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Background: Systemic lupuserythematosus (SLE) is achronic autoimmunecondition
with complex causes involving genetic and environmental factors. While genome-
wide association studies (GWASs) have identified genetic loci associated with SLE,
the functional genomic elements responsible for disease development remain
largely unknown. Mendelian Randomization (MR) is an instrumental variable
approach to causal inference based on data from observational studies, where
genetic variants are employed as instrumental variables (IVs).
Methods:This studyutilizeda two-step strategy to identify causal genes for SLE. In the
first step, the classicalMRmethodwas employed, assuming the absenceof horizontal
pleiotropy, toestimate thecausal effectof geneexpressiononSLE. In the secondstep,
advanced probabilistic MR methods (PMR-Egger, MRAID, and MR-MtRobin) were
applied to the genes identified in the first step, considering horizontal pleiotropy, to
filter out false positives. PMR-Egger and MRAID analyses utilized whole blood
expression quantitative trait loci (eQTL) and SLE GWAS summary data, while MR-
MtRobin analysis used an independent eQTL dataset from multiple immune cell
types along with the same SLE GWAS data.
Results: The initial MR analysis identified 142 genes, including 43 outside of
chromosome 6. Subsequently, applying the advanced MR methods reduced the
number of genes with significant causal effects on SLE to 66. PMR-Egger, MRAID,
and MR-MtRobin, respectively, identified 13, 7, and 16 non-chromosome 6 genes
with significant causal effects. All methods identified expression of PHRF1 gene as
causal for SLE. A comprehensive literature review was conducted to enhance
understanding of the functional roles and mechanisms of the identified genes in
SLE development.
Conclusions: The findings from the three MR methods exhibited overlapping genes
with causal effects on SLE, demonstrating consistent results. However, each
method also uncovered unique genes due to different modelling assumptions and
technical factors, highlighting the complementary nature of the approaches.
Importantly, MRAID demonstrated a reduced percentage of causal genes from the
Major Histocompatibility complex (MHC) region on chromosome 6, indicating its
potential in minimizing false positive findings. This study contributes to unraveling
the mechanisms underlying SLE by employing advanced probabilistic MR methods
to identify causal genes, thereby enhancing our understanding of SLE pathogenesis.
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Introduction

Genome-wide association studies (GWASs) have identified

thousands of genetic loci associated with common diseases and

disease-related traits (www.ebi.ac.uk/gwas/). However, the

functional genomic elements which exert causal effects on the

phenotypes remain largely unknown. Genetic variants can

causally affect a disease phenotype by altering gene product

structure or quantitative levels of gene products. For Systemic

Lupus Erythematosus (SLE), for example, nearly 200 apparently

independent loci have been identified (1). Thousands of changes

in gene expression are associated with the variants at these loci.

Many of these relationships define mechanisms of gene

regulation, but do not help determine whether they are related in

any way to disease causality.

When the underlying assumptions are met, newer analytical

methods of Mendelian Randomization (MR) offer the possibility

of identifying causal relations between gene expression and

disease. Herein we have applied multiple MR methods (2–5)

using genetic data from SLE (6) and multiple sources of

expression quantitative trait loci (eQTL) data (7–9).

In this work, therefore, we are concerned only with the

modeling of a causal effect for levels of gene products, as

indirectly inferred from mRNA gene expression data. Other

models of causation, such as alleles leading to alternate protein

sequence, are not evaluated. The genetic variants modulate gene

expression levels, which in turn exert causal effects on the

disease phenotype. Since the genetic variants are the underlying

reason for the heritability of the disease phenotype, we naturally

initiate the investigation with the potentially causal variants.

However, due to linkage disequilibrium (LD), the causal potential

for disease associated GWAS genetic variants is difficult to

interpret. Thousands of variants are potentially causal for disease

(candidate causal variants). Despite these problems, many

statistical methods have been developed for causal variant

discovery (10). However, due to the large number of genetic

variants in the genome, these methods often have low statistical

power to identify causal variants. These challenges have thus

motivated the development of methods to prioritize candidate

causal genes at GWAS loci; the resulting methods are potentially

more statistically powerful since there is a smaller set of

candidate genes, rather than considering millions of genetic

variants in the genome.

Transcriptome-wide association studies (TWAS) leverage

expression reference panels (eQTL data) to identify gene

expressions associated with disease phenotype. However, TWAS

projects can only identify gene-disease associations, but the

association does not imply causation. Mendelian Randomization

(MR) is an instrumental variable approach to causal inference

based on data from observational studies, where genetic variants

serve the role of instrumental variables (IV). The goal of this

method is to identify the causal effect (variable a in Figure 1A)

of exposure X on the outcome Y, in the presence of unmeasured

confounders C of the X-Y association. If the three IV

assumptions shown in Figure 1B hold true, the classical MR

method provides an unbiased estimate of a (see Materials and
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Methods for details). However, if the IV assumptions are violated

in the presence of the horizontal pleiotropy, which is widespread

given the complexity of the genetics of living species (11), then

the estimate of causal effect size made using the classical MR

method is biased. Horizontal pleiotropy occurs when the genetic

variant has an effect on outcome/disease outside of its effect on

the “Exposure” (see Figure 1) in MR. There are two types of

horizontal pleiotropy: uncorrelated pleiotropy, where the effects

of genetic variants (G) on Y are uncorrelated with the effects of

G on X, and correlated pleiotropy, where the effects of genetic

variants (G) on Y are correlated with effects of G on X through

confounders (C) (Figure 1). In the context of MR, newer

methods accommodate both types of pleiotropy (3, 4, 12).

Additional advances even allow for the analysis on a tissue-

specific level (Materials and Methods) (2). By applying these

methods using existing SLE loci as Instruments (IVs) and

expression data as the Exposure we show that the three

approaches suggest causation for a subset of the locus-gene

expression dyads, thereby, providing a beginning to elucidate

mechanisms for SLE using the MR approaches.

In the last few years, MR methods have become increasingly

sophisticated with heavy use of complex concepts and methods

from theoretical statistics and statistical learning theory. In this

work, we attempt a pedagogical exposition of the statistical

theory behind the MR methods used in our analyses, with the

hope that a wider range of investigators in genetics will be able

to exploit the inner-workings of these methods to provide insight

into disease mechanisms.
Results

Single-SNP summary data-based MR
analysis

We used a two-step strategy to identify causal genes. In the first

step, we assumed that horizontal pleiotropic effects are absent and

applied the classical MR method to estimate causal effect a of the

gene expression (Exposure X) on SLE (Outcome Y) (as in

Figure 1). In the second step, we applied advanced probabilistic

MR methods to the genes identified in Step-1, without restrictive

assumptions on the horizontal pleiotropic effects.

Let b̂x be the marginal effect size of a SNP (single nucleotide

polymorphism) (Instrumental Variable G) on the gene

expression (Exposure X) from the eQTL summary statistics data

(Figure 1). Let b̂y be the marginal effect size of the same SNP

(Instrumental Variable G) on the SLE (Outcome Y) from the

SLE GWAS summary statistics data. When the Instrumental

Variable (IV) assumptions hold, the classical MR method

provides unbiased estimate of the causal effect size to be

a ¼ b̂y=b̂x (Materials and Methods) (13, 14). We applied the

classical MR method, as implemented in a two-sample MR

method SMR (Summary data-based Mendelian Randomization)

(5), to the whole-blood eQTL (expression quantitative trait locus)

summary statistics data from the eQTLGen study (9) (sample

size = 31,684 persons of European ancestry), and the SLE GWAS
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FIGURE 1

A schematic of the classical Mendelian randomization (MR) method. (A) A graphical model of classical MR. The directed acyclic graph represents the
probabilistic dependencies of the random variables shown. The goal of the MR method is to estimate the causal effect a of Exposure X on the
Outcome (trait Y), using marginal effect sizes from the Exposure and Outcome GWAS (see Materials and Methods for details). Horizontal pleiotropy
(green dotted arrows) occurs when the genetic variant has an effect on Outcome/disease outside of its effect on the Exposure X. There are two
types of horizontal pleiotropy: uncorrelated pleiotropy, where effects of genetic variants G on Y are uncorrelated with effects of G on X, and
correlated pleiotropy, where effects of genetic variants G on Y (directed path G→C→Y) are correlated with effects of G on X (directed path G→C→X).
(B) If the Instrumental Variable (IV) assumptions hold, and the linear relation between the variables in the model is assumed, MR method can
unbiasedly estimate the causal effect size as the ratio of G-on-Y to G-on-X effect sizes. When one or more of the IV assumptions are violated, such

as when correlated and/or uncorrelated horizontal pleiotropic effects are present, the naïve estimate a ¼ b̂y=b̂x is biased. The second IV assumption,

‘G is marginally independent of C’, can be mathematically described as follows. Panel A’s graphical model corresponds a joint probability distribution
P(G, C, X, Y) of four random variables. Summing over all possible outcomes of X and Y produces a marginal probability distribution of G and C:
P(G, C) ¼ P

X,Y
P(G, C, X, Y). If the marginal distribution factorizes as P(G, C) ¼ P(G)P(C), then G and C are said to be marginally independent. Similarly,

the third IV assumption, ‘G and Y are independent given X and C, can be understood as a factorization of the conditional probability distribution:
P(G, YjX, C) ¼ P(GjX, C)P(YjX, C).
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summary statistics data from (6) [sample size = 14,267 persons of

European ancestry; 5,201 persons diagnosed with SLE and 9,066

persons without known SLE diagnosis; GWAS summary data was

preprocessed using the QC algorithm DENTIST (15), Materials

and Methods]. In two-sample MR, the Exposure and Outcome

variables are measured on two non-overlapping sets of individuals.

We chose genes with at least one significant cis-eQTL (PeQTL <

5e-8) with transcription start sites (TSS) located within 500 kb of

GWAS significant SNPs (PGWAS < 5e-8) for the SMR analysis

(Materials and Methods). For each gene chosen for the SMR

analysis, its top cis-eQTL SNP was used as the Instrumental

Variable. The causal effects of expressions of 142 genes were

identified as being statistically significant by the SMR method

(Bonferroni corrected p-value < 0.05; Nominal p-value < 9e-5)

(Figure 2 and Supplementary Table S1). Of these genes, 99 are

from the chromosome 6 and 43 are from the rest of the genome.

Ninety-five of the chromosome 6 genes are from the extended

MHC region (xMHC, hg19 region chr6:25Mb–34Mb). 68 of

these genes are from the classical MHC region (MHC, hg19

region chr6:28.5Mb–33.4Mb).

Genetic variants are known to exhibit widespread horizontal

pleiotropic effects (11). The IV assumptions underpinning the
Frontiers in Lupus 03
classical MR method are thus likely to be violated, with the

implication that there may also be some false positives among

the 142 putative causal genes identified by the SMR method.

Thus, we applied advanced MR methods capable of performing

inference in the presence of invalid Instrumental Variables to

analyze the 142 genes identified earlier. Our two-step strategy

can be motivated as follows. The SMR algorithm assumes that

horizontal pleiotropy is absent, which can lead to false positives

in gene discovery. Addressing these false positives is our primary

concern, so we applied additional filtering to the genes identified

by SMR in step-1. Our aim was to employ advanced MR

methods as filters. Applying these advanced MR methods on the

entire dataset instead would have introduced challenges related to

multiple testing due to the large number of genes.
Modelling uncorrelated horizontal
pleiotropy with PMR-Egger

If IV assumptions of the classical MR method can be violated

by the horizontal pleiotropy, why not explicitly model it? This is

the approach taken in recent studies (3, 4, 12, 16–19). For a
frontiersin.org
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FIGURE 2

Manhattan plot of SMR-significant genes. Named are the 43 non-chromosome 6 and 3 chromosome 6 genes whose expression has statistically
significant causal effect on SLE according to the single-SNP SMR method, which presupposes that the Instrumental Variable (IV) assumptions hold
(see Figure 1B). The dotted horizontal line is at the nominal causal effect p-value threshold of 0.05/531 (Bonferroni correction for 531 multiple
statistical tests). Only 3 important genes from chromosome 6 are labeled, and the rest are not labeled to avoid clutter. The genes’ order on the
chromosome is maintained, but their location is not shown to scale for clarity.
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recent review of these methods, see (20). The idea is to jointly

estimate the parameters characterizing the horizontal pleiotropy

and causal effect size using summary statistics from the Exposure

and the Outcome GWAS. PMR-Egger (4), a probabilistic MR

method, explicitly models uncorrelated horizontal pleiotropy (see

Materials and Methods, and Figure 3 for a concise description of

the method). The European whole-blood eQTL summary

statistics data from the eQTLGen study (9), the European

population SLE GWAS summary statistics data from (6), and the

LD structure from the European 1KG data, was used as input

data for the PMR-Egger method.

From the set of 142 genes identified by SMR method, we

selected 97 genes based on the criterion that the SNP set Sg for

each gene g contains at least 25 statistically significant (PeQTL <

5e-8) eQTL SNPs (for the details and a heuristic motivation for

the cutoff of 25 SNPs, see Materials and Methods). We

performed PMR-Egger analysis on each of these 97 genes using

the eQTL and SLE GWAS summary statistics data, and the LD

data restricted to SNPs from the set Sg for each gene g.

The PMR-Egger method has identified 13 non-chromosome 6

and 34 chromosome 6 genes with statistically significant causal
Frontiers in Lupus 04
effect sizes (causal effect p-value < 0.05) (see Figure 4, Table 1

and Supplementary Table S1). Due the complexity of the

MHC locus on chromosome 6, the results for chromosome 6

are likely to be unreliable. For a discussion of this issue, see

‘Comparison of analysis results from three MR methods’

Section below.

PMR-Egger method estimates the causal effect size a, the

uncorrelated horizontal pleiotropy level g (see Figure 3) and the

corresponding statistical significance p-values Pa and Pg.

Interestingly, we found no evidence of uncorrelated pleiotropy

for the 13 non-chromosome 6 significant genes (Pa , 0:05 and

median Pg ¼ 0:2). On the other hand, the median pleiotropy

p-value (Pg) for the statistically non-significant genes (those with

the causal effect p-value Pa . 0:05) is 3e-6. This means that

genes whose causal effects on SLE are not significant according

to PMR-Egger have high uncorrelated pleiotropy levels. The SMR

method incorrectly identified these genes as being causal due to

the invalid IV assumption that horizontal pleiotropy was absent.

On the other hand, the PMR-Egger method, by explicitly taking

into account the uncorrelated horizontal pleiotropy in the

statistical modelling, shows that the expression of many genes
frontiersin.org
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FIGURE 3

A description of the PMR-Egger method. (A) A graphical representation of the statistical model. The model is used to estimate the causal effect a of gene
expression X on the trait Y of interest, in the presence of the uncorrelated horizontal pleiotropic effect g. Correlated pleiotropic effects are assumed to be
absent. For each j ¼ 1, � � � , p, the random variable bj represents the effect size of genetic variant (cis-SNP) Gj on the gene expression X and is assumed to
follow the normal distribution with mean zero and the variance s2

b . These random variables are assumed to be independent of each other. (B) The matrix
equations representing the mixed-effects statistical model from panel A. For example, the first equation states that the vector b̂x of marginal effect sizes of
p cis-SNPs on exposure variable X (gene expression) is equal to the matrix-product of matrix R (SNP-SNP genotype correlation matrix) and the vector b of
effect sizes of the p cis-SNPs on exposure X, plus a noise vector. The matrix and vectors in the equations are emphasized in boldface. (C) A detailed
description of some variables in the equations from the panel B. Column vectors of dimension p are represented as a transpose (‘T’) of row vectors.
The noise terms 1x and 1y follow the multivariate normal distributions with mean zero and covariance matrix Rs2

x and Rs2
y , respectively, where R is

the SNP-SNP genotype correlation matrix.
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does not have statistically significant causal effects on SLE under

the model being tested.

Despite being statistically significant, the causal effect sizes

estimated using PMR-Egger method are small (Figure 4 and

Supplementary Table S1). However, absolute values of causal

effect sizes should not be taken literally because the SLE GWAS

summary statistics were calculated using a logistic regression for

a binary trait (case-control study). On the other hand, almost all

MR methods, including the methods used in this work, assume

continuous trait values in linear models. Thus, the MR methods

treat binary trait values as continuous, which is not fully

justified. Thus, it may be more appropriate to focus on the

statistical significance level (p-value) and interpret the causal

effect size only semi-quantitatively. Nevertheless, despite the

technical limitations of MR methods, our study findings

demonstrate consistent estimates of the direction of causal effects

across all four MR methods employed for the majority of genes

identified (Figures 4–6).
Modelling correlated and uncorrelated
horizontal pleiotropic effects using MRAID

PMR-Egger statistical model described above imposes a

restrictive assumption on the model: the absence of correlated
Frontiers in Lupus 05
pleiotropic effects. The correlated pleiotropy is present when

effects of genetic variants on Outcome Y are correlated with

effects on Exposure X [Figure 1 and (12)]. MRAID

(MR with Automated Instrument Determination) is a

probabilistic MR method for causal inference with correlated

SNP instruments in the presence of both correlated and

uncorrelated horizontal pleiotropic effects (3). For a concise

description of the MRAID model, see Figure 7 and Materials

and Methods. MRAID was originally developed for causal

inference of complex traits exposures, but, to the best of our

knowledge, has not yet been applied to gene expression

exposures in published work.

For MRAID analysis, we used the same whole-blood eQTL,

SLE GWAS summary statistics, LD structure data as described

earlier for the PMR-Egger analysis. From the set of 142 genes

identified by SMR method, we selected 97 genes and the

corresponding sets (Sg for each gene g) of statistically significant

(PeQTL < 5e-8) eQTL SNPs (see Materials and Methods). We

performed MRAID analysis on each of these 97 genes using the

eQTL and SLE GWAS summary statistics data, and the LD data

restricted to SNPs from the set Sg for each gene g. The MRAID

method has identified 7 non-chromosome 6 and 6 chromosome

6 genes with statistically significant causal effect sizes (causal

effect p-value < 0.05) (see Figure 5, Table 1 and Supplementary

Table S1).
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FIGURE 4

A comparison of PMR-Egger and SMR causal effect sizes. A scatter plot depicting SLE causal effect sizes of non-chromosome 6 genes which are
statistically significant according to the probabilistic MR method (PMR-Egger). The signs of the causal effect sizes estimated using two methods
agree. The PMR-Egger method models the uncorrelated horizontal pleiotropic effects, but assumes that the correlated horizontal pleiotropy is absent.

TABLE 1 Candidate causal genes from outside of the chromosome 6 identified in this study. See also Figure 13A. Cells with p-value < 0.05 in the table are
highlighted in light blue color. The table column names are described as follows. Gene: Symbol representing the gene; SNP: ID of the most significant
eQTL SNP associated with the gene; Chrom: ID of chromosome where the gene and SNPs are located; Position: Chromosomal position (base-pair) of the
top eQTL SNP associated with the gene; p_GWAS: SLE GWAS p-value of the top eQTL SNP; p_eQTL: eQTL p-value of the top eQTL SNP; p_SMR: p-value
for the gene causal effect size estimate by SMR method; p_PMR: p-value for the gene causal effect size estimate by PMR-Egger method; p_MRAID:
p-value for the gene causal effect size estimate by MRAID method; p_MtRobin: p-value for the gene causal effect size estimate by MR-MtRobin
method. ‘NA’ in the cells: data not available because of technical issues such as ‘algorithm generated errors’ and ‘insufficient number of genetic
variants at the locus to reliably estimate causal effect size’.

Gene SNP Chrom Position p_GWAS p_eQTL p_SMR p_PMR p_MRAID p_MtRobin
GPX3 rs3792789 5 150445968 3.0E−06 7.5E−80 5.7E−06 NA 9.0E−01 4.0E−04
IRF5 rs6467223 7 128674666 2.3E−13 0.0E + 00 3.3E−13 7.4E−04 2.7E−01 0.0E + 00

TNPO3 rs6467223 7 128674666 2.3E−13 0.0E + 00 4.7E−13 9.1E−14 6.0E−01 2.8E−01
RP11−128A6.2 rs6467223 7 128674666 2.3E−13 1.4E−15 6.6E−08 NA NA 1.3E−02
SMO rs74942545 7 128751444 1.5E−08 2.2E−10 2.4E−05 NA NA 2.0E−06
XKR6 rs4618656 8 10969235 2.0E−06 1.3E−95 3.6E−06 2.3E−04 9.6E−01 1.0E−06
AF131215.9 rs4618656 8 10969235 2.0E−06 1.8E−290 2.4E−06 NA 2.0E−06 0.0E + 00

AF131215.2 rs4618656 8 10969235 2.0E−06 6.4E−298 2.4E−06 NA 8.5E−09 0.0E + 00

FAM167A rs2736345 8 11352485 1.5E−13 0.0E + 00 1.9E−13 NA 6.9E−10 0.0E + 00

BLK rs2736345 8 11352485 1.5E−13 0.0E + 00 2.8E−13 NA 1.0E−08 0.0E + 00

RP11−148O21.6 rs11250144 8 11386276 2.8E−08 1.0E−14 6.5E−06 6.6E−04 6.5E−01 0.0E + 00

RP11−148O21.4 rs2736345 8 11352485 1.5E−13 7.4E−105 2.6E−12 7.1E−04 1.8E−02 0.0E + 00

RP11−148O21.2 rs2736345 8 11352485 1.5E−13 1.1E−33 2.9E−10 0.0E + 00 NA 0.0E + 00

PHRF1 rs6598008 11 618172 6.7E−10 2.8E−19 3.7E−07 3.9E−06 4.7E−03 9.9E−03
IRF7 rs1051390 11 613165 8.8E−11 4.6E−81 8.2E−10 1.7E−02 1.0E + 00 3.2E−01
TMEM80 rs12277188 11 688091 9.8E−08 0.0E + 00 1.0E−07 NA 7.6E−02 1.2E−03
RP11−542M13.3 rs12149636 16 85971220 1.1E−07 7.3E−52 5.4E−07 NA NA 8.6E−03
RP11−542M13.2 rs9308364 16 86003446 3.4E−07 9.7E−17 1.4E−05 NA NA 3.4E−02
RP11−94L15.2 rs12936231 17 38029120 1.8E−05 4.1E−73 3.0E−05 6.9E−05 7.2E−02 4.8E−01
GSDMB rs12936231 17 38029120 1.8E−05 0.0E + 00 1.8E−05 1.6E−03 2.0E−01 NA

ORMDL3 rs12936231 17 38029120 1.8E−05 0.0E + 00 1.8E−05 1.9E−02 2.8E−01 NA

TYK2 rs11085725 19 10462513 9.6E−13 1.1E−163 5.1E−12 4.2E−03 9.7E−01 6.4E−01
UBE2L3 rs2070512 22 21949411 1.5E−13 0.0E + 00 1.9E−13 7.0E−15 4.2E−02 4.9E−01

Chepelev et al. 10.3389/flupu.2023.1234578
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FIGURE 5

A comparison of MRAID and SMR causal effect sizes. A scatter plot depicting SLE causal effect sizes of non-chromosome 6 genes which are statistically
significant according the MRAID method. The MRAID method models both uncorrelated and correlated horizontal pleiotropic effects. The signs of the
causal effect sizes estimated using two methods agree.

Chepelev et al. 10.3389/flupu.2023.1234578
Multi-cell type MR analysis

The MR analyses described so far used whole-blood eQTL data

generated from over 31 thousand individuals in the eQTLGen

project (9). We sought to replicate our findings in an independent

data set from different immune cell types. To this end, we applied

MR-MtRobin method (2) to the eQTL datasets from the DICE

project (15 immune cell types from 90 Europeans) and GEUVADIS

lymphoblastoid cell lines (LCLs from 445 Europeans) (7). We

included LCL data in our analysis because these cell lines are

infected with Epstein-Barr virus (EBV), which is a strong etiologic

candidate for causing SLE and Multiple Sclerosis (MS) (21–23).

LCLs are stable transformed cell lines that express EBV’s Latency

III program. Notably, the EBV gene product and transcription co-

factor, EBNA2, is enriched at the genetic loci associated with the

risk of both SLE and MS (24). A comparison of the gene

expression profile of SLE risk genes across 459 different cell/tissue

types revealed that EBV-infected B cells (LCLs) had the strongest

representation of highly expressed SLE risk genes (25).

For a concise description of the MR-MtRobin model, see

Figure 8 and Materials and Methods. The MR-MtRobin method

uses a mixed-effects linear statistical model which relates cell-type

specific eQTL effect sizes (dependent variables) to GWAS effect

sizes (independent variables) in what effectively amounts to a

weighted reverse regression analysis (‘reverse’ because of the

inversion in the roles of dependent and independent variables),

with the weights given by reciprocals of squares of standard errors

in estimate of eQTL effect sizes (Figures 8–10 and Materials and
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Methods). The MR-MtRobin method has identified 16 non-

chromosome 6 and 21 chromosome 6 genes with statistically

significant causal effect sizes (causal effect p-value < 0.05) (see

Figure 6, Table 1 and Supplementary Table S1).

Interestingly, among the 16 non-chromosome 6 genes,

MR-MtRobin and SMR methods demonstrated a discrepancy in

the direction/sign of causal effect size estimates for four genes

(see Figure 6). To investigate the reason for this inconsistency,

we conducted an analysis of scatter plots comparing multi-cell

type eQTL effect sizes vs. GWAS effect sizes (Figure 11).

Notably, the LCL cell line (shown in red color) has the most

substantial impact on the causal effect size estimates by

MR-MtRobin due to its larger sample size (n = 445) compared to

the smaller sample sizes (n = 90) of eQTL data from other cell

types. When the MR-MtRobin analysis included the LCL eQTL

data alongside other cell types’ eQTL data, the causal effect of

PHRF1 is positive, equaling 3.5 (p-value = 0.099, Supplementary

Table S1), which aligns with the red data points following a

positive slope line (red line in Figure 11A). Conversely, when

the analysis excluded the LCL eQTL data, the causal effect of

PHRF1 became negative, equaling −0.5 (although statistically not

significant: p-value = 0.33), in agreement with the data points for

non-LCL cell types following a negative slope line (blue dashed

line in Figure 11A) and consistent with the direction of the

causal effect estimate obtained by SMR analysis using whole

blood eQTL data. However, for the other three genes (IRF5,

GPX3, and RP11-542M13.2), the exclusion of LCL eQTL data did

not lead to a reversal of the causal effect estimates by
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FIGURE 6

A comparison of MR-MtRobin and SMR causal effect sizes. A scatter plot depicting SLE causal effect sizes of non-chromosome 6 genes which are
statistically significant according the MR-MtRobin method applied to the DICE and LCL eQTL data. This method implicitly models both uncorrelated
and correlated horizontal pleiotropic effects. The signs of the causal effect sizes estimated using two methods agree for all but four genes.
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MR-MtRobin [Causal effect estimates of these genes with LCL data

included in MR-MtRobin analysis: 1.1 (p-value = 0), −0.77 (p-value
= 0.0004) and 1.6 (p-value = 0.034), see Supplementary Table S1;

Causal effect estimates when LCL data are excluded from the

analysis: 1.6 (p-value = 0.57), −0.64 (p-value = 0.0004) and 4.1 (p-

value = 0.7)] (Figures 11B–D). The direction/sign of causal effect

size estimates for the remaining 12 genes shown in Figure 6 stay

consistent between SMR and MR-MtRobin when the LCL data is

excluded from the MR-MtRobin analysis. Achieving more

consistent estimates of the direction of causal effects would

necessitate larger and more balanced multi-cell type eQTL data

sets, and advanced MR methods capable of incorporating cell

type-specific eQTL effects in statistical models. For completeness,

we report the Venn diagram comparisons of statistically significant

(p-value < 0.05) genes identified by MR-MtRobin method with

and without LCL eQTL data (Figure 12).
Comparison of analysis results from three
MR methods

Non-chromosome 6 genes
In this study, we employed three different MR methods,

namely MRAID, PMR-Egger, and MR-MtRobin, to identify SLE
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causal genes. Specifically, excluding chromosome 6, MRAID

identified a total of 7 genes, while PMR-Egger detected 13 genes,

and MR-MtRobin identified 16 genes (Figure 13A). Among

these, 3 genes were found to be common between MRAID and

PMR-Egger, whereas 6 genes were shared between MRAID and

MR-MtRobin. Interestingly, we observed that 6 genes were

common between PMR-Egger and MR-MtRobin, and 2 genes

were identified by all three methods (Figure 13A).

To shed light on the reasons behind the discrepancies in gene

identification among the methods, it is crucial to consider various

factors. Technical issues played a significant role in certain genes

being deemed significant by one method but not by another.

Notably, four genes (AF131215.9, AF131215.2, FAM167A, and

BLK) identified as significant by MRAID were not detected by

PMR-Egger due to errors that occurred during the analysis

(‘Cholesky decomposition failed in PMR_summary_Egger_CPP

function’ error message was reported when Cholesky

decomposition of a matrix constructed from LD SNP-SNP

correlation matrix was performed by PMR-Egger). Similarly, six

genes specific to MR-MtRobin were not identified by either

MRAID or PMR-Egger. Specifically, four of these genes (RP11-

128A6.2, SMO, RP11-542M13.3, and RP11-542M13.2) were

excluded from the analysis of PMR-Egger and MRAID due to

having fewer than 25 SNPs in Sg (as explained in the Materials
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FIGURE 7

A description of the MRAID method. (A) A graphical representation of the statistical model. The model is used to estimate the causal effect a of gene
expression X on the trait Y of interest, in the presence of the uncorrelated and correlated horizontal pleiotropic effects. In this mixed-effects model,
the variables a and r are fixed effects, and the other variables are random effects. (B) The random effect variables in the model follow mixture
probability distributions. For instance, with the probability pb, the random variable bj follows a normal distribution and is identically equal to zero with
the probability 1� pb. In the latter case, the genetic variant Gj does not directly affect the gene expression X, but has a direct uncorrelated
pleiotropic effect hu

j on the outcome Y. With the probability 1� pc, the random variable Zc
j is equal to zero, which results in the vanishing correlated

horizontal pleiotropy random variable hc
j . When Zc

j ¼ 0, the effect size of genetic variant (cis-SNP) Gj on the gene expression X is non-zero and is
equal to bj. (C) The matrix equations representing the mixed-effects statistical model from panel A. The equation for b̂x is formally identical to the
corresponding equation from the PMR-Egger method (see Figure 3B). In the linear equation for b̂y , the first three terms on the right-hand side are of
the form: matrix R times a vector random variable. Thus, the variables are a priori not distinguishable. However, thanks to assumptions on
distributions of the random variables (see panels (A) and (B)), the variables are distinguishable and the method can infer the parameters of the
probability distributions. (D) A heuristic derivation of mixed-model equations from panel C when all SNPs are in linkage equilibrium. In the latter case,
SNPs are uncorrelated and the SNP-SNP genotype correlation matrix R becomes the identity matrix, and R can then be erased from the equations.
The right-hand side of equation for b̂x can be understood as follows. In the graph from panel A, there are two directed paths from Gj to X: GCX and
GX. The value of b̂x is the sum of the contributions from these two paths and the noise term. The value of the directed path GCX is the product of
the values of the directed paths GC and CX. Similarly, the value of b̂y is the sum of the contributions from the directed paths GCY, GCXY, GXY and
GY, and the noise term. The equations in the general case of correlated SNPs can be understood as R-weighted contributions to marginal effect size
of a SNP from the tagged SNPs which are in LD.
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and Methods section). Additionally, errors (‘Cholesky

decomposition failed in PMR_summary_Egger_CPP function’)

were encountered during the analysis of TMEM80 and GPX3

genes by PMR-Egger. Furthermore, the absence of GSDMB and

ORMDL3 genes from the MR-MtRobin list resulted from errors

generated by a non-linear optimization (NLopt) step in the MR-

MtRobin algorithm. Thus, it is evident that these three MR

methods serve as complementary approaches for inferring causal

genes, as they may not be able to analyze the same set of genes.

For the remaining genes, the precise reasons behind their

identification by one method but not the others are yet to be

determined. It is important to note that the three MR methods

operate based on different assumptions, leading to distinct

regimes of validity the methods (for assumptions, see Materials

and Methods). To illustrate this, consider a hypothetical scenario

where a gene is deemed significant by MR method A but not by
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MR method B. If the assumptions underlying method A are

violated by that particular gene, it is likely to be a false positive

for method A while being a true negative for method

B. Conversely, if the assumptions for method A are valid but

those for method B are not, the gene would be classified as a

false negative for method B. Therefore, understanding the

assumptions and limitations of each MR method is crucial in

interpreting the discrepancies in gene identification results.

Performing a comprehensive examination of the impact of MR

modeling assumptions on the false positive and false negative

rates in causal gene discovery would necessitate extensive

simulation of in silico datasets using complex probabilistic

models. These models would need to incorporate factors like

horizontal pleiotropic effects and cell-type specificity. However,

undertaking such an extensive in silico analysis is beyond the

scope of the present study.
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FIGURE 8

A description of MR-MtRobin method. (A) An illustrative plot depicting a weighted linear regression of cell type-specific eQTL effect sizes b̂x against the
effect sizes b̂y from the trait Y GWAS. Artificially generated data points for three SNPs in four cell types are shown. The error bars represent standard errors
of effect sizes from the cell type-specific eQTL summary statistics data. The effect sizes of SNP-1 eQTL are statistically significant in four cell types, while
those of SNP-2 and SNP-3 are significant in three cell types only. Each vertical cluster of data points corresponds to a single SNP. A blue line connecting
the origin with a point in a vertical cluster for each SNP represents a statistical fit of the weighted linear regression model described in the panel B, with the
estimated SNP-specific slope parameter equal to uþ uk for SNP-k. For each SNP, the data points with smaller eQTL effect size standard errors receive
larger weights (the end points of the blue lines are closer to such data points). The red dotted line with the slope u, which is the reciprocal 1=a of the X-
on-Y causal effect size a, represents an overall linear relationship between b̂x and b̂y . (B) The mixed-effects linear model. In the linear relationship
between cell type-specific eQTL effect sizes b̂x and GWAS effect sizes b̂y , u is a fixed effect and uj are SNP-specific random effects. The noise term
1 jm in the equation is cell type specific and depends on the structure of SNP-SNP genotype correlations. Specifically, for the cell type m, the vector
1m follows a multivariate normal distribution with mean zero and the covariance matrix whose elements are the products of eQTL standard errors in
cell type m and SNP genotype correlation matrix elements.
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Chromosome 6 genes
On chromosome 6, MRAID identified a total of 6 genes, while

PMR-Egger detected 34 genes, and MR-MtRobin identified 21

genes (Figure 13B). Among these, 5 genes were found to be

common between MRAID and PMR-Egger, whereas only one

gene was shared between MRAID and MR-MtRobin.

Interestingly, we observed that 12 genes were common between

PMR-Egger and MR-MtRobin, and none were identified together

by all three methods (Figure 13B).

Interestingly, only 46% of causal genes identified by MRAID

are from chromosome 6, compared to 70% for SMR, 72% for

PMR-Egger and 57% for MR-MtRobin. This suggests that

MRAID, by modelling both uncorrelated and correlated

pleiotropic effects, and using a richer probabilistic model than

other MR methods, was able to reduce false positive ‘causal’

genes from the chromosome 6. PMR-Egger method makes a

simplistic assumption that correlated horizontal pleiotropy is

absent. Furthermore, PMR-Egger method makes a simplifying

assumption that horizontal pleiotropic effect sizes of all

instrumental SNPs are equal to a single unknown parameter g

(see Figure 3 and Materials and Methods). By contrast, the

MRAID model is general and the instrumental SNPs in the

model are not constrained to have the same value of
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horizontal pleiotropic effect (Figure 7 and Materials and

Methods).

Due to the high levels of linkage disequilibrium (LD) at the MHC

locus on chromosome 6, this region is commonly excluded from

Mendelian randomization (MR) analyses. For instance, the SMR

study (5) excluded this locus due to LD. The elevated LD levels in

this region are likely to result in violations of the standard MR

assumptions. Consequently, we anticipate that a typical MR method

would exhibit a higher false positive rate in identifying causal genes

on chromosome 6 compared to non-chromosome 6 regions.

In contrast, the MRAID method effectively eliminated most

chromosome 6 genes, proving valuable in reducing false positives.

Conversely, the other MR methods identified a significant number

of chromosome 6 genes, suggesting that these methods potentially

have higher false positive rates when applied to chromosome

6. This finding underscores the challenges posed by LD in this

region. However, beyond chromosome 6, LD levels are lower,

indicating that different MR methods likely have comparable false

positive rates. Nonetheless, false negative rates may vary,

highlighting the complementary nature of the three probabilistic

MR approaches (MRAID, PMR-Egger, and MR-MtRobin) utilized

in this study. Thus, the combination of these methods provides a

comprehensive assessment of causal gene discovery in both
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FIGURE 9

MR-MtRobin weighted linear regression analysis for the causal effect of BLK gene expression on SLE. For a description of the model, see Figure 8 and
Materials and Methods. A scatter plot of SLE GWAS vs. cell type-specific eQTL effect sizes of cis-SNPs in the neighborhood of BLK gene. Each colored
circle represents a SNP in a particular cell type (see color to cell type dictionary on the right), with the size of the circle being proportional to the weight
1=ŝ2

jm , where ŝ jm is the standard error of the estimate for eQTL effect size of the SNP j in the cell type m (see Figure 8) – the more accurate the estimate
is, the larger the weight is. The weights are largest for LCL eQTLs due to the larger sample size (n= 445) of the LCL eQTL study. The slope of the black line
through origin represents the fixed effect u of the model (see Figure 8).

Chepelev et al. 10.3389/flupu.2023.1234578
chromosome 6 and non-chromosome 6 regions, taking into account

the varying levels of LD and the potential for false positives and false

negatives.
Multivariable Mendelian randomization
(MVMR) analysis to disentangle causal
effects at the FAM167A-BLK locus

The analysis using three single-Exposure variable Mendelian

Randomization (MR) methods, namely PMR-Egger, MRAID, and

MR-MtRobin, has identified specific genes from the FAM167A-

BLK locus as potential causal factors for SLE. The neighboring
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genes BLK and FAM167A have been found to have causal effects

in opposite directions (Figures 5, 6 and Supplementary

Table S1). This finding aligns with previous research indicating

that reduced expression of BLK and elevated expression of

FAM167A are associated with an increased risk of SLE (26, 27).

In addition to BLK and FAM167A, other genes within the

FAM167A-BLK locus, namely RP11-148O21.2, RP11-148O21.4,

and RP11-148O21.6, have also been identified as potential causal

factors for SLE by one or more of the single-variable MR methods

(see Table 1). Given the high linkage disequilibrium at this locus,

it is important to investigate whether the causal effects of these

five genes are independent of each other. To investigate whether

the causal effects of the identified genes within the FAM167A-BLK
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FIGURE 10

A SNP-centric view of MR-MtRobin analysis for the causal effect of BLK gene expression on SLE. To ensure clarity, only a selection of the top GWAS SNPs
is depicted.
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locus are independent, we employed a Multivariable Mendelian

Randomization (MVMR) method (16, 28). In this study, we used

the single-variable MR methods with an abstract approach to

model horizontal pleiotropy without exploring the precise

underlying mechanisms driving these effects. In contrast, the

MVMR method offers a more explicit modeling of horizontal

pleiotropy by considering the pathways from genetic variants to

the expression patterns of a subset of genes within a gene set

during causal inference. To illustrate this concept, we can

reinterpret the MVMR model incorporating the five mentioned

genes as a single-variable MR analysis with a specific focus on the

BLK gene, while interpreting the expressions of other four genes

as mediators of horizontal pleiotropic effects. For a concise

description of the MVMR method, see Materials and Methods.

A joint MVMR analysis of the five genes at the FAM167A-BLK

locus revealed that the causal effect sizes of two genes were
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statistically significant. Specifically, the BLK gene exhibited a

significant effect (causal effect size =−0.635, p-value = 0.004),

suggesting its direct causal relationship with SLE. Similarly, the

RP11-148O21.2 gene also demonstrated a significant effect (causal

effect size = 0.637, p-value = 0.002). On the other hand, the causal

effects of the remaining three genes did not reach statistical

significance, indicating that they may not play a significant role in

the development of SLE. However, it is crucial to note that this

conclusion hinges on the validity of the underlying assumptions in

the MVMR analysis. As such, we cannot assert with absolute

certainty that FAM167A, RP11-148O21.4, and RP11-148O21.6 are

not important in the etiology of SLE.

HEIDI test of horizontal pleiotropy
In this study, we employed three probabilistic MR methods

(PMR-Egger, MRAID, and MR-MtRobin) that explicitly model
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FIGURE 11

Reversal of causal effect direction estimates by MR-MtRobin due to cell type-specific eQTL effects and unbalanced eQTL sample sizes. MR-MtRobin
weighted linear regression analysis for the causal effects of expressions of four genes on SLE. For a description of the model, see Figure 8 and
Materials and Methods, and for a description of the scatter plots, see Figure 9 legend. The largest contribution to the causal effect size a estimate is
from the LCL cell line (data points shown in red color) due to the larger sample size (n= 445) of the LCL eQTL data compared to the smaller sample
sizes (n= 90) of eQTL data for other cell types. The slope of red line for each gene represents the reciprocal of causal effect size (1=a) estimate with
LCL cell line data included in the MR-MtRobin analysis, while the blue dashed line shows the same with LCL data excluded from the analysis. (A) For
PHRF1 gene, the data points for LCL (red circles) are aligned along the red line with a positive slope. The data points for other cell types are more
consistent with the negative slope blue dashed line. The MR-MtRobin causal effect sizes of PHRF1 with and without LCL eQTL data included in the
MR-MtRobin analysis are a ¼ 3:5 and a ¼ �0:5, respectively (see Supplementary Table S1). (B-D) Scatter plots for IRF5, GPX3 and RP11-542M13
genes, respectively.
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horizontal pleiotropic effects. We conducted a comparison

between the results obtained using these probabilistic MR

methods and the findings generated by HEIDI test on the set

of 142 genes identified using the SMR method. HEIDI

(HEterogeneity In Dependent Instruments) test is a statistical

method used in Mendelian randomization (MR) analysis to

detect horizontal pleiotropy that may arise due to the linkage
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disequilibrium between single-nucleotide polymorphisms

(SNPs) (5).

A challenge in MR analysis using expression quantitative trait

loci (eQTLs) as exposure variables is the limited availability of

independent cis-eQTL single-nucleotide polymorphisms (SNPs)

for most genes in the genome. To overcome this challenge and

increase the number of instrumental variables (SNPs), we
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FIGURE 12

Venn diagram comparison of statistically significant causal genes identified by MR-MtRobin method using two different sets of eQTL data: DICE + LCL
(with LCL) and DICE alone (without LCL). (A) Genes from outside of chromosome 6. (B) Genes from chromosome 6.
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included correlated SNPs in our analysis. However, we ensured that

the correlation between these SNPs (IVs) remained below a specific

threshold [a linkage disequilibrium (LD) r-squared value of less

than 0.9]. These correlated SNPs were considered when applying

HEIDI test.

It is important to note that the correlation among

instrumental variables can increase the likelihood of false
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positive results in the HEIDI test, potentially leading to

incorrect indications of horizontal pleiotropy. Consequently,

HEIDI test may erroneously reject causal genes identified by

the SMR algorithm as non-causal (i.e., false negatives in gene

discovery). To address this concern, we chose not to rely on

HEIDI test in this study. Instead, we employed the three

aforementioned probabilistic MR methods, which explicitly
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FIGURE 13

Venn diagrams of statistically significant causal genes identified by MRAID, PMR-Egger and MR-MtRobin (the latter with DICE + LCL eQTL data) methods.
(A) Genes from outside of chromosome 6. (B) Genes from chromosome 6.
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account for horizontal pleiotropy, to filter the candidate causal

genes identified by the SMR method.

Nevertheless, for completeness, we report the results of HEIDI

test (see p_HEIDI p-values in Supplementary Table S1). Among

the set of 142 genes identified by the SMR algorithm, the HEIDI

test detected heterogeneity in 115 genes at a significance level of

p_HEIDI < 0.05. Out of the remaining 27 genes that passed

HEIDI test (p_HEIDI >= 0.05), seven genes are located on

chromosome 6, while the remaining 20 are located on other

chromosomes. Interestingly, four (HIST1H2BK, HIST1H4K,

APOM and DEF6) out of the seven genes from chromosome 6

that passed HEIDI test were among the 43 chromosome 6 genes

identified in our study. Similarly, ten (RP11-128A6.2,

AF131215.9, AF131215.2, FAM167A, BLK, PHRF1, TMEM80,

RP11-542M13.2, GSDMB and UBE2L3) out of the 20 non-

chromosome 6 genes that passed HEIDI test were among the 23

non-chromosome 6 genes identified in our study. It is worth

considering that HEIDI test, with its stringent p-value cutoff of

p_HEIDI> = 0.05, may be overly conservative for gene discovery

and could result in the exclusion of many potentially causal

genes (i.e., false negatives).

Relation to other Mendelian randomization
studies on autoimmune diseases

Previous work on Mendelian Randomization (MR) methods in

understanding autoimmune and inflammatory diseases

encompasses various studies. These include investigations into

the association of atopic dermatitis with autoimmune diseases

using a bidirectional and multivariable two-sample MR (29), the
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causal association between atopic eczema and inflammatory

bowel disease using a two-sample bidirectional MR (30), and the

causal associations between Vitamin D levels and psoriasis,

atopic dermatitis, and vitiligo using a bidirectional two-sample

MR (31). Additionally, studies have explored the causal relation

between telomere length and the development of SLE using MR

methods (32), the causal relationship between vitamin D levels

and the risk of juvenile idiopathic arthritis (33), and the potential

therapeutic targeting of TYK2 for autoimmune diseases (34).

Of particular relevance to our study are two MR analyses. One

study (35) employed MR analysis using single-cell eQTL data from

peripheral blood mononuclear cells (PBMCs) collected from 982

donors and identified cell type-specific causal genes in seven

autoimmune diseases. The study identified 19 candidate causal

genes for SLE, 16 of which were from chromosome 6 and 3 were

non-chromosome 6 genes. After applying the HEIDI test filter

(p_HEIDI> = 0.05), 8 significant causal genes remained (5 from

chromosome 6 and 3 from other chromosomes). All three non-

chromosome 6 genes identified in (35) (BLK, FAM167A, and

UBE2L3) were also identified as causal in our study using four

combined methods (SMR and one or more of PMR-Egger,

MRAID and MR-MtRobin). Furthermore, 13 of the 19 genes

identified in (35) were found in our SMR analysis. Notably, the

study (35) revealed cell type-specific effects, such as the causal

effect of BLK being restricted to immature naïve B cells, memory

B cells, and CD4+ T cells, while the causal effect of FAM167A

was restricted to memory B cells. The causal effect of UBE2L3

was found in CD4 + and CD8+ T cells, as well as in mature

natural killer (NK) cells. Additionally, the causal effect of
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C6orf48 was observed in immature naïve B cells, CD4+ T cells,

CD4 + central memory T cells, and CD8+ T cells. The causal

effect of BTN3A2 was restricted to the same cell types as

C6orf48, with additional effects seen in memory B cells, CD8 +

effector T cells, and NK cells.

The second relevant study (36) utilized the SMR Mendelian

randomization method and HEIDI filtering (p_HEIDI > 0.05) on

three whole-blood eQTL datasets from European individuals

[Westra data (n = 5,311) (37), CAGE data (n = 2,765) (38) and

GTEx data (39) to identify causal genes in SLE. Their analysis

identified 21 genes, with 12 from chromosome 6 and 9 from

outside of chromosome 6. The majority of these genes showed

statistically significant causal effects in only one of the three

eQTL datasets. However, four non-chromosome 6 genes

(FAM167A, BLK, IRF7, and UBE2L3) and four chromosome 6

genes (HCP5, C6orf48, C4A, and RNF5) identified in (36) were

also identified as causal in our study using four combined

methods. When considering only our SMR results, we found

overlap with the same four non-chromosome 6 genes and ten

chromosome 6 genes identified in (36).

In summary, our study confirms and extends the findings of

previous Mendelian Randomization (MR) studies, providing

further support for the role of specific genes in autoimmune

diseases. We observed overlap in the identification of causal

genes, particularly those showing significant effects across

multiple datasets. Moreover, our research emphasizes the

significance of considering cell type-specific effects, offering

insights into the involvement of different immune cell

populations in autoimmune diseases.

Our investigation utilized a powerful whole blood expression

quantitative trait loci (eQTL) dataset comprising data from

almost 32,000 individuals. This dataset provided valuable insights

into the causal genes associated with autoimmune and

inflammatory diseases. However, given the mixed nature of

whole blood, which encompasses various cell types, it remains

challenging to discern cell type-specific effects using this

dataset alone. Unfortunately, cell type-specific datasets of

comparable sample size are not currently available. Although a

previous study we discussed employed single-cell eQTL data, the

sample size was significantly smaller, around 1,000 individuals,

limiting the comprehensive exploration of cell type-specific

effects. To gain a more comprehensive understanding of the

specific roles played by different cell types in autoimmune and

inflammatory diseases, future investigations should incorporate

larger single-cell eQTL datasets.
Disease relevance of candidate causal
genes identified in this study

By utilizing statistical MR methods, we have identified 23 genes

outside of chromosome 6 whose expression may play a causative

role in the development of SLE (see Table 1 and Figure 13A).

Next, we collected an extensive literature evidence to strengthen

their association with the development of this disease (see

Appendix A). Based on literature evidence, the genes identified
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as potentially causal for SLE in this study are implicated in

diverse pathways and mechanisms (see Figure 14). Misexpression

of these genes contributes to dysregulated type I interferon and

IL-12/23 signaling, dysregulation of antibody class switch

recombination, dysregulation of B-cell signaling and function,

breakdown of self-tolerance, NF-kB hyperactivity, immune

dysregulation, inflammatory response, tissue damage, oxidative

stress, Epstein-Barr virus infection, and dysregulation in

lymphocyte development.
Materials and methods

SLE GWAS summary statistics data
preprocessing

The European population SLE GWAS summary statistics data

from (6) (5,201 cases and 9,066 controls) was downloaded from

European Bioinformatics Institute (ebi.ac.uk) under the study ID

GCST003156. The SNPs with effect size standard error (SE)

identically equal to zero were removed from the GWAS summary

statistics data. The reference genotype data from European

individuals was obtained from the International Genome Sample

Resource (IGSR, https://www.internationalgenome.org), formerly

1,000 Genomes Project (1KG). The 1KG European genotypes were

filtered using plink2 (40) with parameters hwe = 1e-6 (Hardy–

Weinberg equilibrium test p-value cutoff) and maf = 0.001 (minor-

allele frequency cutoff). The effect sizes for all SNPs were

transformed (b ! �b) to be relative to the minor allele of SNP

based on minor allele frequency in the 1KG European population.

The quality control (QC) of the SLE GWAS summary statistics

data was done using DENTIST (Detecting Errors iN analyses of

summary staTISTics) algorithm. DENTIST is a GWAS summary

statistics quality control method that leverages LD among genetic

variants to detect and eliminate errors in GWAS or LD reference

and heterogeneity between the two (15). DENTIST was run with

default parameter settings. DENTIST removed around 5% of SNPs

from the SLE GWAS summary statistics data. We name the

resulting summary statistics data ‘Bentham-SLE-GWAS’. We

found the quality control of GWAS summary statistics by

DENTIST method to be an essential data preprocessing step.

Without it, the probabilistic MR algorithm MRAID (which is

described below) runs into numerical errors such as very large

(>1e + 10) estimates of some model parameters.
Preprocessing of the eQTL data

The European whole-blood eQTL summary statistics data from

the eQTLGen study (9) (sample size = 31,684) was downloaded

from eQTLGen Consortium website (https://eqtlgen.org/) (9).

The eQTL effect sizes for all SNPs were transformed (b ! �b)

to be relative to the minor allele of SNP based on minor allele

frequency in the 1KG European population. The eQTLGen

summary statistics data file was reformatted into file formats

suitable for SMR, PMR-Egger and MRAID algorithms using
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FIGURE 14

Tentative SLE disease mechanisms for genes identified in this study. This figure illustrates potential disease mechanisms associated with systemic lupus
erythematosus (SLE) genes. The light-blue shapes represent 21 of the 23 non-chromosome 6 genes identified as plausible causes in this study. Depending
on the context within the figure, these shapes can also represent gene products, such as proteins and mRNAs. The unfilled ovals represent the SLE genes
IKZF3 and IRF8, which were not identified in this study. The number of asterisks next to each gene shape indicates the overall level of confidence in the
evidence supporting its disease mechanism, ranging from 1 star (*) for the least confident evidence to 4 stars (****) for the most confident evidence. For
IRF8, there are two pathways associated with it, and the number of asterisks shown above each pathway represents the confidence level in the evidence
supporting that particular pathway.
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custom Perl and R scripts. The European eQTL summary statistics

data from 15 immune cell types (sample size = 90) was downloaded

from the DICE [Database of Immune Cell Expression, Expression

quantitative trait loci (eQTLs) and Epigenomics] project website

(https://dice-database.org/) (8). The 15 immune cell types in the

DICE dataset are: naïve B cell, classical monocytes, non-classical

monocytes, CD56dim CD16+ NK cells, various CD4 T cell types

(Tfh, Th1, Th17, Th1/17, Th2, memory Treg, naïve Treg, naïve

CD4 T cell, activated naïve CD4 T cell), naïve CD8 T cells and

activated naïve CD8 T cells. The processed GEUVADIS LCL

eQTL summary statistics data (7) was obtained from (41)

(European sample size = 445). The DICE and LCL eQTL

summary statistics data files were reformatted into file formats

suitable for the MR-MtRobin algorithm using custom Perl and R

scripts.
Description of SMR method

If the Instrumental Variable (IV) assumptions hold, the

classical MR method can unbiasedly estimate causal effect a

(Figure 1) (13, 14). A two-stage least-squares regression

procedure then yields statistical estimate of causal effect as the

ratio a ¼ b̂y=b̂x of GWAS b̂y and eQTL b̂x marginal effect sizes

of the SNP. For single-SNP MR analysis, we used SMR

(summary data-based MR) method, which was specifically

developed for causal gene inference from eQTL and GWAS

summary statistics data (5). In SMR method, p-value of causal

effect is computed using an approximate chi-squared test statistic

T ¼ z2xz
2
y=(z

2
x þ z2y ), where zx ¼ b̂x=ŝx and zy ¼ b̂y=ŝy are the z

statistics from the eQTL and GWAS study, respectively.
SMR analysis

From the eQTLGen whole-blood eQTL data, we removed SNP-

gene associations with the nominal p-value > 5e-8. From the

retained data, we kept only rows with genes whose transcription

start sites (TSS) are located within 500 kb of any GWAS

significant SNP (p-value < 5e-8) from the Bentham-SLE-GWAS

summary data. The TSS genomic coordinates information was

obtained from the Ensembl database (www.ensembl.org, version

GRCh37-p13). The classical MR method, as implemented in a

two-sample MR method SMR (5), was applied to the European

whole-blood eQTL summary statistics data from the eQTLGen

study (9) (sample size = 31,684), and the European population

SLE GWAS summary statistics data from (6) (5,201 cases and

9,066 controls).
Description of PMR-Egger statistical model

PMR-Egger (4) is a probabilistic Mendelian randomization

(MR) method for performing two-sample MR analysis with

correlated SNP instruments in the presence of uncorrelated

horizontal pleiotropy which violates one of the IV assumptions
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(see Figure 1). PMR-Egger examines one gene at a time and

estimates causal effect a of gene expression (exposure X) on the

trait (outcome Y) of interest (Figure 3A). PMR-Egger is a

mixed-effects statistical model containing both fixed effects (a

and g) and random effects (bj) (see Figure 3B for a concise

description of the model). The random variables bj, which

represents effect size of SNP j on the exposure variable X, are

assumed to be independent and follow the same normal

distribution (Figure 3A). In order to avoid the problem of

overfitting the data, the PMR-Egger method makes a simplifying

assumption that horizontal pleiotropic effect sizes of all

instrumental SNPs are equal to a single unknown parameter g.

The marginal effect size estimates b̂x and b̂y from the exposure

(eQTL) and outcome (GWAS) studies, and SNP genotype

correlation matrix R (a measure of SNP-SNP linkage-

disequilibrium levels) are used as the input data to perform a

maximum likelihood inference of model parameters. In the eQTL

summary statistics data, the marginal effect size of a SNP on the

gene expression was estimated using a univariate linear

regression analysis. The marginal effect size of a SNP consists of

the ‘functional’ effect size of the SNP and LD-weighted

contributions from the tagged SNPs which are in linkage

disequilibrium (LD) with the SNP. This intuitively explains the

vectorial equation b̂x ¼ Rbþ 1x , which reads in the component

form as b̂xi ¼
P

k
Rikbk þ 1xi. When SNPs are in linkage

equilibrium, the genotype correlation matrix R becomes the

identity matrix, and the equations from Figure 3B simplify.
PMR-Egger analysis

For each gene g from the set of 142 genes identified using SMR

method, we considered the set Sg of all its significant eQTLs

(PeQTL < 5e-8) located within 500 kb of the gene’s topmost

significant eQTL and with linkage disequilibrium r2 , 0:9 in

order to avoid inclusion of highly correlated (and hence

uninformative) SNPs in the analysis. For the analyses using

PMR-Egger and MRAID, we selected 97 genes whose set Sg
contains at least 25 SNPs in order to be able to reliably estimate

the parameters of the mixed-effects linear model from the eQTL

and GWAS summary statistics data for the SNPs in the set Sg.

The cutoff of 25 SNPs can be heuristically motivated as follows:

PMR-Egger and MRAID models contain many parameters,

including the causal effect size alpha. Bayesian averaging was

applied over all parameters except alpha, simplifying the models

to focus on estimating alpha. This, combined with the ‘one in

ten rule’ (42) from the logistic regression method, which

indicates the need for at least 10 data points to reliably estimate

one model parameter, and considering that the number of SNPs

in the model corresponds to the number of rows (i.e., data

points) in the matrix equations of PMR-Egger and MRAID

statistical models shown in Figures 3B, 7C, led us to

conservatively select a lower bound of 25 SNPs.

We performed PMR-Egger analysis on each of these 97 genes

using the eQTL and SLE GWAS summary statistics data, and the

LD data restricted to SNPs from the set Sg.
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Description of MRAID statistical model

MRAID (MR with Automated Instrument Determination) is a

probabilistic MR method for causal inference with correlated SNP

instruments in the presence of IV assumptions-violating correlated

and uncorrelated horizontal pleiotropic effects (3). For a concise

description of the MRAID model, see Figure 7. MRAID is a

mixed-effects statistical model containing fixed effect (a and r)

and random effect (b, hu, hc) variables. The random variables in

the model are assumed to follow mixture probability

distributions shown in Figures 7A,B. The use of random effect

variables in the model can be motivated as follows. MRAID takes

marginal effect sizes for a set of SNPs from exposure X and

outcome Y summary statistics data as input and estimates

various parameters in the model. For p SNPs, 3p parameters

(bk, h
u
k , h

c
k), k ¼ 1, � � � , p would have been required to

parametrize the model if these were fixed-effect variables. In

MRAID, these parameters are treated as independent random

variables drawn from mixture distributions parametrized by a

small number of hyper-parameters (pb, sb, etc.), thus

circumventing the problem of overfitting the input data. Using

an explicit formula for the posterior likelihood, Gibbs sampling

can be performed to estimate parameters characterizing various

distributions in the MRAID model (3).
MRAID analysis

For the analysis using MRAID, we selected the same 97 genes

as in PMR-Egger analysis. We performed MRAID analysis on each

of these 97 genes using the eQTL and SLE GWAS summary

statistics data, and the LD data restricted to SNPs from the

set Sg. MRAID algorithm was run with a default setting for all

parameters except the parameter Gibbsnumber (the number of

Gibbs sampling iterations) which was set to 1e6.
Description of the MR-MtRobin statistical
model

MR-MtRobin (Multi-tissue TWMR method ROBust to Invalid

IV) method takes as input summary-level GWAS and multi-cell

type eQTL statistics, and performs transcriptome-wide MR

(TWMR) inference in the presence of invalid IVs (2). It leverages

multi-cell type eQTL data in a mixed-effects statistical model,

which makes identifiable the SNP-specific random effects due to

pleiotropy from standard errors of eQTL summary statistics and

provide inference of causal effect of gene expression on the

outcome trait.

If the instrumental variable (IV) assumptions hold, an

unbiased MR estimate of the causal effect size is given by

a ¼ b̂y=b̂x (see Figure 1). Equivalently, b̂x ¼ ub̂y , where

u ; 1=a. If the IV assumptions are violated due to horizontal

pleiotropy, the equation will include bias terms: b̂x ¼ ub̂y þ bias.

For a concise description of the MR-MtRobin mixed-effects
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linear model, see Figure 8B. In the linear relationship between

cell type-specific eQTL effect sizes b̂x and GWAS effect sizes b̂y ,

u is a fixed effect and uj are SNP-specific random effects. The

noise term 1 jm in the equation is cell type specific and depends

on the structure of SNP-SNP genotype correlations. Specifically,

for the cell type m, the vector 1m follows a multivariate normal

distribution with mean zero and the covariance matrix whose

elements are the products of eQTL standard errors and SNP

genotype correlation matrix elements.

The MR-MtRobin method is based on a generalized InSIDE

(G-InSIDE) assumption, which is a more general version of the

InSIDE assumption used in an earlier MR method called MR-

Egger (16). MR-Egger provides consistent causal effect estimates

when the Instrument Strength Independent of Direct Effect

(InSIDE) assumption holds. The InSIDE assumption is met

when there is no correlation between the direct effects of the

pleiotropic Instrument Variable on the Outcome and its effects

on the Exposure variable (represented by hu and G ! X in

Figure 7A, respectively). The G-InSIDE assumption used in MR-

MtRobin is a more complex version of InSIDE (2).
MR-MtRobin analysis

The SNP Instrument Variables (IVs) were selected using

‘select_IV’ function with the following values of the parameters:

nTiss_thresh = 2 (minimum number of cell types in which a

candidate IV must have eQTL p-value < 0.05) and ld_thresh = 0.5

(pairwise LD threshold r2 , 0:5). The main MR-MtRobin

algorithm, MR_MtRobin, was run with the parameter

pval_thresh = 0.05 (p-value threshold for Instrumental Variables).

The p-values of gene expression causal effects were estimated

using ‘MR_MtRobin_resample’ function with the parameter

nsamp = 1e6 (number of resampling to perform in estimating the

causal effect p-value).

The MR-MtRobin gene causal effect sizes shown in Figure 6

were calculated as follows. The MR_MtRobin algorithm does not

explicitly return the gene causal effect sizes. However, it returns

lme_res, an R object produced by the linear mixed-effects

modeling algorithm lme4 (https://CRAN.R-project.org/package=

lme4). From lme_res, the fixed effect u (see Figure 8) was

extracted. The causal effect size was computed as a ¼ 1=u.
Description of multivariable Mendelian
randomization (MVMR) method

Multivariable Mendelian randomization (MVMR) extends the

scope of single-variable Mendelian randomization method by

addressing genetic variants that are linked to multiple Exposure

variables or risk factors (28). This method provides a more

explicit modeling of horizontal pleiotropy as the pathways from

genetic variants to the expression patterns of a subset of genes

within a gene set in the causal inference.

The MVMR approach relies on specific assumptions known as

extended Instrumental Variable (IV) assumptions. Firstly, it
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assumes that the genetic variant is associated with one or more of

the Exposure variables. Secondly, the genetic variant should not be

linked to any confounding factor that may influence the

associations between the Exposure variables and the Outcome.

Finally, the genetic variant is conditionally independent of the

Outcome given the Exposure variables and Confounders.

It is important to note that not every genetic variant needs to

be associated with every Exposure variable in the set. However, a

variant cannot have associations with the Outcome except

through the Exposure variables of interest. These assumptions

guide the application of MVMR and ensure the validity of causal

inference in the analysis.

The MVMR method, as implemented in the

“MendelianRandomization” R package (https://cran.r-project.org/

package=MendelianRandomization), leverages generalized

multivariable weighted linear regression to analyze correlated

genetic variants. This approach enables estimation of causal effects

by regressing the associations of genetic variants with the Outcome

variable onto the associations of genetic variants with the Exposure

variables. The weighted regression is performed with the intercept

set to zero, and the weights are determined by the inverse-

variances of the associations of genetic variants with the Outcome.

The resulting causal effect estimates represent the direct causal

effect of each exposure variable individually, while considering the

other exposure variables as fixed. This allows for a comprehensive

understanding of the specific causal effects associated with each

exposure variable within the context of the others. The MVMR

method provides a robust framework for analyzing the

relationships between genetic variants, Exposure variables, and

the Outcome, offering valuable insights into the direct causal

effects in a multivariable setting.
MVMR analysis

The input data for the MVMR analysis was prepared in the

following manner. First, for each of the five genes (BLK,

FAM167A, RP11-148O21.2, RP11-148O21.4, and RP11-148O21.6),

the eQTLGen expression Quantitative Trait Locus (eQTL) SNPs

with a significance level of PeQTL , 0:001 were selected.

Subsequent analysis was restricted to the shared significant eQTL

SNPs across these genes.

To avoid including highly correlated genetic variants in the

MVMR analysis, LD (Linkage Disequilibrium) variant pruning

was performed using the plink2 algorithm (40) with the

parameter “indep-pairwise 50 0.9” (a window size of 50 kb and a

threshold of r-squared = 0.9) and the input IGSR reference

genotype data from European individuals described earlier in

Materials and Methods.

From the resulting list of SNPs, GWAS SNPs that passed the

DENTIST-filtering with a significance level of PGWAS , 0:001 were

selected. This resulted in a final list of 196 SNPs spanning a

genomic region of 1.3 megabases (hg19 coordinates chr8:10.5Mb–

11.8Mb) at the FAM167A-BLK locus. A matrix of LD correlations

between these SNPs was then calculated using the SMR algorithm

(5) with the parameters “–make-bld –r –ld-wind 4000”.
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Using the SLE GWAS effect sizes and standard errors (6),

eQTLGen study eQTL effect sizes and standard errors (9), as

well as the LD correlation matrix, the input object for the

MVMR analysis was created using the “mr_mvinput” function

from the “MendelianRandomization” R package.

Finally, the MVMR analysis was performed using the

“mr_mvivw” function (Multivariable inverse-variance weighted

method) from the “MendelianRandomization” R package with

the following parameters: model = “random”, correl = TRUE,

distribution = “normal”. This analysis allowed for the assessment

of the causal effects in a multivariable setting, taking into

account the correlations between variables.
Data visualization

We used three R (https://cran.r-project.org/) packages for data

visualization: (1) ggmanh for the Manhattan plot in Figure 2

(source: https://bioconductor.org/packages/release/bioc/html/

ggmanh.html), (2) ggplot2 for the scatter plots in Figures 4–6,

9–11 (source: https://CRAN.R-project.org/package=ggplot2), and

(3) ggvenn for the Venn diagrams in Figures 12, 13 (source:

https://CRAN.R-project.org/package=ggvenn).
Discussion

In this study, a two-step strategy was employed to identify

causal genes for systemic lupus erythematosus (SLE). The first

step utilized classical Mendelian randomization (MR) method

without assuming horizontal pleiotropic effects to estimate the

causal effect of gene expression on SLE, resulting in the

identification of 142 genes, including 43 from outside of

chromosome 6. In the second step, advanced probabilistic MR

methods, namely PMR-Egger, MRAID and MR-MtRobin, were

applied to the genes identified in the first step to filter out false

positives, allowing for the consideration of horizontal pleiotropy.

Using PMR-Egger, which models uncorrelated horizontal

pleiotropy, 13 non-chromosome 6 genes and 34 chromosome 6

genes with statistically significant causal effects were identified.

MRAID, which models both correlated and uncorrelated

horizontal pleiotropic effects, revealed 7 non-chromosome 6

genes and 6 chromosome 6 genes with statistically significant

causal effects. To validate the findings, an independent dataset

from different immune cell types was utilized, and the MR-

MtRobin method identified 16 non-chromosome 6 genes and 21

chromosome 6 genes with statistically significant causal effects.

Although there were overlaps between the genes identified by

the three MR methods, some genes were identified by only one

or two methods due to different modelling assumptions and

technical factors. These discrepancies highlight the

complementary nature of the three MR methods and the

importance of understanding their assumptions and limitations.

Notably, MRAID showed a lower percentage of causal genes

from chromosome 6 compared to other methods, suggesting its

ability to reduce false positive causal genes.
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A Multivariable Mendelian Randomization (MVMR) method

was used to investigate the independence of causal effects of

genes at the FAM167A-BLK locus. The joint analysis revealed

significant effects for BLK and RP11-148O21.2, while the other

three genes at the locus did not reach statistical significance.

However, the certainty of these findings depends on the validity

of the underlying assumptions of MVMR method.

Following the identification of causal genes using the MR

methods, an extensive review of the literature was conducted to

provide additional evidence supporting their association with the

development of systemic lupus erythematosus (SLE) (see

Appendix A). This literature review aimed to strengthen the

understanding of the functional roles and mechanisms by which

these genes contribute to the pathogenesis of the disease.

The extensive literature supports the notion that misexpression

of genes identified as potentially causal for SLE in this study

contributes to dysregulated immune responses, Epstein-Barr virus

infection, dysregulated type I interferon, IL-12/23 and B-cell

signaling, dysregulation of antibody class switch recombination,

breakdown of self-tolerance, NF-kB hyperactivity, dysregulation

in lymphocyte development, inflammatory response, tissue

damage and oxidative stress (Figure 14). By integrating the

findings from the MR methods with the extensive literature

evidence, this study aimed to provide a comprehensive

understanding of the functional roles and disease relevance of

the identified causal genes in the context of SLE. This collective

knowledge serves to strengthen the association between these

genes and the development of the disease, paving the way for

further research and potential therapeutic targets.

Under the assumption of valid IV instruments, the SMR

method initially identified 142 genes as statistically significant.

However, the subsequent use of more advanced probabilistic MR

methods revealed that many of these genes were not statistically

significant. This suggests that the presence of horizontal

pleiotropic effects may have led to false positives among the

genes identified by SMR. Nevertheless, it would be premature to

conclude that the genes identified as ‘not causal’ by the advanced

methods are indeed not involved in the development of SLE. We

believe that a significant number of the 142 genes are genuinely

causal, but demonstrating causality will require powerful datasets

and more advanced MR methods. Drawing an analogy with the

legal principle “presumption of innocence until proven guilty,”

our approach adopts the “presumption of non-causal until

proven causal” in gene discovery. We applied advanced MR

methods to filter out potential false positives among the 142

genes identified by the simplistic SMR method. Despite lacking

conclusive causality proof, we remain optimistic about future

advancements in MR methods and richer data to demonstrate

causality of these genes.

To increase the statistical power in detecting causal gene

expression for SLE, it will be necessary to utilize large sample

size eQTL, mQTL (methylation QTL), and other molecular

data from diverse immune cell types. Additionally,

sophisticated probabilistic MR methods capable of integrating

molecular data from various cell types, performing multi-

variable MR (MVMR) analyses, accounting for correlated
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SNPs, and resilient to the presence of invalid Instrumental

Variables will be indispensable.

Our focus on European GWAS and eQTL data stems from the

extensive sample size (n = 32k individuals of European ancestry)

available in the eQTLGen study. Accurate estimation of

parameters in probabilistic MR models relies on data from

GWAS and eQTL studies with substantial sample sizes.

Unfortunately, eQTL studies with similar sample sizes to

eQTLGen are currently lacking for non-European populations.

The significance of having data from diverse ethnic populations

cannot be overstated, as demonstrated by the value of trans-

ethnic study design approaches to boost statistical power in fine-

mapping causal genetic variants (43).

It is important to note that most MR methods, including

the ones employed in this study, assume continuous trait

values in linear models. However, the SLE GWAS summary

statistics were calculated using logistic regression for a

binary trait in a case-control study. Therefore, treating binary

trait values as continuous in MR methods is not entirely

justified, and the interpretation of causal effect size estimates

should be considered semi-quantitative at best. The

development of probabilistic MR methods that can

appropriately handle binary traits is crucial, as demonstrated

by recent progress (44).

Although MR-MtRobin enhances statistical power by utilizing

eQTL data from multiple cell types, it adopts a consensus

approach where only eQTLs with consistent effects across cell

types are utilized. However, the etiology of diseases often

involves cell-type specific effects (45). Therefore, the

development of advanced MR methods that can model tissue-

specific contributions to diseases should incorporate statistical

approaches for estimating the causal tissues for complex traits

and diseases (46–49). By doing so, we can better understand the

tissue-specific mechanisms underlying complex traits and

diseases, leading to more accurate MR analyses.
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