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Lupus nephritis (LN) is a common and serious manifestation of systemic lupus
erythematosus and is a major cause of mortality and morbidity. The current
standard-of-care treatment for LN include conventional immunosuppressive
treatments such as mycophenolate mofetil, cyclophosphamide, or azathioprine,
combined with glucocorticoids. However, this treatment approach has several
unmet needs, such as achieving only modest remission rates, potential
toxicities, and prolonged cumulative steroid exposure, resulting in suboptimal
patient outcomes. The LN treatment landscape is evolving rapidly to meet these
unmet needs, with belimumab and voclosporin being the first drugs approved
specifically for treatment of LN in 2020 and 2021, respectively. Here, we review
the likely roles in LN therapy for several targeted therapies, including select
therapies under investigation, and interventions in early development such as
therapies targeting B cells (obinutuzumab, atacicept, ianalumab, and CD19
chimeric antigen T-cell therapy), inflammatory cytokines (secukinumab and
anifrolumab), and the immunoproteasome (zetomipzomib); we also review
treatment strategies designed to minimize steroid exposure. Treatments in
development have demonstrated encouraging short- and long-term efficacy
and steroid-sparing potential, potentially paving the way for improved treatment
regimens and patient outcomes in LN.
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1 Introduction

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with a

relapsing and remitting course (1). Lupus nephritis (LN) is a common and serious

manifestation of SLE, occurring in ≤50% of patients (2–4), and remains a major cause

of mortality and morbidity for patients with SLE (5, 6). Approximately 10%–30% of

patients with LN will progress to end-stage kidney disease (ESKD) (7–11). Death

directly attributable to kidney disease will occur in 5%–25% of patients within 5 years

(8). Active LN is correlated with worse health-related quality-of-life compared with

inactive LN or SLE without kidney involvement, as well as higher direct healthcare

costs and indirect healthcare costs due to loss of productivity (12–15).
2 Management of LN

Guidelines recommend that patients with SLE and kidney involvement (glomerular

hematuria and/or cellular casts, proteinuria >0.5 g/day, spot urine protein-creatine ratio

[UPCR] >500 mg/g, or unexplained decrease in estimated glomerular filtration rate
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[eGFR]) should have a kidney biopsy performed (16, 17). More

recent data, which will be reviewed in this publication, suggest

that a broader indication for kidney biopsy should be

recommended, such as the presence of glomerular hematuria

accompanied by any degree of proteinuria (18–20). The 2003

International Society of Nephrology/Renal Pathology Society

(ISN/RPS) classification represents the gold standard for

assessment of kidney biopsies in LN, affirming the diagnosis of

LN and guiding treatment decisions (16, 17, 21). The 2018

update to the ISN/RPS classification include an increased

emphasis on the National Institutes of Health activity index and

chronicity index (22, 23).

Complete clinical remission is the main treatment goal in LN

due to its strong association with outcomes such as kidney

survival at 10 years: 94% for patients with complete remission,

45% for patients with partial remission, and 19% for patients

without remission (7). There is a lack of consensus on definitions

of complete and partial clinical remission following treatment,

although the criteria usually involve clinical markers of

proteinuria and serum creatinine (24). Clinical guidelines have

defined complete clinical remission as a reduction in proteinuria

to <0.5–0.7 g/day within 6–12 months of starting or escalating

therapy; partial clinical remission is defined as ≥50% reduction

in proteinuria or UPCR to <3 in the same time period (16, 17).

The terms induction and maintenance, which have traditionally

been used to characterize the treatment of LN, fail to capture

evolution in the understanding of LN management; the terms

initial and subsequent have been proposed instead (25). Because

there is no consensus on the best terminology, we used initial or

induction and subsequent or maintenance to describe LN

treatment in this publication.

Based on the recent Kidney Disease: Improving Global

Outcomes (KDIGO) 2021 glomerular diseases guidelines and the

European League Against Rheumatism/European Renal

Association-European Dialysis and Transplant Association

(EULAR/ERA-EDTA) 2019 guidelines, treatment for class III or

IV LN includes an initial or induction treatment of

glucocorticoids, combined with either mycophenolate mofetil

(MMF) or cyclophosphamide (CYC) followed by maintenance or

subsequent therapy with either MMF or azathioprine (AZA)

combined with glucocorticoids (8, 16, 17). Glucocorticoids

improve mortality rates in patients with LN and have been the

mainstay of LN treatment since the 1960s (26). Landmark trials

in the 1970s and 1980s reported that the addition of CYC to

glucocorticoids resulted in better preservation of long-term

kidney function compared with glucocorticoids alone (27, 28);

subsequent data showed that patients receiving either MMF or

CYC had similar response rates if they were also receiving

glucocorticoids (29), indicating that either MMF or CYC were

reasonable options for initial or induction treatment (16, 17).

In recent years, belimumab (2020) and voclosporin (2021)

became the first two drugs to be approved specifically for the

treatment of LN; these approvals could potentially have

significant implications for the current standard of care (SoC) in

LN (30, 31). There is increasing support for early use of

belimumab and voclosporin in combination with standard
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therapy, as proposed in the KDIGO 2024 guidelines for the

management of LN and the 2023 update of the EULAR SLE

recommendations (32, 33).

The optimal treatment duration for LN is not clearly defined;

early withdrawal of treatment leads to relapses, whereas

prolonged treatment exposure increases the risk of toxicity. The

KDIGO 2024 guidelines recommend that the combined duration

of initial or induction therapy and subsequent or maintenance

therapy for proliferative LN should be ≥36 months (33), whereas

the EULAR/ERA-EDTA 2019 guidelines recommend that

immunosuppression treatment should continue for at least 3–5

years after achieving complete clinical remission; duration should

be individualized according to the timing and magnitude of

response, duration of flare-free maintenance, extrarenal SLE

activity, and patient preferences (17). In the updated EULAR

2023 recommendations, the duration of treatment was revised to

≥3 years following renal response (32).
2.1 Unmet needs in current management
of LN

A systematic review of over 18,000 patients found that the 5-

year risk of ESKD in patients with LN in 1970 to 1979 was 16%;

subsequently, the risk declined gradually until the mid-1990s,

when it plateaued at 11%, then increased in the late 2000s (34).

This fluctuation highlights the limitations of conventional

therapies and the need for new therapies to improve patient

outcomes. Repeat biopsy studies have demonstrated that

conventional therapies are ineffective at preventing accrual of

kidney damage despite good clinical response (35, 36). Remission

rates for LN are modest, with <60% of patients achieving

complete clinical remission after 2 years (37–39); among those

who have achieved clinical remission, kidney flares still occur in

27% to 66% (7, 40, 41). It is worth noting that recent

retrospective studies conducted in Europe have reported

complete response rates of up to 72% at 18 months (42, 43),

highlighting the heterogeneity of treatment response

across populations.

Additionally, standard immunosuppressive treatments are

linked to significant toxicities, including myelosuppression and

infections (44). The use of glucocorticoids has greatly improved

survival in patients with LN; however, long-term use is

associated with safety concerns, including infections, elevated risk

of cardiovascular disease, metabolic side effects (45), and accrual

of damage from SLE, which are major causes of morbidity and

mortality in SLE (5, 46–49). Hence, treatment strategies that aim

to minimize glucocorticoid exposure while maintaining treatment

efficacy have substantial clinical value (45).

The LN therapeutic landscape is evolving rapidly, and

investigations of novel therapies are ongoing to address the

unmet needs of current treatment strategies. Here, we provide an

overview of approved targeted therapies that have the potential

to address these unmet needs, select treatments that are being

investigated in late-stage clinical trials, and promising new

treatments in early developmental stages that offer the possibility
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FIGURE 1

Mechanisms of action of treatments for LN. Ag, antigen; APRIL, a proliferation-inducing ligand (also known as ANP32B); ANP32B, acidic nuclear
phosphoprotein 32 family member B; BAFF, B-cell activating factor (also known as TNFSF13B); BAFFR, B-cell activating factor receptor (also
known as TNFRSF13C); CAR, chimeric antigen receptor; GBM, glomerular basement membrane; IFN, interferon; IFNAR1, interferon alfa and beta
receptor subunit 1; IL, interleukin; LN, lupus nephritis; Th, T helper; TNF, tumor necrosis factor; TNFRSF13C, TNF receptor superfamily member
13C; TNFSF13B, TNF superfamily member 13B; T-reg cell, regulatory T-cell. Reprinted from Obrișcă B, et al. (50). Creative Commons Attribution
4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Askanase et al. 10.3389/flupu.2024.1334932
of glucocorticoid-free regimens. The mechanisms of action of these

therapies are illustrated in Figure 1, and data from key clinical trials

are detailed in Table 1.
2.2 Novel approved targeted therapies

2.2.1 Belimumab
B cells play a significant role in the pathogenesis of SLE, acting

directly via autoantibody production and indirectly via antigen-

presenting activity to promote T-cell activation and production

of inflammatory cytokines (64, 65). Belimumab is a fully human

monoclonal antibody (mAb) that inhibits the soluble form of

B-cell activating factor [BAFF; also known as TNFSF13B (TNF

superfamily member 13b)], thereby inhibiting B-cell survival and

reducing the differentiation of B cells into immunoglobulin-

producing plasma cells (65, 66).

In the Phase III BLISS-LN trial, 448 patients with LN were

randomized to either belimumab or placebo in combination with

standard induction therapy. Over 104 weeks, the belimumab

group demonstrated a significantly higher renal response rate vs.

placebo [43% vs. 32%, respectively; odds ratio (OR), 1.6; 95% CI,

1.0–2.3; p = 0.03] and a significantly lower risk of kidney-related

events or death [hazard ratio (HR), 0.51; 95% CI, 0.34–0.77;

p = 0.001]; the safety profile was similar between both groups
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(51). Based on the positive trial results, both KDIGO 2024 LN

guidelines and the updated 2023 EULAR SLE guidelines now

state that initial combination treatment with belimumab may be

considered alongside standard therapy with MMF or CYC and

glucocorticoids (32, 33).

Two additional Phase III clinical trials are ongoing and will

evaluate the safety and efficacy of belimumab in LN, including

long-term data, across different patient populations

(NCT03370263 and NCT05863936) (67, 68). Data from the long-

term extension of the extrarenal belimumab studies are

reassuring and show no increased risk of side effects with up to

11 years of treatment (69).

2.2.2 Voclosporin
Calcineurin inhibitors (CNIs) such as voclosporin, tacrolimus,

and cyclosporine exert immunomodulatory effects on T cells,

leading to reduction of lymphocyte proliferation and T-cell–

mediated responses, as well as reduction of proteinuria via

stabilization of podocytes (70, 71). Due to the unpredictable and

complex pharmacokinetics (PK) profile of conventional CNIs

(tacrolimus and cyclosporine), therapeutic drug monitoring is

required to ensure efficacy and minimize toxicity (72).

Voclosporin, a newer CNI and an analog of cyclosporine, has

higher potency, a more favorable metabolic profile, and a more

consistent PK profile compared with conventional CNIs due to
frontiersin.org
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TABLE 1 Summary of evidence for select novel treatments for LN.

Therapeutic
agent

Mechanism of action Trial Patient population Enrollment Key results

Belimumab BAFF (also known as TNFSF13B)
inhibitor

BLISS-LN;
Phase III (51)

Patients with active LN 448 Significantly improved renal response rates (OR: 1.6,
95% CI: 1.0–2.3; p = 0.03)

Voclosporin Calcineurin inhibitor AURORA 1;
Phase III (52)

Patients with active LN 357 Significantly improved complete renal response rates
(OR: 2.65; 95% CI: 1.64–4.27; p < 0.0001)

Rituximab CD20-directed monoclonal
antibody

LUNAR;
Phase III (53)

Patients with active LN 72 Similar renal response rates as placebo (p = 0.55)

Obinutuzumab CD20-directed monoclonal
antibody

NOBILITY;
Phase II (54)

Patients with active LN 125 Significantly improved complete renal response rates
(difference: 19%; 95% CI: 2.7%–35%; p = 0.026) and
overall renal response rates (difference: 25%; 95% CI:
8.2–42%; p = 0.005)

Atacicept BAFF (also known as TNFSF13B)
andAPRIL (also known asANP32B)
inhibitor

APRIL-SLE;
Phase II/III (55)

Patients with active SLE 246 Post hoc analysis: observed dose-response relationship
between atacicept concentrations, reduced Ig levels,
and reduced flare rates

Ianalumab BAFFR (also known as
TNFRSF13C) inhibitor

SIRIUS-LN;
Phase III

Patients with active LN ≈420 Ongoing; estimated primary completion date: March
2027 (56)

Secukinumab Anti-IL-17A inhibitor SELUNE;
Phase III

Patients with active LN 275 Ongoing; estimated study completion date: Jan. 2026 (57)

Anifrolumab Type I IFN receptor inhibitor TULIP-LN;
Phase II (58)

Patients with active LN 147 Similar mean difference from baseline in 24-hour UPCR
(GMR: 1.03; 95%CI: 0.62–1.71; p = 0.905; GMR<1 favors
anifrolumab) and renal response (difference: −0.1%; 95%
CI: −16.9% to 16.8%; p = 0.993)

Zetomipzomib Immunoproteasome inhibitor MISSION trial;
Phase II (59)

Patients with active LN 17 64.7% of patients had ≥50% reduction in UPCR from
baseline, and 35.3% achieved a complete renal response
at week 25

YTB323 Anti-CD19 CAR-T therapy Open-label
Phase I/II

Patients with severe,
refractory SLE

≈27 Ongoing; estimated completion date: October 2026 (60)

Low-dose IL-2 Promote T-reg cells He et al.;
Phase II (61)

Patients with active SLE 60; 25 of these
had LN

In patients with LN: significantly improved complete
remission rates (53.85% in IL-2 group vs. 16.67% in
placebo group; p = 0.036)

Ravulizumab Complement inhibitor SANCTUARY;
Phase II

Patients with active LN
or IgAN

≈120 Ongoing; estimated primary completion date: April
2024 (62)

Narsoplimab Complement inhibitor Open-label
Phase II (63)

Patients with LN (n = 5)
and other nephropathies

≈54 Preliminary data: mean 69% reduction in 24-h urine
protein excretion over the treatment period in 4 of 5
patients with LN (63)

ANP32B, acidic nuclear phosphoprotein 32 family member B; APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor; BAFFR, BAFF receptor; GMR, geometric

mean ratio; IgAN, immunoglobulin A nephropathy; IL, interleukin; LN, lupus nephritis; OR, odds ratio; SLE, systemic lupus erythematosus; TNFRSF13C, TNF receptor

superfamily member 13C; TNFSF13B, TNF superfamily member 13B; UPCR, urine protein creatinine ratio.
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altered binding of the voclosporin-cyclophilin complex to

calcineurin and a reduced drug and metabolite load (16, 72);

hence, therapeutic drug monitoring is not needed (73). In

patients with refractory disease, multitarget therapy (i.e., a

combination of CNI and MMF) has shown reasonable efficacy

and safety in small-scale observational studies and can be

considered an option in this patient population (74–77).

However, the initial data on the efficacy of multitarget therapy as

initial or induction treatment in LN did not include multiethnic

populations and were of low quality, leading to limited

generalizability to other populations (16, 17, 71, 78, 79). Newer

data evaluating the novel CNI voclosporin support the use of

multitarget therapy as initial or induction treatment across

multiethnic populations (52, 80–82).

In the Phase II AURA-LV trial, 265 patients were randomized

to receive either low-dose voclosporin, high-dose voclosporin, or

placebo as initial LN treatment. All treatments were combined

with MMF 2 g/day and low-dose glucocorticoids (80).

Significantly higher complete renal remission rates were observed

in patients receiving either low-dose or high-dose voclosporin

after 48 weeks compared with placebo at 23.9% (with low-dose
Frontiers in Lupus 04
voclosporin, 49.4%; OR, 3.21; 95% CI, 1.68–6.13; p < 0.001; and

with high-dose voclosporin, 27.3%; OR, 2.10; 95% CI, 1.09–4.02;

p = 0.026) (80). The voclosporin groups had higher rates of

serious adverse events (low-dose voclosporin, 28.1%; high-dose

voclosporin, 25.0%; placebo, 15.9%), and the low-dose

voclosporin group had higher rates of death compared with the

other two groups (low-dose voclosporin, 11.2%; high-dose

voclosporin, 2.3%; placebo, 1.1%) (80). However, this higher rate

of death was not observed in the high-dose voclosporin group,

nor was it replicated in the Phase III trial; therefore, it is likely

attributable to causes beyond the addition of voclosporin to the

treatment regimen (80). The authors of the AURA-LV study

explained that the uneven distribution of deaths was likely

associated with study-site characteristics rather than the doses of

voclosporin received (80).

The subsequent Phase III AURORA 1 trial randomized 357

patients to either voclosporin (using the low dose in the AURA-

LV trial) or placebo (52). The primary endpoint of complete renal

response was defined as a composite endpoint of UPCR ≤0.5 mg/

g, eGFR 60 ml/min or no confirmed increase of eGFR >20% from

baseline, and no more than 10 mg/day of prednisolone for 3
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consecutive days or for ≥7 days during Week 44 through 52 (52).

The voclosporin group had significantly improved complete renal

response rates compared with placebo at week 52 (41% vs. 23%,

respectively; OR, 2.65; 95% CI, 1.64–4.27; p < 0.0001) (52). Unlike

the AURA-LV trial, the AURORA 1 trial had similar safety

profiles in both groups, and the rates of death were not

imbalanced (<1% in the voclosporin group vs. 3% in the placebo

group) (52). A pooled post hoc analysis of the AURA-LV and

AURORA 1 studies (N = 534) showed that significantly more

patients in the pooled voclosporin groups achieved a complete

renal response at 1 year compared with those in the control

groups (43.7% vs. 23.3%, respectively; OR, 2.76; 95% CI, 1.88–

4.05; p< 0.0001) (81). Patients who completed the AURORA 1

trial were enrolled into a follow-up AURORA 2 trial, continuing

the same blinded randomized treatment for an additional 2 years

(83). The mean reductions in UPCR observed in patients treated

with voclosporin in AURORA 1 were maintained in AURORA 2,

with no increase in UPCR noted at the follow-up visit 4 weeks

after study-drug discontinuation (83).

Based on these positive data, both the KDIGO 2024 LN

guidelines and the EULAR 2023 SLE guidelines recommend adding

voclosporin to MMF and glucocorticoids as an initial or induction

treatment option for patients with LN; use of voclosporin has not

been evaluated in combination with CYC or in patients with eGFR

<45 ml/min/1.73 m2 (32, 33). However, because CNIs decrease

proteinuria through additional nonimmune mechanisms, clinical

trials that use a clinical remission criterion based mainly on

reduction in proteinuria must be interpreted cautiously (84). As the

AURORA studies used a composite endpoint that assessed

improvements in UPCR, eGFR, and steroid use (52), the renal

efficacy results of voclosporin are considered robust.
2.3 Unapproved SOC treatment

2.3.1 Rituximab
Rituximab is a type I CD20-directed mAb that mediates B-cell

lysis by complement-dependent cytotoxicity (CDC), antibody-

dependent cell-mediated cytotoxicity (ADCC), and direct cell

death (85, 86). Data from studies evaluating the efficacy of

rituximab in patients with SLE and LN have been mixed (53, 87,

88). The Phase III LUNAR trial found that the addition of

rituximab to standard induction treatment (MMF and

glucocorticoids) did not significantly improve renal response

rates in patients with Class III or IV LN after 1 year of treatment

compared with the placebo group (p = 0.55) (53). However, a

post hoc analysis of the LUNAR trial demonstrated that patients

with complete peripheral B-cell depletion had significantly

increased odds of having a complete response (unadjusted OR,

5.8; 95% CI, 1.2–2.8; p = 0.03), supporting B-cell depletion as a

mechanism of action for LN treatment (89). Accordingly, a

systematic review and meta-analysis of 31 studies of refractory

SLE/LN patients found the global, complete, and partial response

rates of rituximab were 70%, 51%, and 27%, respectively; use of

rituximab significantly decreased prednisone dose (mean

difference, −12.50 mg/day; 95% CI, −6.36 to −18.64; p < 0.001)
Frontiers in Lupus 05
and demonstrated a numerical but statistically nonsignificant

decrease in proteinuria (mean difference, −2.52 g/day; 95% CI,

0.22 to −5.27; p = 0.07) (90). Multiple uncontrolled studies have

shown that rituximab produced favorable outcomes in patients

with refractory LN, including improvements in renal response

rates, proteinuria, repeat biopsies, serum autoantibody levels, and

disease activity scores (91–94). Despite only low-grade evidence

for its use in LN, both the EULAR 2023 SLE guidelines and

KDIGO 2024 guidelines recommend off-label use of rituximab in

refractory LN (32, 33), as approved treatment options for

refractory LN remain scarce.
2.4 Select targeted therapies under
investigation

2.4.1 Therapies targeting B cells
2.4.1.1 Obinutuzumab
Obinutuzumab is a novel humanized anti-CD20 type II mAb that

was developed to increase B-cell depletion peripherally and in

lymph nodes, including in key B-cell subsets that are considered

resistant to conventional B-cell–targeted agents, particularly

memory B-cells and proliferating tissue plasmablasts (95, 96).

Compared with rituximab, obinutuzumab induces better ADCC,

less CDC, and higher tissue B-cell depletion in vitro (86, 95, 97)

and was more effective in improving SLE in murine models (98).

The Phase II NOBILITY trial randomized 125 patients with LN

to receive either obinutuzumab or placebo in addition to MMF and

glucocorticoids (54). After 52 weeks, a higher proportion of patients

in the obinutuzumab group achieved the primary endpoint of

complete renal response (35% with obinutuzumab vs. 23% with

placebo; percentage difference, 12%; 95% CI, −3.4% to 28%; p =

0.115). Exploratory analyses at week 104 reported significantly

higher complete renal response (41% with obinutuzumab vs. 23%

with placebo; percentage difference, 19%; 95% CI, 2.7%–35%; p =

0.026) and overall renal response (54% with obinutuzumab vs.

29% with placebo; percentage difference, 25%; 95% CI, 8.2%–42%;

p = 0.005) (54). In the obinutuzumab group, 98% of patients

achieved B-cell depletion (defined as CD19 count ≤5 cells/µl) at

week 2 after one infusion of obinutuzumab, and 94% had

sustained depletion at week 52 (26 weeks after the last infusion)

(54). In contrast, in the LUNAR study, only 12% of the patients

had achieved complete B-cell depletion (defined as CD19 count of

0) at week 2 after one infusion of rituximab, and 78% had done

so at week 52 (26 weeks after last infusion). The rates of adverse

events and serious adverse events were similar between both

groups in the NOBILITY trial (54).

While the NOBILITY trial was considered to meet its primary

endpoint, results should be interpreted with caution, considering

the high prespecified significance level of 0.2. Additional data

from two ongoing Phase III studies of obinutuzumab in LN will

be needed to provide more evidence to support its use. The

global REGENCY study (NCT04221477) will further evaluate the

use of obinutuzumab across a wider population (99). Another

study (NCT04702256) will assess obinutuzumab as a replacement

for oral glucocorticoids during induction treatment of LN (100);
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these results may provide further evidence of the potential for

glucocorticoid-free management of LN.

2.4.1.2 Atacicept
Atacicept is a fully human recombinant fusion protein that inhibits

soluble and membrane-bound BAFF and a proliferation-inducing

ligand [APRIL; also known as ANP32B (acidic nuclear

phosphoprotein 32 family member B)], resulting in reduced

numbers of B-cells and plasma cells and, consequently, serum

IgG, IgM, and IgA (101).

The Phase II/III APRIL-LN trial was to evaluate the use of

atacicept in addition to MMF in LN, but it was prematurely

terminated due to an unexpected decline in serum IgG levels and

the occurrence of serious infections in patients receiving atacicept

(102). Data from the Phase II JANUS study in IgA nephropathy

were encouraging: atacicept demonstrated an acceptable safety

profile, improved proteinuria, and stabilized kidney function

(103). Subsequently, results of the Phase II/III APRIL-SLE trial,

conducted in patients with non-renal SLE, suggested that patients

with elevated levels of BAFF and APRIL had a greater response

to atacicept, with no increased risk of infections (55). The Phase

III COMPASS trial (NCT05609812) was initiated in November

2022 with the aim of evaluating the efficacy of atacicept

compared with placebo, in combination with SoC treatment, in

patients with LN; however, the trial had been suspended as of

July 2023, although not as a result of regulatory or safety

concerns (104).

2.4.1.3 Ianalumab
Ianalumab is a mAb that modulates B-cell survival via a dual

mechanism: direct lysis of B-cells by ADCC as well as BAFF

receptor blockade that interrupts BAFF-mediated signaling for

B-cell maturation, proliferation, and survival (105). Studies

suggest that elevated BAFF levels correlated with a shortened

duration of B-cell depletion and contributed substantially to

SLE flares after B-cell repopulation, paving the way for a dual-

mechanism treatment involving B-cell depletion and BAFF

blockade (106, 107).

In a Phase II trial in patients with primary Sjögren’s syndrome,

a disease in which B-cells play a central role, ianalumab showed a

marked dose-response relationship with reduction in disease

activity (108). Other mAbs targeting B-cells, such as rituximab

and belimumab, did not show convincing efficacy in Sjögren’s

syndrome (109, 110); the efficacy demonstrated by ianalumab

could be partially attributed to its dual target mechanism,

providing an added blockade of BAFF receptors that could

counteract the elevated BAFF levels seen after administration of

rituximab (108). Investigations into whether the increased B-cell

depletion of ianalumab will translate to better clinical outcomes

in patients with SLE (NCT05639114; NCT05624749) and LN

(NCT05126277) are currently ongoing (56, 111, 112).

2.4.2 Therapies targeting cytokines
2.4.2.1 Secukinumab
The interleukin (IL)-23/IL-17 axis and CD4+ T-helper

(Th17) cells that produce IL-17 have recently emerged as
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mediators in the pathogenesis of SLE and LN (113, 114)

through induction of vascular inflammation, leukocyte

recruitment, B-cell activation, and autoantibody production

(114). Patients with LN typically present with elevated IL-17

levels, which are independently associated with a worse

prognosis (115).

Secukinumab is an anti–IL-17A inhibitor that blocks IL-17A

cytokine interaction with the IL-17 receptor (116). To date,

only case reports have been published on the use of

secukinumab in treating refractory LN (117–119). The ongoing

global Phase III SELUNE clinical trial (NCT04181762)

on secukinumab and the Phase II ORCHID-LN trial

(NCT04376827) on guselkumab, an IL-23 inhibitor, will shed

light on the role in therapy for inhibitors of the IL-23/IL-17

axis (57, 120).

2.4.2.2 Anifrolumab
Type I interferons (IFNs) are a central factor in the

pathophysiology of SLE (121, 122). In patients with LN, high

type I IFN gene signatures are associated with active disease,

proteinuria, and treatment failure (121, 122). Type I IFN

promotes kidney fibrosis, scarring, and loss via formation of

immune complexes, recruitment of leukocytes, and direct action

on kidney cells (123).

Anifrolumab is a mAb that binds to the type I IFN receptor

with high specificity and affinity, inhibiting type I IFN signaling

(124). In the Phase III TULIP-2 trial, anifrolumab demonstrated

a significant reduction in disease activity scores in patients with

nonrenal SLE compared with placebo at week 52 (125), although

patients with severe LN were excluded from the study. This

finding led to the Phase II TULIP-LN trial, in which 147 patients

with LN were randomized to receive either a basic regimen of

anifrolumab, an intensified regimen of anifrolumab, or placebo;

all three regimens were combined with MMF and glucocorticoids

(58). The primary endpoint, which was the change in baseline

24-h UPCR at week 52 for combined anifrolumab vs. placebo

groups, was not met [geometric mean ratio (GMR), 1.03; 95%

CI, 0.62–1.71; p = 0.905; GMR <1 would have favored

anifrolumab] (58). The complete renal response rates were also

not statistically different between the combined anifrolumab

groups and the placebo group (difference, −0.1%; 95% CI,

−16.9% to 16.8%; p = 0.993), although a numerical improvement

was noted in the intensified regimen group vs. the placebo group

(difference, 14.3%; 95% CI, −5.8% to 34.5%; p = 0.162) (58). The

lack of benefit observed in the study was partially attributed to

the suboptimal exposure obtained with the basic regimen of

anifrolumab, resulting in the anifrolumab exposure being

approximately half that normally achieved in nonrenal SLE (58).

The authors of the TULIP-LN trial suggested that suboptimal

exposure with the basic regimen was likely due to increased

clearance associated with proteinuria in LN. Only the intensified

regimen of anifrolumab achieved serum exposure and

pharmacodynamic neutralization levels similar to those in

nonrenal SLE. The efficacy and safety of anifrolumab in

LN will be further investigated in the Phase III IRIS trial

(NCT05138133) (126).
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2.4.3 Therapies targeting the immunoproteasome
2.4.3.1 Zetomipzomib
Proteasomes contribute to the degradation of intracellular proteins,

providing dynamic control of key cell signaling components and

the maintenance of overall cellular homeostasis (127).

Proteasomes are expressed ubiquitously throughout the body,

while immunoproteasomes, which are derived from constitutive

proteasomes, are expressed primarily in immune cells (127, 128).

Immunoproteasomes regulate multiple immune effector cell

functions, including class I antigen presentation, cytokine

expression, and plasma cell proliferation, migration, and

adhesion (128, 129). Expression of immunoproteasomes is

induced in nonimmune cells by inflammatory and autoimmune

conditions (128); this process occurs in LN, and increased

immunoproteasome expression has been seen in murine models

of LN and in kidney cells of patients with LN (130). Selective

inhibition of the immunoproteasome results in broad

immunomodulatory activity across both the innate and adaptive

immune systems without leading to the apoptosis or

immunosuppression seen with dual proteasome inhibitors (129,

131, 132). In murine models, selective immunoproteasome

inhibition blocked differentiation of inflammatory Th1 and Th17

cells, promoted differentiation of regulatory T cells (Tregs), and

inhibited the release of proinflammatory cytokines, such as IFN-

α, from dendritic cells (129, 131, 132). Hence, the

immunoproteasome has emerged as an attractive therapeutic

target in various inflammatory conditions, including LN.

Zetomipzomib is a first-in-class selective immunoproteasome

inhibitor (133). In mouse models of LN, treatment with

zetomipzomib ameliorated disease progression, resulting in

resolution of proteinuria and marked decreases in the incidence

of glomerular nephritis, glomerular sclerosis, and tubular changes

(133). In these animal models, zetomipzomib did not affect

normal immune-response mechanisms (133). In the Phase II

part of the MISSION Phase 1b/II trial (n = 17), which evaluated

the efficacy and safety of zetomipzomib in patients with LN,

64.7% of patients had ≥50% reduction in UPCR from baseline,

and 35.3% had achieved a complete renal response at week 25;

renal responses were sustained or improved until the end of

study at week 37, 12 weeks after end of treatment (59). A

reduction in daily steroid dose to 10 mg/day was achieved in

82.4% of patients at week 25, and doses of other background

immunosuppressive therapies remained stable throughout the

study (59). Further evaluation of zetomipzomib in active LN is

ongoing in the Phase IIb PALIZADE trial (NCT05781750) (134).
2.5 Potential interventions in early
development

2.5.1 Chimeric antigen T-cell (CAR-T) therapy
Based on clinical experience with B-cell therapy, a complete

and sustained B-cell depletion may lead to better response in

patients with SLE or LN. CAR-T therapy may induce more

robust B-cell depletion, especially in tissues that are easier for

engineered cells to access (135).
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Case reports have suggested the potential efficacy of anti-CD19

CAR-T therapy in SLE and LN: in one case, a 20-year-old woman

with severe refractory SLE and LN was prescribed anti-CD19

CAR-T and low-dose glucocorticoids and stopped all other

therapy for LN (136). The patient demonstrated substantial

improvements in serological markers and disease activity scores,

and her proteinuria decreased from over 2000mg/g to <250 mg/ g

(136). A subsequent case series similarly demonstrated the efficacy

of anti-CD19 CAR-T therapy in refractory LN (137, 138). Larger

clinical trials evaluating the long-term efficacy and safety of anti-

CD19 CAR-T therapy are warranted (137). An open-label Phase I/

II study to assess the safety, efficacy, and cellular kinetics of

YTB323, an anti-CD19 CAR-T therapy, in refractory SLE and LN

is ongoing (NCT05798117) (60).

2.5.2 Low-dose Il-2
IL-2 is produced by activated T-cells and dendritic cells and is

crucial for maintenance of T-cell–mediated self-tolerance (139).

Decreased serum IL-2 levels in healthy mice led to a strong reduction

in the number of CD4+ T-regs, progression of nephritis, and

mortality (140). Lupus-prone mouse models and blood samples from

patients with SLE revealed impaired IL-2 production (140, 141).

Low-dose IL-2 treatment in patients with SLE selectively corrected T-

reg defects and expanded the T-reg population (141), resulting in

marked reductions in disease activity (142). In a randomized clinical

trial evaluating the use of low-dose IL-2 compared with placebo,

combined with standard treatment, complete remission was achieved

in 7 of 13 patients (53.85%) with LN in the IL-2 group and 2 of 12

(16.67%) in the placebo group (61). Larger randomized controlled

trials are warranted to further evaluate the efficacy of the IL-2

regimen across multiple patient cohorts (61).

2.5.3 Complement-targeting therapies
Dysregulated complement activation and complement

deficiencies are associated with impaired processing of immune

complexes and clearance of cellular debris (143). This process

can contribute to kidney damage and LN flares and may result

in development of SLE and LN (143).

Narsoplimab is a mAb that blocks mannan-binding lectin (MBL)

associated serine protease 2 (MASP2), an effector enzyme that

activates the lectin pathway of the complement system (144).

Ravulizumab is a terminal complement inhibitor that binds to

complement protein C5 with high affinity, inhibiting its cleavage to

C5a and C5b and preventing the formation of the membrane attack

complex (145). Phase II clinical trials on these two therapeutics in the

treatment of LN (NCT02682407, NCT04564339) are ongoing (62, 146).
2.6 Future directions in the treatment of LN

2.6.1 Early diagnosis and treatment
In patients with SLE, guidelines recommend thresholds of

proteinuria ≥0.5 g/day or UPCR ≥0.5 g/day as indication for a

kidney biopsy (16, 17). However, proteinuria should not be the sole

consideration for kidney involvement in SLE because many patients

with low-grade proteinuria still present with early LN in their kidney
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biopsies (19, 20). A retrospective analysis of 222 patients with SLE and

glomerular hematuria found that 85% of patients with proteinuria

<0.5 g/day and 76% of patients with proteinuria <0.25 g/day had

class III or IV LN (20); another retrospective analysis reported that

40 of 52 (76%) and 9 of 10 (90%) patients with proteinuria <1 g/day

and <0.5 g/day, respectively, had LN detected in their biopsies (19).

Studies in silent LN have shown that a substantial proportion of

patients with proliferative LN have no urine abnormalities (147, 148).

These data suggest that other parameters, such as glomerular

hematuria, should be taken into account when deciding whether to

perform a kidney biopsy. A broader indication for kidney biopsies,

such as the presence of glomerular hematuria accompanied by any

degree of proteinuria, could allow for earlier diagnosis and treatment

of LN, which could potentially decrease the need for steroids with

the current treatment regimens.

2.6.2 Decrease of glucocorticoid exposure and
consideration of glucocorticoid-free regimens

We propose that the main treatment goal for LN is to achieve

long-term complete clinical remission without the need for

glucocorticoids in order to minimize the adverse effects from

prolonged and/or cumulative exposure to glucocorticoids (45).

Several glucocorticoid-free treatment protocols have been evaluated

to date; one example is the Rituxilup protocol, which comprises two

doses of rituximab and methylprednisolone followed by

maintenance with MMF and without the use of oral glucocorticoids

(149). In a prospective single-center cohort study, 45 of 50 patients

(90%) achieved a renal response to treatment with the Rituxilup

protocol after a median follow-up duration of 37 weeks (149).

Novel targeted therapies may facilitate a reduced dose and a faster

taper of oral glucocorticoids in the management of LN. Recent clinical

trials on novel therapies, such as zetomipzomib, have used

glucocorticoid reduction as an outcome measure (59), while other

clinical trials, such as the BLISS-LN and the AURORA 1 trials,

have incorporated glucocorticoid target doses as part of the primary

endpoint or treatment failure protocol (51, 52). Additionally, LN

clinical trials are increasingly using accelerated glucocorticoid-

tapering regimens in their treatment protocols, such as the

AURORA 1 trial (which tapered to 2.5 mg/day at week 16) and the

NOBILITY trial (which tapered to 7.5 mg/day by week 12) (52, 54).

An ongoing Phase III study (OBILUP; NCT04702256) will evaluate

the use of obinutuzumab with MMF as induction treatment; oral

glucocorticoids will not be used except in cases of extrarenal

involvement (100). Future clinical trials evaluating novel therapies

should consider assessing their glucocorticoid-sparing effect in light

of increasing recognition for the reduction of glucocorticoid

exposure as an important outcome in LN management. Validated

measures of glucocorticoid toxicity, such as the Glucocorticoid

Toxicity Index, can possibly be incorporated as an endpoint in

future clinical trials to objectively measure the impact of LN

treatments on glucocorticoid-induced toxicity (150).

2.6.3 Combination therapies
Based on the latest clinical trial data and global guideline

recommendations, a proposed treatment algorithm for patients

with LN is outlined in Figure 2. We propose that the approved
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LN therapies (belimumab and voclosporin) should be used

early within the treatment paradigm for LN. A more aggressive

approach to initial or induction therapy, using combinations of

either MMF/CYC plus belimumab or MMF plus voclosporin,

is recommended to better preserve kidney function and allow

for earlier tapering of oral glucocorticoids: belimumab may

help reduce the risk of relapses, and voclosporin can lead to

faster proteinuria reduction (52, 80, 151). Based on data from

the BLISS-LN trial, belimumab can be used with either MMF

or CYC; voclosporin should be used with MMF only because

of a current lack of data on the use of voclosporin with CYC

or AZA (51, 52). Additional studies of belimumab and

voclosporin are needed to confirm their use in other

combination regimens.

After completion of the initial or induction phase (which

typically lasts approximately 3–6 months), subsequent or

maintenance treatment options include either MMF plus

belimumab or plus voclosporin, or AZA with belimumab; these

combination regimens are based on data from the BLISS-LN and

AURORA studies (51, 52, 82). We propose that the dose of

prednisone should be tapered to a maximum of 5 mg/day and

tapered to zero if possible.

2.6.4 Treatment of refractory disease
We consider complete renal response as UPCR ≤0.5 mg/ g and

eGFR stabilization of within 10%–20% after 6–12 months of

initiating therapy. In nonresponders or patients with refractory

disease, observational data and guideline recommendations have

suggested clinical benefit in switching to an alternative first-line

immunosuppressive regimen (i.e., MMF to CYC or vice versa)

(16, 152–154). The addition of rituximab to either MMF or CYC

has demonstrated efficacy in refractory LN, including meaningful

improvements in response rates, proteinuria, and disease activity

scores (91–94).

The combination of rituximab, belimumab, and MMF

demonstrated good renal response and sustained B-cell depletion

in a small Phase II proof-of-concept study; MMF dose was

tapered to avoid an excess of immunosuppression (155). In the

CALIBRATE trial (N = 43), the add-on of belimumab to a

combination of CYC and rituximab did not increase the

frequency of adverse events among patients with recurrent or

refractory LN, but there was no significant difference in complete

response rates (156). Similarly, data from several studies have

indicated the efficacy of multitarget immunosuppression (i.e.,

CNI with MMF) in refractory LN (157, 158). Minimal data exist

for the use of CNIs with belimumab: in a small, single-center,

retrospective analysis of 33 patients with SLE (including 11

patients with renal flares) treated with a combination of

belimumab and tacrolimus, a state of low disease activity of

lupus was achieved in 64.0% of patients at 52 weeks after

initiation compared with 9.1% at initiation; the combination did

not appear to increase the risk of infectious complications (159).

A recent publication by Baum et al. discussed data from four

patients with LN treated with a combination of both voclosporin

and belimumab, including one patient treated with triple therapy

(MMF plus voclosporin and belimumab) who achieved a
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FIGURE 2

Proposed future treatment algorithm for LN. AZA, azathioprine; CNI, calcineurin inhibitor; CYC, cyclophosphamide; ESRD, end-stage renal disease;
GFR, glomerular filtration rate; IV, intravenous; MMF, mycophenolate mofetil. aUse of voclosporin is not indicated in patients with GFR <45 ml/min.
bVoclosporin should only be used in combination with MMF.
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reduction in proteinuria and glucocorticoid dose after 8–14 months

without evidence of toxicity or intolerable side effects (160).

Although initial data is promising, further research on

combination therapies with belimumab and voclosporin is

needed to establish their role in treatment of refractory LN.
2.6.5 Cessation of background
immunosuppressive therapy

Newer agents in development for LN offer the exciting potential

for achieving remission that would allow background

immunosuppressive treatment to be discontinued or paused. The

recent CAR-T data suggest that long-term drug-free remissions

are possible for patients with LN (136–138). The opportunity to

taper off background therapy is attractive to patients because it

will simplify their treatment regiments and reduce potential

toxicities from these medications.
3 Conclusion

Patients with LN face several unmet needs with current

treatments, including unsatisfactory response rates,

progression to ESKD, and adverse effects of treatment,

especially with long-term use of glucocorticoids. The

treatment landscape for LN is rapidly evolving; the

development and evaluation of many new therapeutics with

novel mechanisms have the potential to address these unmet

needs to improve patient outcomes.
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