

In this section, we first (3.1) discuss some problems with

commonly-used ML metrics and argue that these should not be

used to report ML results for malaria.

We then describe in detail (3.2–3.11) some alternative metrics

which have high clinical relevance for the malaria use case. These

metrics are effective tools both to guide ML development and to

report meaningful ML performance results not only for malaria, but

also other diseases involving parasite loads such as malaria, NTDs,

or more generally any pathology where diagnosis is determined by

the presence of a variable number of abnormal objects (e.g., pixels

or cells in a histopathology slide).

A full list of mathematical notation is given in Table 1.
3.1 Problems with ROCs, AUCs,
and precision

ML practitioners choose metrics to evaluate model performance

by (i) what is customary, familiar, and convenient; (ii) what has

been done by previous authors; (iii) what can generate the “state of

the art” (SOTA) comparisons required for publication in the ML

community; and (iv) what is acceptable to ML reviewers. This

creates a closed loop which perpetuates the use of certain metrics

without regard to their effectiveness. When entrenched metrics do

not assess algorithm performance in a clinically relevant way, it

blocks progress toward deployable solutions.

Several commonly-used ML metrics, including object-level

ROC curves, AUC, object precision, and F1 score, appear

frequently in the ML malaria literature. However, in the malaria

context these are flawed measures of performance, for reasons given

below. They also do not meet standards of evidence per (WHO,

2021a). They should therefore be avoided when reporting results

(though they can be useful intermediate measures for internal

algorithm work).
3.1.1 Object-level ROC curves and AUC
Object-level ROC curves, and the associated Area Under Curve

(AUC), are routinely reported by ML research papers involving

parasite detection. ROC curves plot sensitivity (fraction of parasites

detected) vs one minus specificity (fraction of distractors
Frontiers in Malaria 05
misclassified as parasites). However, they have three key

weaknesses in this context (except perhaps as intermediate

measures for internal algorithm work).

First, they do not address the clinical need for patient-centric

care. In particular, they ignore the crucial matter of high inter-

patient variability of object-level accuracy (this variability is

discussed in 3.4 and 3.3).

Second, real samples often have a large imbalance between

distractors and positive objects, especially at parasitemias near

clinical limit of detection (LoD). A common situation is a model

that seeks to diagnoses malaria on thin films by labeling individual

red blood cells (RBCs) as infected or not. Since 1 µL of blood

contains roughly 5 million RBCs, a parasitemia of 100 p/µL gives

50,000 negative objects for each positive object. So a 0.999 AUC can

coexist with an average of 50 False Positive objects per parasite (a

very poor SNR). Since one detected parasite and one False Positive

object have equal impact on diagnosis (if using the standard method

described in 3.6 of exceeding a threshold count of suspected
TABLE 1 List of notation, using malaria as the reference context.

General terms

LoD Limit of Detection NTD Neglected Tropical Disease

RBC Red Blood Cell WBC White Blood Cell

P a parasitemia, in p/µL # ”number of”

µL microliter p/µL parasites per microliter

V estimated volume of
blood examined

cV clinically-relevant volume (1 µL
of blood)

fp # false positive objects
in V

FP # false positive objects per cV
for one patient

tp # true positive objects in V TP # true positive objects per cV for
one patient

n # suspected parasites in V
= tp + fp

N # suspected parasites in cV = TP
+ FP

fn # false negative objects
in V

tn # true negative objects in V

Terms used in metric definitions

FPR False Positive Rate: FP of
one patient

F vector of patients’ FPRs

s(F) standard deviation of F µ(F) mean of F

sL
(F)

lefthanded standard
deviation of F

sR

(F)
righthanded standard deviation
of F

S object-level sensitivity of
one patient

S vector of patients’ S’s

s(S) standard deviation of S µ(S) mean of S

F̂ expected FPR, e.g., µ(F) Ŝ expected sensitivity S, e.g., µ(S)

C threshold on object
classifier scores

T threshold on # suspected
parasites per cV

K desired patient-
level specificity

a, b scalars

P̂ model’s estimate of a
true P

L a model’s LoD, in p/cV (i.e.
p/µL)
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parasites in the sample), False Positive noise will swamp the

diagnostic signal of detected parasites.

In such cases with large class imbalance (say D:1), the leftmost
1
D
th vertical sliver of the ROC curve, with y-axis rescaled to be full

width, reflects a more meaningful (and more sobering) ROC,

because this expanded sliver visually weights detected parasite

(True Positive) counts and False Positive counts equally, as

shown in Figure 3.

Third, the object-level ROC curve depends heavily on how

distractors are defined because this determines the distractor pool.

For example, when using thick films to diagnose malaria,

“distractor” can mean (i) only the most difficult objects that

closely resemble parasites; or (ii) any dark blob; or even (iii) every

pixel in an image. Figure 4 shows an example in which including

only “difficult” distractors (top) results in a low AUC, while

including additional, mostly “easy” distractors (bottom) gives a

higher AUC with no change in actual performance as measured by

the number of False Positives per detected parasite.

More informative than the object-level ROC is the Free ROC

(FROC), which plots object-level sensitivity vs. the number of False

Positives per unit volume of blood (see 3.3). FROCs for object level

are useful for development work: they clarify where gains can be

made by favorably trading off object-level sensitivity for lower False

Positive rates. When datasets lack sufficient numbers of patients,

FROCs on pooled objects can provide some insight into algorithm

performance, with the caveat that they ignore patient-

level variability.

3.1.2 Patient-level ROCs
Patient-level ROCs can give a useful sense of algorithm

behavior near the clinical performance requirements and are

well worth reporting when sufficient data exists to plot them.

However, there are two caveats. First, the only salient portion of a

patient-level ROC is the region near clinically relevant operating

points (e.g., specificity 90%). Second, because sensitivity is

parasitemia-dependent (3.4), the ROC is dependent also. Thus,
Frontiers in Malaria 06
a given algorithm may have much higher AUROC on a population

with pr imar i ly high paras i temias than on one with

lower parasitemias.

3.1.3 Precision
Object-level Precision is the ratio of detected parasites over all

detected objects, and often appears as an ML metric. This metric, as

used, tends to badly underestimate the effects of parasite-to-

distractor imbalances at the low LoDs required for clinical use,

as follows.

In ML papers, precision is often calculated on datasets with the

clinically unrealistic situation of roughly balanced parasite and

distractor counts, either because the numbers of objects have

been artificially balanced or because the positive samples had high

parasitemias (i.e. many parasites per volume V). Since False Positive

counts roughly scale with volume V, high parasitemia samples yield

much more balanced True Positive : False Positive tp
tp+fp ratios,

which tend to give precisions which do not generalize to low

parasitemia samples.

For example, a precision of 0.99 calculated on samples with P ≈

10,000 p/µL corresponds to 100 False Positives per µL (assuming

perfect sensitivity). At the required LoD of 100 p/µL, these same 100

False Positives correspond to 100 parasites, giving precision = 0.5, a

much less attractive result.

The related metric F1, the harmonic mean of precision and

object-level sensitivity (also problematic, as noted in 3.4), is a

similarly misleading metric for reporting algorithm results, and in

addition has no clinical utility.

The rest of this section (3.2–3.11) discusses metrics that better

reflect malaria’s clinical use case.
3.2 Patient level metrics

The importance of assessing algorithm performance at the

patient level cannot be over-emphasized. The basic unit of clinical
FIGURE 3

For a 20:1 distractor-to-parasite ratio, stretching the left vertical sliver gives a more meaningful ROC curve. Diagonal red lines show operating points
that give equal numbers of True Positives and False Positives.
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care is the patient2, so the most relevant metrics are defined at the

patient level, not the object level. Performance assessed across

pooled objects can be a useful intermediate step during ML

development, but it is fundamentally unrealistic, because (i) it

does not match the clinical task; (ii) it ignores interpatient

variability; and (iii) it is dominated by high parasitemia samples.

For example, consider four malaria-positive patients, with

Patient 1: 50,000 parasites/µL (p/µL).

Patients 2, 3, 4: each 300 p/µL.

Suppose the algorithm detects almost all parasites in {1}, and

misses all parasites in {2,3,4} (a realistic scenario due to interslide

variability). Then the object-level sensitivity is 98%, while patient-

level sensitivity is 25%.

We have found that two metrics, each defined on a per-patient

basis, are particularly useful: false positive rate (FPR) and sensitivity.

Each is calculated separately for each patient, using algorithm

accuracy on objects within that patient’s sample. These are

covered in 3.3 and 3.4, and underpin other metrics related to

specificity (3.5), LoD (3.6), and quantitation (3.9).

Interpatient variability (as in Figure 2) poses great difficulty for

ML, so it must be factored into algorithm evaluation. It is captured

by the standard deviations of FPR and sensitivity (cf. 3.3, 3.4), to the

degree that the dataset captures interpatient diversity.
2 We set aside population-level diagnostics such as for Vitamin A deficiency

WHO (2011).
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A related issue is interclinic variability. For example, clinics can

use different stain variants (e.g., Giemsa, Field, and JSB) which yield

different color ranges. Even clinics with nominally identical

protocols can differ substantially (see e.g., Das et al., 2022 and a

detailed example in Torres et al., 2018). Besides variations in

presentation, different clinics may produce populations of

samples with differently distributed FPRs and sensitivities.

Implications of this for tuning algorithms are covered in 3.5.
3.3 False positive rate

False Positive Rate (FPR) is the number of distractors mislabeled

as parasites per clinically relevant unit of substrate, hereafter cV, e.g.,

1 µL of blood (malaria), 10 mL urine (Schistosoma haematobium), 1

gram stool (other NTDs), a specified number of cells in a histological

sample, etc; but not “per image tile”, which generally has no clinical

relevance (though image tiles can often be translated into the

microscopy “Fields of View” used in protocols). Malaria ML papers

with some FPR analysis include Linder et al. (2014), Mehanian et al.

(2017), Delahunt et al. (2019), and Manescu et al. (2020a). Crucially,

FPR is calculated separately for each patient. We denote the vector of

FPRs for the population of patients as F.

FPR is not object-level specificity, which is a commonly

reported but highly flawed measure in this context (see 3.1).

While FPR can be calculated for any sample, FPRs on positive

samples may be erroneously boosted by mis- or unannotated
FIGURE 4

For unchanged algorithm and FPR, ROCs are artificially improved by increasing the number of easy distractor objects. Left: object scores (positives
are blue, negatives are red). Right: associated ROC curves.
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parasites. Thus, the population’s FPR distribution is best

characterized using negative samples only.

Interpatient variability makes the standard deviation of FPR,

s(F), a crucial performance measure. The mean FPR µ(F) is less
relevant because it can be subtracted out, as shown in 3.6 and 3.9.

However, since it tends to scale roughly with s(F), it can give a hint

as to the relative magnitude of s(F) (see e.g., Mehanian et al., 2017;

Delahunt et al., 2019).

In datasets with insufficient numbers of patients, an FPR

calculated over pooled objects has some value as a lower bound

on F. In particular, it can be compared to the clinical LoD

requirement. For example, a pooled-object FPR of 5,000/µL, vs. a

required 100 p/µL LoD (malaria), is a clear sign that work is still

needed. Multiple splits of a set of pooled objects does not simulate

s(F), because each split will include the full patient diversity.

Aside: Samples with high FPRs are sometimes criticized as being

due to “poor sample preparation”. However, except for extreme

cases this is in the eye of the beholder: human clinicians readily and

successfully diagnose “dirty” samples on which ML algorithms fail.

Thus, the need to improve sample prep is to large degree a need to

accommodate ML methods’ struggles with handling highly variable

sample presentations. See Das et al. (2022), and a detailed example

in Torres et al. (2018).
3.4 Sensitivity

Sensitivity (aka recall) is the fraction of positive items in a set

that are correctly labeled: Sensitivity = tp
tp+fn, where tp = true

positives, i.e. positive items labeled correctly, and fn = false

negatives, i.e. positive items labeled as negative or missed. The

“items” can be parasites (object-level) or malaria-positive patients

(patient-level).

3.4.1 Pooled object sensitivity
Sensitivity over a pooled set of parasites from multiple patients

has some value as an intermediate assessment metric during ML

development (e.g., as a loss function for gradient descent training),

if it is analyzed carefully to avoid problems such as imbalanced

parasitemias distorting the object pool (cf. the example given

in 3.2).

3.4.2 Per-patient object sensitivity
A clinically realistic and useful version of object-level sensitivity

measures each patient separately:

Per patient object-level sensitivity S is the fraction of parasites in

the examined volume V of a positive sample that are correctly

labeled (e.g., by means of an object score threshold C): S = tp
tp+fn

where tp = parasites labeled correctly, and fn = parasites labeled as

distractors (or missed). There is no constraint on the size of V or

parasitemia, but sensitivities for patients with few parasites are less

reliable (cf. the law of large numbers). Each patient’s object-level

sensitivity is calculated separately. We denote the vector of

sensitivities for the (malaria-positive) population as S. S
underpins metrics related to LoD (3.6) and quantitation (3.9).
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3.4.3 Patient-level sensitivity
Patient-level sensitivity is sensitivity in the usual clinical sense of

the fraction of positive patients correctly diagnosed (not S). It is of

course a vital metric clinically, but is complex to interpret because it

depends on two things:
(i) The particular parasitemia distribution of the tested set:

Patients with low parasitemias (close to the LoD) are harder

to identify. In malaria for example (where LoD ≈ 100 p/µL),

if all patients have parasitemias > 1000 p/µL, 100%

sensitivity is (hopefully) trivial, while if all parasitemias

are under 50 p/µL, very low sensitivity is likely.

(ii) The particular specificity: Sensitivity and specificity are paired

and move in opposite directions, as seen in ROC curves.
Thus, reporting patient-level sensitivity is uninformative and

even misleading unless one also reports (i) the parasitemia

distribution, and (ii) the associated specificity on negative

samples. The WHO competency levels are an important example:

These levels crucially assume the parasitemia distribution of the

WHO 56 diagnosis slide set, viz 20 negative slides and 20 positive

slides with parasitemias between 80 and 200 p/µL (WHO, 2016c).

WHO competency level ratings do not apply to results on

distributions with higher parasitemia samples.

A principled way to maximize patient-level sensitivity is given in 3.7.

3.4.4 Effect of species on sensitivity
Algorithm sensitivity results should be broken down by species as

well as by parasitemia, because malaria species has strong impact on

patient-level sensitivity. This is due to the unique synchronization

and sequestration behaviors of P. falciparum (Garnham, 1966):
(i) In falciparum the large, distinctive late stage forms sequester

out of the peripheral blood, leaving only the smaller ring

forms that are harder to detect and disambiguate from

distractor objects (especially in thick films). As a result, in

our experience non-falciparum infections (i.e. vivax, ovale,

malariae, knowlesi) are much easier to detect in blood films

(given equal parasitemias), which allows an algorithm to

have lower LoD and higher patient-level sensitivity (Torres

et al., 2018; Delahunt et al., 2019; Horning et al., 2021; Das

et al., 2022; Rees-Channer et al., 2023).

(ii) falciparum parasites tend to synchronize in peripheral

blood, with the presenting parasites forming a narrow age

distribution. This strongly impacts diagnostic methods that

target the biomarker hemozoin: non-falciparum samples

can be very sensitively detected due to the reliable presence

of late-stage, high hemozoin parasites (Arndt et al., 2021),

but even high parasitemia falciparum samples can lack

detectable hemozoin due to synchronized populations of

early stage ring forms (Jamjoom, 1988; Rebelo et al., 2011;

Delahunt et al., 2014b), resulting in drastically different

sensitivities by species. (Hemozoin appears to be a sensitive

biomarker for falciparum in cultured blood because

synchronization is absent.)
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This is a high-stakes issue because falciparum is much more

often fatal than non-falciparum species.
3.5 Specificity

Specificity is the fraction of negative items (distractor objects or

patients) that are correctly diagnosed as negative:

Specificity = tn
tn+fp, where tn = true negatives (negative items in V

labeled correctly), and fp = false positives (negative items

labeled incorrectly).

3.5.1 Object-level specificity
Object-level specificity, even if calculated for each patient

separately, has little usefulness and can be highly deceptive (see 3.1).

3.5.2 Patient-level specificity
Patient-level specificity, i.e. in the usual clinical sense, is highly

salient. Clinical goals of high specificity include not overwhelming

the health care system, avoiding excess treatments, and preventing

misattribution. Thus, clinical use-cases generally require a high

specificity (e.g., 90% for malaria diagnosis (WHO 2016c), 97.5% for

schistosomiasis (WHO, 2021b)).

Specificity is closely tied to FPR (3.3) and can be readily tuned for

an algorithm that labels objects: Suppose that objects have been

detected then labeled by some method (e.g., a threshold C on object

scores), that F (from 3.3) is gaussian, and that patient diagnosis is

determined by a threshold T on the number of positively-labeled

objects per cV (i.e. a standard “detect, classify, count, then threshold”

approach). To attain a target specificity K, one can set

T = μ (F) + a  s (F) (1)

where a is found via the (one-sided) error function and K. Alternate

formulations for the case of nongaussian F are given in 3.8.

Negative samples are easier to obtain and trivial to annotate

(assuming accurate patient-level ground truth), and specificity

depends only on negative samples. So T can ideally be tuned on a

separate, dedicated validation set of negatives that capture a

sufficient range of FPRs (both “dirty” and “clean” samples).

Note that different clinics can have widely different FPR

distributions F. Because s(F) determines both specificity

(Equation 1) and LoD (3.6), different clinics may require different

hyperparameters to hit the target patient specificity K, leading to

different LoDs. Thus, tuning an algorithm for deployment may

involve multiple validation sets of negatives (by clinic), with clinic-

dependent tradeoffs between specificity and higher LoD.
3.6 Limit of detection (LoD)

Here, LoD roughly means the parasitemia at which the

algorithm can consistently (e.g., 95% of cases) distinguish positive

and negative cases. Based on the WHO evaluation criteria (WHO,

2016c), the required LoD for malaria microscopy is roughly 100 p/

µL, i.e. 1 parasite per 50,000 red blood cells (RBCs) or 80 white

blood cells (WBCs). However, expert microscopists routinely
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achieve LoDs ≈50 p/µL (e.g., Vilela, pers. comm.; Bell, pers.

comm.), and the lower LoD is of course clinically desirable. For

helminths, LoD is implicitly 1 egg (per 10 mL urine or 1 gram stool)

(WHO, 2002, 2021b). Standard Loa loa diagnosis by blood

microscopy has an effective LoD > 200 mf/mL when V = 10µL

(Mischlinger et al., 2021).

LoD can be directly probed using holdout sets of low

parasitemia positive samples. These are not as useful for training

anyway, as they supply few parasite objects. However, this is

impractical because it’s hard to acquire enough field-prepared

positive blood films near the LoD (a work-around is to ablate

parasites in the image set of a sample with parasitemia above the

LoD, to lower its visible parasitemia).

We can calculate a useful estimate of LoD from F and S
as follows:

Denote the putative LoD as L parasites per cV, and suppose that

a patient is diagnosed as “positive” when N ≥ T, where N is the

number of positively-labeled objects per cV. Note that N = TP + FP

in positive patients, and N = FP in negative patients, where TP and

FP denote counts per cV, so TP = tp cV
V where tp is the number of

parasites correctly labeled in V (similarly FP = fp cV
V ).

• Make T high enough to ensure to enforce 95% specificity on

negative samples as described in (Mehanian et al., 2017) by setting a
to 1.65 std devs in Equation 1:

T = μ (F) + 1:65s (F) (2)

• Then for positive samples the worst case is a very “clean”

sample with low FPR, such as the 5th percentile of samples with

FP = µ(F) − 1.65s(F). In this case we must depend mostly on

detected parasites to ensure N ≥ T for a positive diagnosis. Suppose

for ease that the sample has average sensitivity = µ(S). Then a

sample at LoD has TP = Lµ(S).
• To diagnose this positive sample correctly (but just barely, i.e.

N = T), we need

N = TP + FP = L μ (S) + μ (F) − 1:65s (F)

= T = μ (F) + 1:65s(F)

⇒ L μ (S)  =  3:3s (F)

So the estimated LoD (L per cV) has

L =
3:3s (F)
m(S)

(3)

• Optionally, +1 can be added to the numerator (i.e. require N =

T +1) to prevent unpredictable behavior should both s(F) and µ(S)
approach 0:

L =
3:3s (F) + 1

m(S)
(4)

In our algorithm development, we have found this estimate to

be a good (slightly optimistic) proxy for actual LoD when assessing

algorithms during development. In particular, it consistently

tracked diagnostic accuracy on holdout sets of low parasitemia

samples, i.e. lower estimated LoDs mapped to higher accuracy
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(sensitivity and specificity at the patient level) in holdout sets and

field trials. It has the practical advantage that low parasitemia

samples are unnecessary, because the vector S can be well

characterized by high parasitemia samples. It also allows useful

comparison of algorithms, as it directly addresses a key clinical

requirement and is anchored to the relevant unit cV.

Amore nuanced (and pessimistic) proxy could account for s(S)
by having a denominator = µ(S)−b s(S) for some b.
3.7 Choosing operating points

Given a trained algorithm that uses the two hyperparameters C and

T, {C, T} can be optimized in a principled way to maximize patient-

level sensitivity, subject to the constraint of a fixed target specificity K:
Fron
• Set aside a validation set of negative samples. If there are

sufficient positive samples to spare, optionally set these

aside also.

• For each C:
tiers in
- Calculate F over the validation negatives, and µ(S) over
the validation positives if available, or (less ideal but

workable) over the training set positives.

- Determine T = T(C, K, F) which hits the target

specificity K on the validation negatives, as in 3.5.

- Estimate LoD as in 3.6.
• Select the C with the lowest LoD.

• Use this {C,T} pair as algorithm hyperparameters to process

test sets, and report patient-level specificity and sensitivity.
3.8 Modified LoD and operating
point formulas

The methods for setting T (Equation 2) and for estimating LoD

(Equations 3, 4) both assume that the FPR vector F is gaussian. In

our experience this is often not the case. Rather, the FPR

distribution may be asymmetrical, with mostly low-FPR samples

and a few high-FPR samples. This can be handled by modifying the

methods in 3.5 and 3.6 as follows:
• For µ(F), use the median of F instead of the mean of F.
Similarly, if the vector S is non-gaussian, the median can be

used instead of the mean for µ(S).
• For s(F), use one-sided std devs, which can be calculated by

keeping only the points to the right (or left) of the median

and reflecting them across the median as centerpoint to

create a symmetric distribution. This gives, for the FPR

distribution above, a large right std dev sR(F) and a small

left std dev sL(F).
• Then the new versions of Equations 1, 3 are
T = median(F) + asR(F)
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L =
1:65(sL(F) + sR(F))

m(S)

Two other methods of calculating T from F may be useful:
1. Set T based on the Kth percentile of F.
2. Manually choose T based on a scatterplot of the FP counts

in the validation negative samples.
For both these methods, the detected objects are assumed to be

already classified. If a threshold C on object scores was used, then

first T must be calculated for each C, before choosing the best {C,T}

pair as in 3.7.

The manual method of choosing {C,T} takes time, but it can

yield the best results in a field deployment because it is most closely

tailored to the empirical FPR distribution.
3.9 Quantitation

Quantitation sometimes has clinical importance. For example,

accurate quantitation is needed to monitor for drug-resistant

malaria strains by calculating clearance curves (White, 2011;

Ashley et al., 2014; WHO, 2016d). For helminths, quantitation

targets are typically rough only (e.g., low, medium, high) (WHO,

2002). For Loa loa, a remarkable drug reaction necessitates accurate

quantitation at certain high parasitemias only (≈ 20k to 30k worms/

mL) (Gardon et al., 1997; D’Ambrosio et al., 2015).

3.9.1 Measuring quantitation accuracy
Quantitation accuracy should be reported at the patient level

due to high interpatient variability. For plotting quantitation error

per patient, Bland-Altman plots are preferable because relative

quantitation error is generally most important (WHO, 2016b).

Reporting the R2 value of a linear fit of estimated vs. true (i.e. P̂

vs. P) is unsuitable when parasitemias range over orders of

magnitude (common in malaria and NTDs), because effects of the

L2 norm almost guarantee that high parasitemia samples will lay on

the fitted line while high relative errors on low parasitemia samples

will be downplayed, giving an illusion of strong fit. Fitting the log(P)

rather than P values helps to reduce this illusion.

3.9.2 Estimating parasitemia
As described in Delahunt et al. (2019), we can estimate the

parasitemia P̂ for a given patient by

P̂ =
n( cVV ) − F̂

Ŝ
,where (5)

n = number of alleged parasites found in V,

F̂ = expected FPR (e.g., µ(F)),
Ŝ = expected sensitivity (e.g., µ(S)),
cV = clinically relevant volume of substrate,

V = estimate of the volume examined.

Three types of error affect Equation 5: irreducible Poisson,

estimates of examined volume, and counts of alleged parasites.
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3.9.2.1 Irreducible Poisson error

This is discussed below in 3.10.

3.9.2.2 Examined volume error

Error in estimating V impacts quantitation accuracy via the cV
V

term of Equation 5. For example, thick film blood volume V is

typically estimated by counting WBCs (WHO, 2016a). Any error in

the WBC count causes proportional quantitation error. This error

type can be compartmentalized, for performance evaluation

purposes only, as follows:
Fron
• Manually count WBCs on a test set to ensure oracle V

estimates and use these counts to calculate V, ensuring zero

error of this type.

• Separately report the patient-level error statistics of the

WBC counter.
3.9.2.3 Parasite counting errors

Errors in parasite count stem from patient-level variations in

sensitivity and FPR, as follows:
• The number of alleged parasites per cV in the sample is

(tp + fp) cVV = TP + FP.

• Let P be the true parasite count per cV. Then ŜP is the

expected number of correctly labeled true parasites per cV,

and the difference between TP and ŜP is due to deviation of

the sample’s sensitivity from the expected Ŝ .

• Similarly, the difference between FP and F̂ (the expected FPR)

is due to the deviation of this sample’s FPR from expected.

s(S) and s(F) quantify these deviations over the population.
• A figure of merit to assess parasite counting error, derived

and discussed in Delahunt et al. (2019), is thus
s(S)
m(S)

+
s (F)
m(S)

1
P

While the FPR term is usually hardest to control, it also shrinks

as 1/P, so for large P the sensitivity term dominates. This effect can

be leveraged by using different operating points according to

whether initial estimated parasitemia is low or high, to favor FPR

or sensitivity. In particular, different operating points are indicated

for diagnosis (since the hard cases have low parasitemia, where FPR

dominates) and for quantitation (high parasitemias, where

sensitivity dominates).

We note that parasitemia estimates based on manual

microscopy are also subject to these three error types. This

complicates assessment of a model’s quantitation accuracy against

microscopy ground truth.
3.10 Effect of poisson statistics

Poisson statistics for rare events give variation in the actual

number of parasites in a particular sample with volume V, given a

fixed true parasitemia P over the whole sample. The variation is
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most visible at low parasitemias, e.g., at 100 p/µL, where each RBC

has a 1/50,000 chance of containing a parasite in thin film, or each

WBC has a 1/80 chance of corresponding to a nearby parasite in

thick film.

This variability has two main impacts:
(i) For diagnosis, a low LoD requires that a large volume V be

examined to ensure that at least a couple true parasites are

present at all. Otherwise, for a statistically predictable

subset of positive patients the examined volume will

contain 0 parasites, reducing patient-level sensitivity from

the start. For malaria, to attain LoD of 100 p/µL requires

that at least ≈0.05 µL of blood should be examined,

equivalent to 400 WBCs in thick film, or 250,000 RBCs in

thin film (see Figure 5). The difficulty of finding this many

acceptable RBCs, and the long processing time required, are

two reasons why thin films are not standard protocol for

manual field diagnosis; however, see progress by (Noul,

2023; Nowak et al., 2023). Indeed, the low sensitivity

(relative to PCR) of manual microscopy at parasitemias <

50 p/µL (see, e.g., Torres et al., 2018; Das et al., 2022; Rees-

Channer et al., 2023) is due largely to Poisson variability:

expert microscopists can certainly recognize even a single

parasite, but (following protocols) they do not examine

sufficient blood to ensure that such a parasite is present

when parasitemias are very low. The systems used in our

group’s studies examine >0.1 µL of thick film (>800 WBCs,

the red curve in Figure 5).

(ii) For quantitation, a sufficiently high volume V (depending

on P) must be examined to control irreducible error. For

more detail and plots see S.I. of Delahunt et al. (2019).

Poisson error affects manual microscopy also, and when

possible is mitigated by combining multiple manual reads

(WWARN, 2023).
In both cases, automated systems hold a strong advantage

because they can scan higher volumes than human technicians,

who often by necessity work in a high Poisson error regime (S.I. of
FIGURE 5

Poisson distributions of parasite counts for various examined
volumes V , assuming 100 p/µL. Low parasitemia samples may
present as negative (i.e. zero parasites) if V is too small.
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Delahunt et al., 2019). Manual microscopy protocols average

multiple readers ’ estimates (when available) to reduce

quantitation error (WHO, 2016b; WWARN, 2023).

When reporting results on datasets of small size, authors should

understand how Poisson variability limits their estimates of

algorithm performance.
3.11 Malaria species identification metrics

Identification of malaria species is one of the three tasks

assessed by the WHO 56 evaluation system (WHO, 2016c).

Correct species ID matters clinically because (i) falciparum

infections are much more likely to be fatal; and (ii) treatment

plans differ by species (CDC, 2023b), since (for example) the

hypnozoites of vivax and ovale species require special care.

Because not all species ID errors are equal from a clinical

perspective, reported results should preferably include a confusion

matrix as in (Delahunt et al., 2019).

Aside: In our experience, it is relatively straightforward to

distinguish falciparum vs. non-falciparum on thick film alone

(Torres et al., 2018; Vongpromek et al., 2019; Das et al., 2022),

also (Kassim et al., 2021), and even mixed species infections that

include falciparum can often be identified on thick film by

comparing the ring stage and late stage parasite counts (Horning

et al., 2021). However, thin films are still typically needed to

distinguish between the various non-falciparum species, unless

the clinical use case allows geographical priors to be leveraged. A

method to distinguish non-falciparum species on thick film would

yield clinical benefit by eliminating the need for thin films, due to (i)

the ease of thick-only workflows (Carter, pers. comm.; Proux, pers.

comm.), and (ii) thin film problems with quality (Long, pers.

comm.) and difficulty of species ID at low parasitemias (Lilley,

pers. comm.).

Staging parasites (as ring, later trophozoite, schizont, or

gametocyte) is not part of the WHO evaluation, and is not

generally useful clinically, except as used during species

identification or when quantitating asexual forms in non-

falciparum species. In falciparum (the main target of quantitation,

for drug resistance studies) the difference between ring and

gametocyte is glaring.

The methods described here were developed to address the

exigencies of field-prepared blood films. They apply equally well to

analysis of particular field isolates of any Plasmodium species,

since the core issues (inter-sample variability, importance of FP

objects, etc) apply to field isolates. The caveats connected to

analysis of in vitro cultures (3.4.4) apply to field isolates as well.
4 Discussion

Malaria and NTDs are amenable though difficult targets for ML

methods, and successful development of translatable ML solutions

would yield tremendous health care benefits for currently

underserved populations by enabling automated malaria diagnosis

to augment the throughput capacities of hard-pressed clinicians.
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Unfortunately communal ML progress, in which researchers

build on each others’ work to reach a performance goal, is

handicapped for malaria by lack of attention to clinical needs,

and by widespread use of ill-suited evaluation metrics. As a result,

the synergistic power of the ML community is not being applied

with full force to this important task, since many papers present

methods that cannot be usefully extended.

Individual ML research teams can radically improve the

situation by grounding their ML work in an understanding of the

use case, and by tailoring metrics to the clinical needs. We have

described such metrics here: variation in FPR, per-patient

sensitivity, LoD, patient-level sensitivity and specificity, and a

figure of merit for quantitation. We have also listed some

essential technical background reading from the WHO and others.

Peer reviewers play a special role in determining the success or

failure of the communal ML effort: (i) Reviewers can assess

algorithms and performance results according to whether they

incorporate the requirements of the clinical use case; (ii) When

authors present newmetrics, well-grounded in the use-case, this can

be more valuable than a comparison based on customary but

inferior metrics. By recognizing when this is the case, reviewers

can disrupt the cycle that perpetuates a counterproductive

status quo.

With attention to the clinical use case and deliberate choice of

metrics, the ML community can better equip itself to successfully

address automated malaria and NTD diagnosis, and thus deliver

concrete benefit to the populations suffering the dire effects of

these illnesses.
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