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Self-supervised learning for
Formosan speech representation
and linguistic phylogeny

Shu-Kai Hsieh†, Yu-Hsiang Tseng†, Da-Chen Lian*† and

Chi-Wei Wang†

Lab of Ontologies, Language Processing, and E-humanities, Graduate Institute of Linguistics, College

of Liberal Arts, National Taiwan University, Taipei, Taiwan

Formosan languages, spoken by the indigenous peoples of Taiwan, have unique

roles in the reconstruction of Proto-Austronesian Languages. This paper presents

a real-world Formosan language speech dataset, including 144 h of news

footage for 16 Formosan languages, and uses self-supervised models to obtain

and analyze their speech representations. Among the news footage, 13 h of

the validated speech data of Formosan languages are selected, and a language

classifier, based on XLSR-53, is trained to classify the 16 Formosan languages

with an accuracy of 86%. We extracted and analyzed the speech vector

representations learned from the model and compared them with 152 manually

coded linguistic typological features. The comparison shows that the speech

vectors reflect Formosan languages’ phonological and morphological aspects.

Furthermore, the speech vectors and linguistic features are used to construct a

linguistic phylogeny, and the resulting genealogical grouping corresponds with

previous literature. These results suggest that we can investigate the current

real-world language usages through the speech model, and the dataset opens a

window to look into the Formosan languages in vivo.

KEYWORDS

Formosan languages, Austronesian languages, speech representation, linguistic

phylogeny, deep learning, wav2vec, XLSR

1 Introduction

Formosan languages refer to a group of languages spoken by the indigenous peoples

of Taiwan with respect to their geographical distribution, all of which are Austronesian

languages. The 24 Formosan languages respectively belong to nine subgroups, of which 16

languages, listed in Table 2, are regarded as national languages of Taiwan (Wu et al., 2018).

Since most of these currently spoken Formosan languages are extremely fragile or even

moribund, we must proactively revitalize these languages.

From the perspective of historical linguistics, Formosan languages also stand out in

their role in reconstructing Proto-Austronesian Languages (PAN). Blust (1984) proposes

the pulse-pause scenario of the Pacific settlement, in which the Austronesian speakers

originated in Taiwan around 5,200 years ago and rapidly spread through the Pacific in

a series of expansion pulses and settlement pauses. Past studies propose rich insights

into the linguistic phylogeny of Formosan languages through careful analysis of language

innovations. However, due to the difficulties of speech data collection and analysis, it is less

clear how to approach the phylogenetic questions with real-world data.
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We present a real-world dataset of Formosan languages

collected from daily news broadcasted over Taiwan’s free-to-air

channels. The paper is organized as follows: we first summarize

the methodology of previous works on the linguistic phylogeny

of Formosan languages. Next, the collected speech corpus will

be introduced. This corpus includes news footage covering 16

Formosan languages and aims to provide a valuable resource with

which researchers can use to study Austronesian languages. Also,

to demonstrate one principal value of the dataset, we investigate

the relationships among Formosan languages with speech vectors

extracted from a deep learning classifier. The language classifier

and its implied language phylogeny will be further discussed by

analyzing the speech vectors and comparing the learned vectors

with manually coded linguistic features.

2 Materials and methods

2.1 Exploring Formosan languages

Studying language families has long been of great interest

in historical linguistics. Among language families around the

world, Austronesian, which contains more than 1,250 languages

and spans across the Indian Ocean into the western Pacific,

is the biggest family in the world. The expansion origin of

Austronesian is inevitably controversial. Nevertheless, past studies

that combine data both from linguistics and archaeology suggest

the Formosan languages in Taiwan have played a significant role in

Austronesian expansion (Bellwood, 1984; Blust, 1999, 2019; Gray

et al., 2009).

Historical linguistics of Formosan languages aims to explore the

nature of linguistic relationships, i.e., determining the subgroupings

from a phylogenetic context. Different approaches to the phylogeny

of Formosan languages have been proposed since the 1930’s.

Early works such as Asai (1936) classified languages according

to features of their phonology, morphology, and lexicon, despite

very limited knowledge of Formosan languages at the time and

was only based on a general linguistic and anthropological field

survey. Later, Dyen (1965) classified the languages via the so-called

lexicostatistics method, which assumes that shared retention in the

basic vocabulary of different languages would reflect their degree of

genetic relationship. Shared cognates in a list of 200 cross-linguistic

commonwords based on the Swadesh list (Swadesh, 1952) was used

to calculate the overall similarity.

Moreover, Tsuchida (1975) followed the same lines of

thinking as the aforementioned scholars, along with his focus

on the reconstruction of historical sound change, especially

in Proto-Tsouic phonology, and therefore suggested a revised

subgrouping of Formosan languages. At this point it was

uncontroversial that Atayalic and Tsouic constituted two main

branches of the Formosan language family while the classification

of other languages remained debatable. During the 1990’s,

Starosta (1995) first put forward a grammar-based subgrouping

view, suggesting that Rukai should be regarded as one primary

branch of Proto-Formosan. Importantly, since then, the status

of Formosan languages regarding their subgrouping order within

the Austronesian language family has been gradually changed:

the notion of “Formosan language” no longer formed a single

first-order constituent of Proto-Austronesian (PAN). Instead,

all branches which were originally considered second-order

constituents of the “Formosan language family” should be

promoted as primary branches of PAN. For instance, based on a

reconstruction from historical phonology, Blust (1999) proposed

a complete classification of Austronesian languages that included

10 primary branches, nine of which were traditional Formosan

while the Malayo-Polynesian branch consisted of all Austronesian

languages outside Taiwan.

On the other hand, Li (2004, 2006) found further supporting

evidence of Blust (1999)’s subgroups and in Li (2008) proposed

a modified version of a Formosan language classification based

on their phonology, morphology, and grammar. It is worth

mentioning that the model in Starosta (1995) is also adopted in

this study. As a result, the classification proposed by Li (2008)

was time-based, and an equivalence was drawn between the terms

“Proto-Formosan” and “PAN.”

Lastly, Sagart (2021) argued that the numerals of Formosan

languages, especially for numbers 5 through 10, reflected a

spatially nested pattern around Taiwan. Based on the etymologies

of the numerals, in addition to the 39 mutually compatible

characters which could be categorized as lexical, phonological, and

morphological, a numeral-based phylogeny of PAN was proposed.

Table 1 briefly summarizes all studies mentioned in this section.

Being at the origin of expansion, Formosan languages show

great diversity. Studies of Formosan phylogeny follow the cladistic

principles, where each tree node is supported by a linguistic

innovation, such as phonological, morphological, or basic numeral

vocabulary (Ho, 1998; Blust, 1999; Sagart, 2004; Ross, 2012).

Another approach to study the relationships among the languages

is from structural similarities. These structural features are abstract

and were selected to reflect the known linguistic topology in

the region. Genealogical groupings are then constructed with

computational algorithms, such as maximal parsimony, from

their shared structural features (Dunn et al., 2005). However, the

structural features are abstract and not all of them are equally

prominent in actual usage. Therefore, the similarities implied by the

structural features may not directly reflect similarities in real-world

use.

TABLE 1 A summary table for all studies mentioned above.

Reference Method Pivot name N. of
Lang.

N. of
Bran.

Asai (1936) P, M, L Formosan 12 5

Dyen (1965) LS Formosan 13 2

Tsuchida (1975) P Formosan 13 2

Starosta (1995) G Proto-Formosan 11 2

Blust (1999) P PAN 15 10

Li (2008) M, G Proto-Formosan =

PAN

13 2

Sagart (2021) L, P, M, E PAN 13 4

In the Method column, E, Etymology; G, Grammar; L, Lexicon; LS, Lexico-statistics; M,

Morphology; P, Phonology; N. of Lang., Numbers of Languages, only the currently-discussed

16 Formosan languages were counted; N. of Bran., Numbers of Branches.
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TABLE 2 Captured video length for each language.

Language
(Glottocode)

Subgroup Len.
(hrs)

Anchor
footage
(speakers)

Amis (amis1246) Eastern Formosan 9 35.8 (1)

Atayal (atay1247) Atayalic 9 41.0 (2)

Bunun (bunu1267) Bunun 9 52.6 (1)

Saaroa (saar1237) Tsouic 9 34.8 (1)

Kanakanavu

(kana1286)

Tsouic 9 37.1 (1)

Kavalan (kava1241) Eastern Formosan 9 59.3 (1)

Paiwan (paiw1248) Paiwan 9 12.3 (2)

Puyuma

(puyu1239)

Puyuma 9 40.9 (1)

Rukai (ruka1240) Rukai 9 42.8 (3)

Sakizaya (saki1247) Eastern Formosan 9 54.5 (1)

Saisiyat (sais1237) Northwest Formosan 9 43.0 (1)

Seediq (taro1264) Atayalic 9 47.0 (2)

Thao (thao1240) Western Plains 9 44.2 (1)

Tsou (tsou1248) Tsouic 9 69.8 (1)

Truku (taro1264) Atayalic 9 73.5 (1)

Yami (yami1254) Malayo-Polynesian 9 47.3 (1)

Anchor footage denotes the automatically detected anchor segments. The lengths are in

minutes. These segments are more likely to only contain the targeted Formosan language.

Numbers in parentheses are the number of different anchors speaking that language in the

news footage. The naming and subgrouping of each language follow Blust (2013). Note that

the Yami language, spoken by the Tao people living in Lanyu Township, Taitung County, 46

km southeast of Taiwan, is linguistically Malayo-Polynesian, but geographically Formosan.

Also, since Truku is considered a major dialect of Seediq, the two languages share the same

Glottocode.

2.2 Formosan speech corpus

The collected Formosan speech corpus aims to record the real-

world usage of the 16 Formosan languages. The primary data source

is from daily news broadcasted over Taiwan’s free-to-air channels.

A TV tuner connected to an outdoor antenna was used to record

the news footage to digital files. News spoken in all 16 Formosan

languages provided by the Taiwan Indigenous Television (TITV)

channel was captured. Newscasts were chosen for their availability

of all Formosan languages and to reduce the variability that can

arise from gathering different languages from different programs.

Each program is approximately an hour in duration. The corpus

comprises 144 h of videos with 9 h for each language’s news.

While the news videos serve as an abundant source of

information, the interaction among the Formosan languages and

Mandarin Chinese in the news provides a unique challenge.

Specifically, although the news is broadcasted with a given

Formosan language, certain segments still use Mandarin Chinese,

like press conferences or interviews. The issue is further

complicated because some footage is narrated by the anchor, so

there are no consistent visual cues to differentiate the language used

in a given video segment. In addition, the Formosan languages are

under-resourced, and there are no automatic speech recognition or

TABLE 3 Gender and approximate age of the anchors in the dataset.

Anchor Language Gender Age

Anchor 1 Amis (amis1246) F 60

Anchor 1 Atayal (atay1247) F 40

Anchor 2 Atayal (atay1247) M 60

Anchor 1 Bunun (bunu1267) M 50

Anchor 1 Saaroa (saar1237) M 20

Anchor 1 Kanakanavu (kana1286) M 60

Anchor 1 Kavalan (kava1241) F 60

Anchor 1 Paiwan (paiw1248) F 50

Anchor 2 Paiwan (paiw1248) F 60

Anchor 1 Puyuma (puyu1239) F 60

Anchor 1 Rukai (ruka1240) M 40

Anchor 2 Rukai (ruka1240) F 60

Anchor 3 Rukai (ruka1240) F 40

Anchor 1 Sakizaya (saki1247) F 50

Anchor 1 Saisiyat (sais1237) F 30

Anchor 1 Seediq (taro1264) F 50

Anchor 2 Seediq (taro1264) F 60

Anchor 1 Thao (thao1240) F 40

Anchor 1 Tsou (tsou1248) M 50

Anchor 1 Truku (taro1264) F 60

Anchor 1 Yami (yami1254) F 50

“Anchor N” represents a unique anchor for a particular language. Each anchor only speaks

one language.

language identification tools readily available. However, to properly

explore the Formosan language in the video, the language used in

the segments must at least be tagged.

We address the mixed language problem first with automatic

preprocessing, with which we gather primitive data to train a

language identification classifier.We first assume the anchor always

uses (one of the 16) Formosan languages, and multiple cues in

the video frames indicate that the anchor is speaking. We use two

sources of information to determine if the frame is an anchor frame.

The first source is facial recognition and the second is the headline

usually displayed at the lower part of the frame. We first identify

the anchor’s face from the first 20 s of the video. The anchor is

introduced and accompanied by a title card showing their name.

We use off-the-shelf face recognition (Geitgey, 2022) and optical

text recognition (Jaided, 2022) models to pair the faces and the

anchor name. After identifying the anchor’s face, we detect in each

frame if the anchor appears along with a headline. From these two

cues, we determine in five-second intervals, whether the anchor is

speaking in a specific segment. The name of the anchor is shown

during the broadcast, which we use to identify unique anchors.

We also randomly sample from the results to ensure that output is

expected. The automatic anchor detection results and the number

of different anchors appearing in the news of each language are

shown in Table 2. Manually annotated basic information about the
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FIGURE 1

wav2vec 2.0—XLSR approach used in our experiment. The shared quantization module over feature encoder representations produces the

embeddings, which are the targets for the Transformer trained with contrastive learning [image by author, based on Conneau et al. (2021)].

TABLE 4 Classification results for each of the 16 languages and the

“Other” category.

Language Precision Recall F1 N

Amis 0.99 0.56 0.72 140

Atayal 0.99 0.92 0.95 192

Bunun 0.98 0.98 0.98 115

Kanakanavu 1.00 0.93 0.96 95

Kavalan 0.97 0.99 0.98 145

Paiwan 0.75 0.94 0.84 35

Puyuma 0.70 0.98 0.82 54

Rukai 0.86 0.86 0.86 122

Saaroa 0.99 0.92 0.95 89

Saisiyat 0.98 0.92 0.95 129

Sakizaya 0.98 0.99 0.98 155

Seediq 0.36 0.96 0.52 102

Thao 0.99 0.92 0.95 110

Truku 0.79 0.99 0.88 205

Tsou 0.99 0.99 0.99 154

Yami 1.00 0.91 0.95 215

Other 0.76 0.30 0.43 219

N is the number of samples for that language. The overall accuracy is 0.86.

anchors are shown in Table 3. From the results we can see that each

anchor only speaks one language for the broadcast.

However, while the detected anchor frames are likely the

Formosan languages segments, there will be considerable false

negatives in this approach. Segments where the anchor narrates

the footage in a Formosan language are inevitably missed with the

algorithm described above. This is because the algorithm requires

having the anchor’s face appear on screen. This algorithm is unable

to detect when the anchor is speaking but not actually appearing

on screen, thus we are unable to capture these kinds of segments.

Therefore, it is still preferable to identify the language with the

speech data alone. The trained language classifier not only helps us

identify the language, but it also, with computational models, helps

us to explore the representations of the underlying speech data.

2.2.1 Classifier training
Recent speech recognition models allow us to work with

natural speech data without directly transcribing it. This approach

opens up the possibility of examining the real-world usage of

Formosan language and studying them systematically. Yan et al.

(2021) employs a deep learning feature extraction model based

on convolutional neural networks (CNNs) and spectrograms to

automatically classify Chinese dialects in a certain region.

When working with audio, the input to a CNN is often

a spectrogram, where the X-axis represents time and the Y-

axis represents frequency. A CNN is composed for convolution,

pooling, and fully connected layers. CNNs employ several kernels

(filters) of a particular dimension which are applied to the input

by sliding the kernel across the input and performing a dot

product (convolution). Each kernel is responsible for detecting

different features. The output of these convolutions are called

feature maps. Pooling layers are used to reduce the dimension

of feature maps. A fully connected layer at the end is used for

classification (Papastratis, 2021; Dhanjal and Singh, 2023).

Hartmann (2019) uses deep neural networks to reconstruct

the phonetic features of historical sounds based on a language’s

synchronic phonological features, such as coarticulatory and

phonological constraints. Korkut et al. (2020) compare several deep

learning methods for spoken language identification. The authors

use a hybrid CNN-RNN (CRNNs), X-vectors with feed-forward

neural networks (FFNNs), and wav2vec CNNs (Schneider et al.,

2019) in a language classification task. They find that the X-vector-

based FFNN classifier outperforms the other two models. They also
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FIGURE 2

(A) Speech vector PCA projections using pairwise PC-dimension plots. (B) Speech vectors projected onto two dimensions using UMAP with 15

neighbors.
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learn that SpecAugment is suitable for language identification

data augmentation.

In this study, we leverage speech vectors learned by a

language identification model to study the relationships among the

Formosan languages. In our first experiment, we train a Formosan

language classifier based on the wav2vec 2.0 (Baevski et al., 2020)

model architecture and the pre-trained weights of XLSR (Conneau

et al., 2021) with gradient reversal (Ganin and Lempitsky, 2015)

to mitigate the confounding effect that a speaker of a language

themself may have on the language classifier.

2.2.1.1 wav2vec 2.0

Using self-supervised learning, wav2vec 2.0 has produced state-

of-the-art results in speech recognition. In this architecture, raw

audio X that is normalized to zero mean and unit variance is

fed into a multi-layer convolutional feature encoder f :X 7→ Z

that outputs latent speech representations z1, ...zT for T time-

steps to a low frequency representation. Next, they are fed into

a Transformer-based (Vaswani et al., 2017) network g :Z 7→

C to build contextualized representations c1, ..., cT that capture

information across the entire audio sequence. Product quantization

(Jegou et al., 2010) is then used to transform the output of the

feature encoder z into a finite set of speech representations. This

process can be seen as choosing entries from G codebooks and

concatenating them. Pre-training is done by solving a contrastive

learning problem Lm. A certain proportion of time steps in the

latent feature encoder space is masked and the model must predict

the correct quantized latent audio representation among a set of

distractors that are sampled from the same utterance. A diversity

loss Ld is also introduced to encourage equal use of the entries

in each of the G codebooks. The final loss function is thus: L =

Lm+αLd where α is a tuned parameter. The speech representations

learned from pre-training can then be used for down-stream tasks.

2.2.1.2 XLSR

Built on wav2vec 2.0, XLSR is a multilingual speech recognition

model which jointly learns a quantization of the latents shared

across languages and learns to share discrete tokens across

languages. We leverage the XLSR model to take advantage of it

having already been pretrained on 53 different languages. Although

these languages may be significantly different from the Formosan

languages, it may be possible for the model to transfer regularities

across languages. Figure 1 illustrates the framework. The left side

is wav2vec 2.0. An explanation of how it works can be found in

the previous section. The right side is a diagram of latent speech

representations that are learned through training. We can see

that the representations are shared across several languages, which

makes this model suitable for representing Formosan languages.

2.2.1.3 Gradient reversal

We use gradient reversal to encourage the classifier to focus on

the features of the languages and not on idiosyncrasies specific to

the anchors. Given two anchors (or even one) that speak the same

language, the anchors can be seen as “domains” that change even

if the language spoken is the same. Both speakers are considered

different domains because the way the same language is spoken is

influenced by their idiosyncrasies, such as pitch and speaking speed.

When two people speak the same language, While the language

FIGURE 3

Clustering results using the speech vectors for all 16 languages.

stays the same, how it is realized is different and so it affects how

the language is represented. This difference in representations can

be seen as two different “domains.”

This is similar to number classification using different datasets

that represent numbers differently, such as MNIST (Lecun et al.,

1998) or SVHN (Netzer et al., 2011). The underlying numbers are

common across the datasets in that both contain images of numbers

from 0 to 9, but the representation of the numbers is different

in each dataset. Specifically, MNIST is a collection of handwritten

digits that are in black and white. On the other hand, SVHN is a

collection of printed digits from pictures of house number plates.

In this case, how the numbers are represented differently create

two different domains (MNIST: handwritten, black and white, etc.

vs. SVHN: colored, printed, different angles, etc.). Gradient reversal

allows us to obtain domain-invariant features.

Besides the wav2vec 2.0 feature encoder with parameters θf

and a language classifier with parameters θy that predicts the

language given a feature vector, we also have an anchor classifier

with parameters θd that predicts an anchor given the same feature

vector. During training, we seek parameters for θf that maximize

the loss of the anchor classifier but that are also discriminative

(minimizes the language classifier loss). At the same time, we are

also seeking parameters for the anchor classifier θd that minimize

anchor classification loss.

The parameters are updated through backpropagation as can

be seen from Equations 1–3 that are found in the original paper in

Section 3.2 (Ganin and Lempitsky, 2015):

θf ← θf − µ

(

∂Liy

∂θf
− λ

∂Li
d

∂θf

)

(1)

θy ← θy − µ
∂Liy

∂θy
(2)

θd ← θd − µ
∂Li

d

∂θd
(3)
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FIGURE 4

Correlation similarities across di�erent feature categories. The blue segments indicate the similarities between the correlations of Formosan

languages implied by the speech vectors and the one implied by feature categories. The gray segments show the similarity scores under a random

baseline. The line intervals indicate the bootstrapped confidence interval (Q05–Q95).

FIGURE 5

Dendrogram with AU/BP values (%) of divisive hierarchical clustering of 61 phonological features for Austronesian languages in Taiwan. Red: AU

(approximately unbiased) p-value; green: BP (bootstrap probability) p-value; gray: SI (Selective inference) p-value.

where µ is the learning rate, Liy is the language classification

cross entropy loss for a training example i, Li
d
is the anchor

classification cross entropy loss for a training example i, and λ

is a tunable parameter that controls the trade-off between the

two objectives. Gradient reversal is implemented using a gradient

reversal layer (GRL) that is placed between the wav2vec 2.0 feature

encoder and the anchor classifier. During a forward pass, GRL acts

as an identity transform. During backpropagation, GRL multiplies

the gradient received from the anchor classifier layer by −λ before

passing it to the feature encoder. This causes the feature encoder’s

parameters to be updated in such a way that the anchors are harder

to identify.

2.2.1.4 Training data

The training data are the anchor segments automatically

identified in the preprocessing stage. Among the 144 h of speech
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FIGURE 6

(A) The geographical information is represented by fonts. Plain:

Northern (except for Yami); bold: Southern; italics: Eastern; bold

italics: Central/Tsouic. (B) Validation of clustering using the

bootstrap method. (C) Consensus tree from 200 bootstrap runs.

data, 792.75 min of audio data are included in the dataset.

In addition to the 16 Formosan languages, we add an other

category, which is randomly sampled from the “not-anchor” video

segments. The other category serves as a control for the potential

idiosyncrasies in each video and prevent the model from classifying

languages based on the video’s surface features. Finally, we split

the dataset so that every language is equally represented in the

test data. That is, each language is represented with a video set

aside for testing (113.8 min) while the rest are left for training

(678.95 min).

2.2.1.5 Training details

We use the Transformers (Wolf et al., 2020) implementation of

wav2vec 2.0 that is initialized from a pretrained XLSR checkpoint1.

Language classification and anchor classification is fine-tuned from

this checkpoint. The language classifier is a fully-connected layer

stacked upon the vector output of the wav2vec 2.0 feature encoder

model. The anchor classifier is also a fully-connected layer stacked

upon the wav2vec 2.0 feature encoder model. The parameters are

optimized using AdamWwith a learning rate warming up to a peak

of 10−3 in the first 200 steps and decreased to 0 with a half-cycle

cosine scheduling. We use cross entropy as our loss function. We

use a batch size of 16 and train for a maximum of 10 epochs, only

saving a checkpoint if accuracy increases on the test set. We use

an open-source implementation of gradient reversal (Tadeephuy,

2023). λ is set to a constant 1 during training. We use PyTorch

Lightning to organize our code (Falcon and The PyTorch Lightning

team, 2019). Model training took 2 h on an NVIDIA A5000 GPU.

We use the ninth epoch checkpoint for the results and analysis in

the forthcoming sections.

3 Results

As can be seen in Table 4, the language classification model

achieved an overall accuracy of 86% across 17 categories (16

languages and the other category), and the anchor classification

accuracy in the gradient reversal setting is 70% in the testing

set. It is noteworthy that the anchors and the languages are

partially confounded in the dataset (as shown in Table 2). The

anchor identities may not be entirely partialled out even with using

gradient reversal. However, the language classification accuracy

shows that the model indeed can identify different Formosan

languages. The overall classification results show that the languages

with only one anchor do not necessarily have better performances

than those with multiple anchors. That is, the anchor identities may

not directly influence the classifier.

Besides the classifier having the practical value of helping

identify relevant segments in the dataset, the self-supervised nature

of wav2vec 2.0 provides us with a unique opportunity to explore

how these languages are related to each other in this formalized

vector space. When the model is only trained on the speech signal,

it should particularly shed light on the phonological or phonetic

relationships among these languages.

4 Discussion

4.1 Exploratory analysis of speech vectors

The fine-tuned language classification model successfully

differentiates the language of a specific speech segment. From the

perspective of speech representation, it is interesting to explore

1 https://huggingface.co/facebook/wav2vec2-large-xlsr-53
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the language similarities implied by these speech vectors. The

idea is consistent with the findings from other domains of deep

learning application in that the model representation may reflect

the intrinsic structure underlying the data, such as the word analogy

relations that emerge naturally from the vector representations

learned from a skip-gram or a CBOWmodel (Mikolov et al., 2013),

or how a Transformer-based language model also implicitly reflects

syntactic relations in sentences (Manning et al., 2020).

wav2vec is in a way similar to word embeddings, with the main

difference being that wav2vec processes audio instead of text. To

compute the language similarities among these 16 languages, we

first extract the speech vector representation of each segment from

the wav2vec model; that is, the 1,024-dimension vector before it

is fed into the final classifier. These 1,024 dimensional vectors are

assumed to carry various information, and only some of which

are the ones used in language classification. We thus simplify the

vector with a linear dimension reduction model (i.e., PCA) into five

dimensions. Next, we find the median points, or the medoids, in

each language to represent the speech segments of that language.

The low dimensional projection of each speech segment is shown

in Figure 2, using both PCA (A) and UMAP (B) (McInnes et al.,

2018). Each point is a speech segment that is correctly classified

by the model. The first five principal components explain 54% of

variance in the original dimensions. The overall patterns of the

speech segment projections show clear groupings of each language.

We then assume the speech vector also implies the relations

among these 16 languages. To further explore the possible relations,

we find the median point for each language, the medoid, which

serve as the representative point of that language in the space. The

16 medoids are then clustered with the hierarchical agglomerative

algorithm using complete linkage. The clustering result, as shown

in Figure 3, interestingly reflects parts of geographical relations

among languages, such as Tsou and Kanakanavu, both of which are

spoken in central Taiwan; and Atayal, Seediq, and Thao, which are

in northern Taiwan.

One way to interpret the clustering is that it reflects a

snapshot of the current language environment. However, it is

open for discussion that there are several possibilities in how

the model treats two languages as similar in these vectors: such

as geographical closeness, phonetic, morphological, or syntactic

relations. Therefore, we further explore the representations of

these speech vectors with human annotations in a correlational

similarity study.

In the following section, we manually coded a set of linguistic

typological features of the 16 Formosan languages based on field

knowledge of domain experts. We then compare the language

similarities implied by these typological features to the ones

computed by the speech vectors, and connect the correlations to

the investigation of language phylogenies of Formosan languages.

4.2 Formosan linguistic phylogeny

As mentioned in the Exploring Formosan Languages section,

the “Austronesian homeland” hypothesis and related studies on

Proto-Formosan have been supported mostly by lexical data and

other archaeological evidence (Greenhill et al., 2010). In fact, there

are many other algorithmic methods that have been proposed and

tested in phylogenetic linguistics in previous years (Dunn, 2015).

In addition to a collection of expert cognate judgments [cf. survey

in Dunn et al. (2005), Jäger (2018)] demonstrated that it is also

possible to probe the linguistic phylogeny by using non-lexical

grammatical traits/features.

4.3 Features coding

There have been many linguistic feature systems proposed

before, which often serve as a theoretical device to represent

the categorical difference between two linguistic units/sounds

that can contrast in language. To explore the extent to which

a feature system is minimally sufficient to distinguish all the

sounds in Formosan languages, we follow the tenets proposed

by Duanmu (2016) that (1) the number of features is small, (2)

all features are binary (so that they represent a minimal contrast

between two units/sounds), and (3) features can be compared

across languages.

It is noted that the contrast-based definition of features can

be used not only to distinguish sounds, but also to distinguish

other grammatical traits distributed among taxonomic units in

languages. Our first effort involves a manual encoding by starting

with Dunn et al. (2005)’s coding scheme. The completed data

matrix now contains data from 16 taxa (i.e., languages, or leaves

of the phylogenetic tree) encoded with 152 linguistic typological

binary features (manually encoded based on a series of Reference

Grammar books by a group of prestigious Formosan linguists with

field experience in each language) (Wu et al., 2018), including

grammatical traits, such as word order (order of noun phrase

elements and verb), pronominals, demonstratives, noun formation

and verb formation, numerals and the counting system, adjectives,

syntactic roles of noun phrases, the verb complex, TAM (tense,

aspect, and mood), core and oblique participants, as well as

phonological ones, such as voicing, places and manners of

articulation, etc. These structural features are coded for their

presence or absence in each of the target 16 languages.

4.4 Language features and speech vectors

The coded language features imply language

similarities/genealogical relations among Formosan languages,

which we can compare to those implied by speech vectors. The

comparison also sheds light on the nature of representations

learned automatically with the deep learning model. Specifically,

suppose the language similarities are consistent with a set of

language features, e.g., phonological ones. In that case, we could

infer that the learned speech vector representations encode

phonological aspects of those languages.

We first partition the 152 features into three categories:

phonological, morphological, and syntactical features. Features all

coded as ones and zeros are excluded from further analysis. This

leaves 120 features included in this analysis—56 phonological ones,

43 morphological, and 21 syntactical. Among the phonological

features, we further distinguish 10 vowel-related features, 46

consonant-related ones, 22 sonorants, and 31 obstruent features.

Note that not all phonological features could be classified
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as sonorant or obstruent, such as syllable-level features (e.g.,

phonemic stress or consonant clusters). For each feature category,

we constructed a correlation matrix from the feature encoding.

As a result, eight language correlation matrices are made from

eight feature categories, respectively (i.e., All, Phonology, Vowel,

Consonant, Sonorant, Obstruent, Morphology, and Syntax).

We compare the language feature-derived correlation matrices

and the speech vector-derived matrices with Spearman’s rank

correlation coefficients (rs). Specifically, the lower triangles of each

correlation matrix are extracted and flattened as vectors, from

which we computed rs. However, as the data vectors come from

a correlation matrix, it is unclear whether the standard inferential

statistics apply. Therefore, we bootstrap the speech vectors to

infer a confidence interval. Each bootstrap sample comprises 50%

of correctly classified sequences in each language. We computed

the medoids (following the same procedure as in the Exploratory

Analysis of Speech Vector section of each language, from which

we derived the correlation matrix of this particular bootstrap

sample. For each bootstrapped speech vector-derived correlation,

we compute one rs with the language feature-derived correlation.

From 100 bootstrapped samples, we calculate the mean, 5% (Q05),

and 95% (Q95) quantiles of rs. The same bootstrapping procedures

are repeated for the random feature controls, where values in each

feature are randomly permuted. The goal of this permutation is to

generate a random baseline where the language features provide no

information on the language similarities.

Results are shown in Figure 4. First, the speech vector-derived

language similarities are consistent with the ones derived from

language features, as seen by the non-overlapping confidence

intervals computed from the actual samples (blue) and the random

baseline (gray). This pattern persists into the phonological feature

categories. Most notably, the obstruent feature category shows the

most significant difference 0.12, and the sonorant has the smallest

one at 0.06.

Interestingly, the difference is still significant in the

morphological category but not in the syntax category. These

findings show that the model does capture language-relevant

aspects from the audio stream, not just superficial acoustic features

(e.g., anchors’ voice characteristics). The significant difference

in the morphological category also suggests that, while the data

is speech only, it does not prevent the model from learning

morphological information from the audio sequence. In contrast,

the syntactic features do not play a role in speech vectors. Possible

explanations may include the insufficient number of features in

syntactic categories or the nature of language identification tasks

that prevent the model from learning such long-ranged features.

The language feature analysis clearly shows that speech vectors

encode phonological, even morphological aspects of Formosan

languages. However, it is still unclear how these language

features relate to the Formosan language similarities, or linguistic

phylogenies, in the literature. Therefore, we use our coded linguistic

features to proceed with linguistic phylogenetic inferences.

4.5 Linguistic phylogenetic inferences

The comparison between speech vectors and linguistic features

reveals significant similarities. It also shows the speech vectors,

unsurprisingly, tend to capture the phonological aspects of

languages. However, it is not clear whether the coded linguistic

features really reflect, or are consistent with the Formosan

phylogeny found in literature. Therefore, we construct a Formosan

phylogeny from our linguistic features.

We used 61 phonological features in the following phylogenetic

inferences. These phonological features account for most of

our linguistic features and are the most significant ones in

the correlational similarity study. In addition, as they relied

more on phonological innovation to infer the subgroupings of

Formosan languages, using phonological features provides a better

comparison with past studies.

First, we consider divisive clustering based on the features, as

shown in Figure 5. However, the dendrogram obtained does not

fit well with previous reconstruction proposals (Starosta, 1995;

Li, 2006; Blust, 2013). It is unclear how accurate and robust the

phylogenetic estimates of Austronesian language relationships are,

and whether these clusterings have any linguistic phylogenetic

implications.

Since the binary-coded features allow us to apply cladistic

algorithms to determine potential phylogenetic relationships

hidden behind them, we then turn to a computational phylogenetic

method called neighbor-joining algorithm (NJ; Saitou and Nei,

1987) to create a phylogenetic tree without a defined root.

The NJ method is a distance-based method which constructs a

phylogenetic tree from the data by converting the aligned sequences

or pairs of taxa (i.e., the basic unit of comparison) into a matrix of

pairwise distances between the sequence/data. The assumption of

an unrooted tree has its advantage in not presuming information

about the temporal sequence of lineage-splitting events. Figure 6

shows the resulting unrooted tree. The tree presented in (A) shows

that the unrooted phylogenetic tree groups languages according to

their geographical region, indicated by different font styles (e.g.,

bold and italics). Interestingly, the tree mostly corresponds to the

less controversial hypothesis introduced in Table 1. For instance,

Tsou is recognized as being on the primary branches (with its

position right after the first offshoot), with Kanakanavu and Saaroa

further split in the Tsuoic branch. In addition, the geographical

distribution of Bunun is adjacent to that of the three Tsouic

languages, whichmakes this particular clademore reasonable. Also,

both Atayal and Truku belong to the Atayalic language subgroup,

and both Rukai and Puyuma are spoken in Southern Taiwan.

To validate the results of our cluster analysis, the bootstrap

method is applied to the present data. The data is sampled with

replacement for 200 bootstrap runs. In each sampling run, the

distance matrix is calculated to further yield the unrooted tree

with the NJ algorithm. We compare the resulting dendrograms

from the bootstrap samples with the original one and calculate

the proportions of bootstrapped dendrograms that support the

subtrees in the original tree. The proportion of support for different

subtrees is shown in (B) with a thermometer symbol attached

to each clade, in which a higher temperature indicates a greater

proportion of support. Another way to approach a more validated

tree is to use the consensus tree (C), where the subgroups that are

not observed in all bootstrap trees are collapsed. In a consensus

tree, if a subgroup does not occur in all bootstrap trees, then

this subgroup will not be adopted. Here we use the ape package

developed by Paradis et al. (2004) to implement the calculations
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of the consensus tree. The result is shown in (C) and also

shows correspondence with previous literature, where most of

the Formosan languages are claimed to be primary/higher order

subgroups.

5 Conclusion

In this paper, we present a Formosan Speech Corpus of 16

Formosan languages with 144 h of speech data collected from

news broadcasts in Taiwan. Based on the corpus, we provide two

perspectives on Formosan linguistic phylogenetic studies: a speech

vector approach using a wav2vec 2.0-based deep learning model

and expert coding with linguistic typological features. The speech

vector approach is more data-driven, as it is based on the usage

aspect of speech data. The speech representation is trained through

a language classification task. The model achieves an overall

classification accuracy of 86%. Moreover, correlational similarities

analysis shows that the extracted speech vector representations

echo significant phonological and morphological information from

manually curated encoded features in expert judgements. A further

look into these correlated typological language features reveals the

phylogenetic trees correspond well with previous theories.

Overall, this paper tries to approach the Formosan language

similarities through a lens guided by model-learned representation

from real-world data and linguistic typological features. The

findings reveal that the information embedded in the speech vector

representation can be used for language identification and linguistic

phylogenetic inferences. Future works include how to interpret the

language similarities implied by the speech vectors and further

explore the multimodal nature of the dataset. This paper, along

with its dataset, is expected to help in the exploration of linguistic

phylogeny and with actual usage patterns in the current language

environment.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found in the

article/Supplementary material.

Author contributions

S-KH: Conceptualization, Formal analysis, Methodology,

Project administration, Supervision, Visualization, Writing -

original draft,Writing - review& editing. Y-HT: Conceptualization,

Data curation, Formal analysis, Investigation, Methodology,

Software, Validation, Visualization, Writing - original draft,

Writing - review & editing. D-CL: Data curation, Investigation,

Methodology, Software, Visualization, Writing - original draft,

Writing - review & editing. C-WW: Data curation, Formal analysis,

Investigation, Methodology, Software, Visualization, Writing -

original draft, Writing - review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/flang.2024.

1338684/full#supplementary-material

References

Asai, E. (1936). A Study of the Yami Language: An Indonesian Language Spoken on
Botel Tobago Island. Alexandria, VA: J. Ginsberg.

Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. (2020). wav2vec 2.0: a framework
for self-supervised learning of speech representations. Adv. Neural Inform. Process.
Syst. 33, 12449–12460. doi: 10.48550/arXiv.2006.11477

Bellwood, P. (1984). A hypothesis for austronesian origins. Asian Perspect. 26,
107–117.

Blust, R. (1984). The austronesian homeland: a linguistic perspective. Asian
Perspect., 26, 45–67.

Blust, R. (1999). “Subgrouping, circularity and extinction: some issues in
austronesian comparative linguistics,” in Selected Papers From the Eighth International
Conference on Austronesian Linguistics (Taipei), 31–94.

Blust, R. (2013). The Austronesian Languages (Revised Edition). Canberra, ACT:
Australian National University.

Blust, R. (2019). The austronesian homeland and dispersal. Ann. Rev. Linguist. 5,
417–434. doi: 10.1146/annurev-linguistics-011718-012440

Conneau, A., Baevski, A., Collobert, R., Mohamed, A., and Auli, M. (2021).
“Unsupervised cross-lingual representation learning for speech recognition,” in
Proceedings of Interspeech 2021 (Brno), 2426–2430.

Dhanjal, A. S., and Singh, W. (2023). A comprehensive survey on automatic
speech recognition using neural networks. Multimed. Tool. Appl. 23, 1–46.
doi: 10.1007/s11042-023-16438-y

Duanmu, S. (2016). A Theory of Phonological Features. Oxford: Oxford University
Press.

Dunn, M. (2015). “Language phylogenies,” in The Routledge Handbook of Historical
Linguistics, eds C. Bowern and B. Evans (London: Routledge), 190–211.

Dunn, M., Terrill, A., Reesink, G., Foley, R. A., and Levinson,
S. C. (2005). Structural phylogenetics and the reconstruction of

Frontiers in Language Sciences 11 frontiersin.org

https://doi.org/10.3389/flang.2024.1338684
https://www.frontiersin.org/articles/10.3389/flang.2024.1338684/full#supplementary-material
https://doi.org/10.48550/arXiv.2006.11477
https://doi.org/10.1146/annurev-linguistics-011718-012440
https://doi.org/10.1007/s11042-023-16438-y
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org


Hsieh et al. 10.3389/flang.2024.1338684

ancient language history. Science 309, 2072–2075. doi: 10.1126/science.
1114615

Dyen, I. (1965). A Lexicostatistical Classification of the Austronesian Languages.
Baltimore, MD: Waverly Press.

Falcon, W., and The PyTorch Lightning team (2019). PyTorch Lightning. Available
online at: https://github.com/Lightning-AI/pytorch-lightning (accessed December 20,
2022).

Ganin, Y., and Lempitsky, V. (2015). “Unsupervised domain adaptation by
backpropagation,” in 32nd International Conference on Machine Learning (ICML 2015)
(Lille), 1180–1189.

Geitgey, A. (2022). Face_Recognition. Available online at: https://github.com/
ageitgey/face_recognition/ (accessed December 20, 2022).

Gray, R. D., Drummond, A. J., and Greenhill, S. J. (2009). Language phylogenies
reveal expansion pulses and pauses in pacific settlement. Science 323, 479–483.
doi: 10.1126/science.1166858

Greenhill, S. J., Drummond, A. J., and Gray, R. D. (2010). How accurate and robust
are the phylogenetic estimates of austronesian language relationships? PLoS ONE 5,
1–6. doi: 10.1371/journal.pone.0009573

Hartmann, F. (2019). “Predicting historical phonetic features using deep neural
networks: a case study of the phonetic system of proto-indo-european,” in Proceedings
of the 1st International Workshop on Computational Approaches to Historical Language
Change (Florence), 98–108.

Ho, D. (1998). Taiwan nandaoyu de yuyan guanxi [genetic relationships among the
formosan languages]. Chin. Stud. 16, 141–171.

Jäger, G. (2018). Global-scale phylogenetic linguistic inference from lexical
resources. Sci. Data 5, 1–16. doi: 10.1038/sdata.2018.189

Jaided, A. I. (2022). Easyocr. Available online at: https://github.com/JaidedAI/
EasyOCR (accessed December 20, 2022).

Jegou, H., Douze, M., and Schmid, C. (2010). Product quantization for
nearest neighbor search. IEEE Trans. Pat. Anal. Machine Intell. 33, 117–128.
doi: 10.1109/TPAMI.2010.57

Korkut, C., Haznedaroglu, A., and Arslan, L. (2020). “Comparison of deep learning
methods for spoken language identification,” in Proceedings of the 22nd International
Conference (SPECOM 2020), (St. Petersburg), 223–231.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324.

Li, P. J.-k. (2004). Origins of the east formosans: Basay, Kavalan, Amis, and
Siraya. Lang. Linguist. 5, 363–376. Available online at: http://ir.sinica.edu.tw/handle/
201000000A/56966 (accessed July 13, 2022).

Li, P. J.-k. (2006). “The internal relationships of formosan languages,” in 10th
International Conference on Austronesian Linguistics (10-ICAL) (Palawan), 17–20.

Li, P. J.-k. (2008). “Time perspective of formosan aborigines,” in Past Human
Migrations in East Asia, eds A. Sanchez-Mazas, R. Blench, M. D. Ross, I. Peiros, and
M. Lin (London: Routledge), 243–250.

Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U., and Levy, O. (2020).
Emergent linguistic structure in artificial neural networks trained by self-supervision.
Proc. Natl. Acad. Sci. U. S. A. 117, 30046–30054. doi: 10.1073/pnas.19073
67117

McInnes, L., Healy, J., Saul, N., andGrossberger, L. (2018). Umap: uniformmanifold
approximation and projection. J. Open Source Softw. 3:861. doi: 10.21105/joss.00861

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Adv. Neural. Inform.
Process. Syst. 26, 3136–3144. doi: 10.48550/arXiv.1310.4546

Netzer, Y.,Wang, T., Coates, A., Bissacco, A.,Wu, B., andNg, A. Y. (2011). “Reading
digits in natural images with unsupervised feature learning,” inNIPSWorkshop on Deep
Learning and Unsupervised Feature Learning 2011 (Granada), 1–9.

Papastratis, I. (2021). Speech Recognition: a Review of the Different Deep Learning
Approaches. Available online at: https://theaisummer.com/ (accessed December 18,
2022).

Paradis, E., Claude, J., and Strimmer, K. (2004). Ape: analyses of
phylogenetics and evolution in r language. Bioinformatics 20, 289–290.
doi: 10.1093/bioinformatics/btg412

Ross, M. (2012). In defense of nuclear austronesian (and against tsouic).
Lang. Linguist. 13, 1253–1330. Available online at: http://hdl.handle.net/1885/69808
(accessed July 13, 2022).

Sagart, L. (2004). The higher phylogeny of austronesian and the position of tai-
kadai. Ocean. Linguist. 43, 411–444. doi: 10.1353/ol.2005.0012

Sagart, L. (2021). “A more detailed early austronesian phylogeny,” in 15th
International Conference on Austronesian Linguistics (15-ICAL) (Olomouc), 1–38.

Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for
reconstructing phylogenetic trees.Mol. Biol. Evol. 4, 406–425.

Schneider, S., Baevski, A., Collobert, R., and Auli, M. (2019). “wav2vec:
unsupervised pre-training for speech recognition,” in Proceedings of Interspeech 2019
(Graz), 3465–3469.

Starosta, S. (1995). A grammatical subgrouping of formosan languages. Austron.
Stud. Relat. Taiwan 1995, 683–726.

Swadesh, M. (1952). Lexico-statistic dating of prehistoric ethnic contacts: with
special reference to north american indians and eskimos. Proc. Am. Philos. Soc. 96,
452–463.

Tadeephuy (2023). Gradientreversal. Available online at: https://github.com/
tadeephuy/GradientReversal (accessed March 1, 2023).

Tsuchida, S. (1975). Reconstruction of Proto-Tsouic Phonology.New Haven, CT: Yale
University.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. Adv. Neural Inform. Process. Syst. 30, 5999–6009.
doi: 10.48550/arXiv.1706.03762

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., et al.
(2020). “Transformers: state-of-the-art natural language processing,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations (Association for Computational Linguistics), 38–45.

Wu, J. J.-l., Huang,M.-j.,Wu, H.-s., Yeh,M.-l., Chien, S.-l., Sung, L.-m., et al. (2018).
TaiwanNanDao Yu YanCong Shu 1–16 [A Reference Grammar of Formosan Languages,
Volumes 1–16]. Taipei: Council of Indigenous Peoples, Executive Yuan.

Yan, W., Wang, M., Xu, F., Dan, Y., and Luo, J. (2021). Automatic partition of
gan dialect in Jiangxi province based on spectrogram. J. Chin. Inform. Process. 35, 1–
7. Available online at: http://jcip.cipsc.org.cn/CN/Y2021/V35/I4/1 (accessed March 2,
2023).

Frontiers in Language Sciences 12 frontiersin.org

https://doi.org/10.3389/flang.2024.1338684
https://doi.org/10.1126/science.1114615
https://github.com/Lightning-AI/pytorch-lightning
https://github.com/ageitgey/face_recognition/
https://github.com/ageitgey/face_recognition/
https://doi.org/10.1126/science.1166858
https://doi.org/10.1371/journal.pone.0009573
https://doi.org/10.1038/sdata.2018.189
https://github.com/JaidedAI/EasyOCR
https://github.com/JaidedAI/EasyOCR
https://doi.org/10.1109/TPAMI.2010.57
http://ir.sinica.edu.tw/handle/201000000A/56966
http://ir.sinica.edu.tw/handle/201000000A/56966
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.21105/joss.00861
https://doi.org/10.48550/arXiv.1310.4546
https://theaisummer.com/
https://doi.org/10.1093/bioinformatics/btg412
http://hdl.handle.net/1885/69808
https://doi.org/10.1353/ol.2005.0012
https://github.com/tadeephuy/GradientReversal
https://github.com/tadeephuy/GradientReversal
https://doi.org/10.48550/arXiv.1706.03762
http://jcip.cipsc.org.cn/CN/Y2021/V35/I4/1
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org

	Self-supervised learning for Formosan speech representation and linguistic phylogeny
	1 Introduction
	2 Materials and methods
	2.1 Exploring Formosan languages
	2.2 Formosan speech corpus
	2.2.1 Classifier training
	2.2.1.1 wav2vec 2.0
	2.2.1.2 XLSR
	2.2.1.3 Gradient reversal
	2.2.1.4 Training data
	2.2.1.5 Training details



	3 Results
	4 Discussion
	4.1 Exploratory analysis of speech vectors
	4.2 Formosan linguistic phylogeny
	4.3 Features coding
	4.4 Language features and speech vectors
	4.5 Linguistic phylogenetic inferences

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


