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A general theory is developed for the time dependent transient electrophoretic
mobility of spherical colloidal particles in a salt-free liquid medium containing
only counterions when a step external electric field is suddenly applied to the
colloidal suspension. It is found that as in the case of the steady electrophoretic
mobility in a salt-free medium, there is a certain critical value of the particle
surface charge separating two cases, that is, the low-surface-charge case and the
high-surface-charge case. In the latter case the counterion condensation takes
place near the particle surface. For the low-surface charge case, the transient
electrophoretic mobility agrees with that of a sphere in an electrolyte solution in
the limit of very low electrolyte concentrations. For the high-surface-charge
case, however, the transient mobility becomes independent of the particle
surface charge because of the counterion condensation effects. A simple
expression is derived for the ratio of the transient electrophoretic mobility to
the steady electrophoretic mobility, which is found to take the same form
irrespective of the magnitude of the particle surface charge. Using this
equation, it is now possible to predict how the system will approach its final
steady state.
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1 Introduction

The fundamental theories of electrophoresis developed in colloid and interface science
have recently attracted significant attention in micro- and nano-fluidic lab-on-a-chip
systems for the manipulation of liquids and colloidal particles. According to the
standard theories of electrophoresis (von Smoluchowski, 1921; Hückel, 1924; Henry,
1931; Overbeek, 1943; Booth, 1950; Wiersema et al., 1966; O’Brien and White, 1978;
Ohshima et al., 1983; Delgado, 2001; Dukhin and Goetz, 2001; Spasic and Hsu, 2005;
Masliyah and Bhattacharjee, 2006; Ohshima, 2006; Lee, 2018), the zeta potential of colloidal
particles is crucial in determining the stability of colloidal suspensions (Derjaguin and
Landau, 1941; Verwey and Overbeek, 1948). Usually, the zeta potential is calculated from
the electrophoretic mobility of the particles under a constant electric field, known as steady
electrophoresis. In contrast, transient electrophoresis involves the non-steady motion of
colloidal particles in a liquid medium when subjected to a sudden step electric field. Over
time, the transient electrophoretic mobility tends to its static value. Understanding this
relaxation time is vital for designing effective electrophoresis measurement systems. The
theory of transient electrophoresis originated from Morison (Morrison, 1969; Morrison,
1971) and Ivory (Ivory, 1983; Ivory, 1984), was expanded by Keh and others (Keh and
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Tseng, 2001; Huang and Keh, 2005; Keh and Huang, 2005; Chiang
and Keh, 2015a; Lai and Keh, 2020; Li and Keh, 2020; Lai and Keh,
2021), and has been further developed by various researchers (Khair,
2012; Ohshima, 2022a; Ohshima, 2022b; Ohshima, 2022c; Ohshima,
2023b). Many studies cover different particle types and extend to
transient dynamic electrophoresis and transient gel electrophoresis.
A lot of theoretical studies exist on transient electrophoresis,
covering various particle types such as spherical rigid particles
(Morrison, 1971; Ivory, 1984; Huang and Keh, 2005; Keh and
Huang, 2005; Chiang and Keh, 2015a; Lai and Keh, 2021;
Ohshima, 2022a), cylindrical rigid particles (Morrison, 1971; Li
and Keh, 2020; Ohshima, 2022b), porous particle (Chiang and
Keh, 2015b; Lai and Keh, 2020; Yu and Keh, 2024), soft particles
(Ohshima, 2022c) and particles with a slip surface (Ohshima,
2023b). Beyond the aforementioned transient free-solution
electrophoresis theories, there are also theories on transient gel
electrophoresis, which deal with the transient electrophoretic
behavior of colloidal particles (Ivory, 1984) in a polymer gel
medium (Saad, 2018; Saad and Faltas, 2018; Saad, 2019; Sherief
et al., 2021; Ohshima, 2023c; Ragab, 2023; Ayman et al., 2024). In
addition, there are theories on the transient dynamic
electrophoresis, which refers to the transient dynamic
electrophoresis of colloidal particles when a dynamic electric field
is suddenly applied (Ohshima, 2023a; Ohshima, 2024a). Further,
there are theories on transient electrophoresis of colloidal particles
in a multi-particle suspension (Chiang and Keh, 2015a;
Ohshima, 2024b).

The above-mentioned theories of transient electrophoresis deal
with colloidal particles in an electrolyte solution, or, in a salt-
containing medium. When colloidal particles are suspending in a
liquid medium containing only counterions, that is, in a salt-free
liquid medium, a remarkable phenomenon called the counterion
condensation effect occurs, especially in the case of highly charged
colloidal particles (Ohshima, 2002a; Ohshima, 2002b; Ohshima,
2003a; Ohshima, 2003b; Carrique et al., 2010; Delgado et al.,
2016; Luo and Keh, 2021). Chang (Chang, 2009; Chang, 2010;
Chang, 2012) presented theoretical studies on the transient
electroosmotic flow of a salt-free solution in a cylindrical
microcapillary and found that the counterion condensation effect
occurs when the microcapillary wall is highly charged.

In the present paper we focus on the transient electrophoresis in
a salt-free medium. In micro- and nano-fluidic lab-on-a-chip
systems, the importance of understanding the electrophoresis
theory of charged colloidal particles in a salt-free medium,
compared to salt-containing systems, lies in the precision and
control it offers. Salt-free conditions eliminate interference from
electrolyte ions, enabling more accurate manipulation of particle
behavior within confined channels. This advanced control is crucial
for applications such as separation, sorting, and sensing within lab-
on-a-chip platforms, where even small variations in mobility of
colloidal particles can have a significantly impact on their
performance. Moreover, insights gained from studying salt-free
electrophoresis contribute to the development of novel
techniques for precise particle manipulation and analysis in
micro- and nano-fluidic devices, advancing their capabilities in
various fields such as biotechnology, medicine, and
environmental monitoring. We derive here a simple closed form
expression for the time dependent transient electrophoretic mobility

of spherical colloidal particles suspended in a salt-free mediumwhen
a step external electric field is suddenly applied to the colloidal
suspension.

2 Theory

Let us consider a suspension of spherical colloidal particles of
radius a, mass density ρp, and surface charge density σ or total
surface charge Q = 4πa2σ in a salt-free liquid medium of relative
permittivity εr, mass density ρ0, and viscosity η containing only
counterions. We employ Kuwabara’s cell model for a concentrated
suspension of colloidal particles (Kuwabara, 1959). In addition to
Kuwabara’s cell model, Happel’s cell model (Happel, 1958) is also
known. The reason for adopting Kuwabara’s model is that in the
steady electrophoresis problem, Kuwabara’s cell model correctly
yields the Smoluchowski mobility equation in the limit of the dilute
case. We thus assume that each spherical particle is surrounded by a
spherical free volume of radius R, within which counterions are
distributed so that electroneutrality is satisfied. The particle volume
fraction ϕ is given by

ϕ � a

R
( )3 (1)

We treat the dilute case, ϕ «1. Let the valence of the counterions
and the average concentration (number density) in the absence of
the applied electric field be −z and n0, respectively. Then we have

Q � 4
3
π R3 − a3( )zen0 (2)

where e is the elementary electric charge. Eq. 2 is the
electroneutrality condition. The right-hand side of Eq. 2 is the
total amount of charge resulting from the counterions in the
spherical free volume with a radius R.

We suppose that at time t = 0, a step electric field E(t) is suddenly
applied to the particle suspension, viz.,

E t( ) � 0, t � 0
E0, t> 0
{ (3)

where E0 is constant. Then the particles start to move with a time-
dependent transient electrophoretic velocity U(t) in the direction
parallel to E0. We define the transient electrophoretic mobility μ(t)
of the particle as U(t)= μ(t)E(t) =μ(t)E0. The origin of the spherical
polar coordinate system (r, θ, ϕ) is held fixed at the center of the
representative particle and the polar axis (θ = 0) is set parallel to E0.
Let λc be the drag coefficient of the counterions. The main
assumptions in our analysis are as follows. (i) The applied field
E(t) is weak so that U(t) is proportional to E(t) and terms of higher
order in E(t) may be neglected. (i) The applied electric field E(t) is
weak so thatU(t) is proportional to E(t) and terms of higher order in
E(t) may be neglected so that the convection term ρ0 (u·∇)u
involving the square of the liquid velocity u (r, t) in the Navier-
Stokes equation can be neglected. (ii)The slipping plane (at
which the liquid velocity relative to the particle becomes zero) is
located on the particle surface (at r = a). (iii) Counterions cannot
penetrate the particle surface. (iv) The fluid vorticity ω is zero at the
outer surface of the free volume, following Kuwabara’s model
(Kuwabara, 1959).
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The fundamental electrokinetic equations for the flow velocity
u (r, t) of the liquid at position r and time t and that of the
counterions v(r, t) are similar to those for the dynamic
electrophoresis of spherical colloidal particles in a salt free
medium (Ohshima, 2003b), viz.,

ρo
∂

∂t
u r, t( ) + U t( ){ }-η∇2u r, t( ) + ∇p r, t( ) + ρc r, t( )∇ψ r, t( ) � 0

(4)
∇ · u r, t( ) � 0 (5)

v r, t( ) � u r, t( ) − 1
λc
∇μc r, t( ) (6)

∂n r, t( )
∂t

+ ∇ · n r, t( )v r, t( ){ } � 0 (7)
ρc r, t( ) � −zen r, t( ) (8)

μc r, t( ) � μ0c − zeψ r, t( ) + kT ln n r, t( ) (9)
Δψ r, t( ) � −ρc r, t( )

εrε0
(10)

4πa3

3
ρp
dU t( )
dt

� FH t( ) + FE t( ) (11)

where p (r, t) is the pressure, ρc (r, t) is the charge density resulting
from the counterions of concentration (number density) n(r, t),
ψ(r, t) is the electric potential outside the sphere, μc(r, t)is the
electrochemical potential of the counterions, μc

0 is a constant term in
μc(r, t), which corresponds to the standard electrochemical potential
of counterions, FH(t) and FE(t) are, respectively, the hydrodynamic
and electric forces acting on the particle, ε0 is the permittivity of a
vacuum, k is the Boltzmann constant, and T is the absolute
temperature. Eq. 5 are the Navier-Stokes equation and the
equations of continuity for an incompressible flow. Eq.
6 expresses that the flow v(r, t) of the counterions is caused by
the liquid flow u(r, t) and the gradient of the electrochemical
potential μc(r, t) given by Eq. 9 of the counterions. Eq. 7 is the
continuity equation for the counterions. Eqs 10, 11 and are,
respectively, the Poisson equation and the equation of motion of
the particle.

The initial condition for u (r, t) is given by

u r, t( ) � 0 at t � 0 (12)

The slipping plane (at which the liquid velocity u (r, t) relative to
the particle is zero) is assumed to be located on the particle surface
(at r = a), viz.,

u r, t( ) � 0 at r � a (13)

According to Kuwabara’s cell model (Kuwabara, 1959), we assume
that at the outer surface of the unit cell (r = R) the liquid velocity is
parallel to the electrophoretic velocity U(t) of the particle, viz.,

u r, t( ) · n̂ � −U t( ) cos θ at r � R (14)
where n̂ is the unit normal outward from the particle surface, U(t) is
the magnitude of U(t), and that the vorticity ω(r, t) is zero at r = R,

ω r, t( ) � ∇× u r, t( ) � 0 at r � R (15)

Also, we assume that on the outer surface of the unit cell (r = R)
the gradient of the electric potential is parallel to the applied field
E(t), viz.,

∇δψ r, t( ) · n̂ � −E t( ) cosθ at r � R (16)
where E(t) is the magnitude of E(t). Finally, we adopt the boundary
condition that no electrolyte ions can penetrate the particle
surface, viz,

vi r, t( ) · n̂ � 0 at r � a (17)
For a weak field E(t) [assumption (i)], we may write

n r, t( ) � n 0( ) r( ) + δn r, t( ) (18)
ψ r, t( ) � ψ 0( ) r( ) + δψ r, t( ) (19)
μc r, t( ) � μ 0( )

c + δμc r, t( ) (20)
ρc r, t( ) � ρ 0( )

c r( ) + δρc r, t( ) (21)
where the quantities with superscript (0) refer to those at
equilibrium, δn (r, t), δψ(r, t), δμc (r, t), δρc (r, t) are small
quantities, and μ(0)c is a constant independent of r. We assume
that the equilibrium concentration n(0) (r) of the
counterions obeys the Boltzmann distribution and the
equilibrium electric potential ψ(0) (r) around the particle
with a zeta potential ζ

n 0( ) r( ) � n0 exp −−zeψ
0( ) r( )

kT
( ) � n0 exp

zeψ 0( ) r( )
kT

( ) (22)

and

d2ψ 0( ) r( )
dr2

+ 2
r

dψ 0( ) r( )
dr

� −ρ
0( )

c r( )
εrε0

(23)

with

ρ 0( )
c r( ) � −zen 0( ) r( ) � −zen0 exp zeψ 0( ) r( )

kT
( ) (24)

Here we have set the equilibrium electric potential ψ(0) (r) to be
zero at points where the volume charge density ρc(r) resulting from
counterions equals its average value (−zen0). We define the
equilibrium surface potential as ψ(0) (a)−ψ(0) (R). The boundary
conditions for ψ(0) (r) at the particle surface r = a and at the outer
surface of the free volume r =R are

dψ 0( ) r( )
dr

∣∣∣∣∣∣∣∣r�a � − σ

εrε0
(25)

dψ 0( ) r( )
dr

∣∣∣∣∣∣∣∣r�R � 0 (26)

Further, symmetry considerations permit us to write

u r, t( ) � −2
r
h r, t( )E t( ) cosθ, 1

r

∂
∂r

rh r, t( )( )E t( ) sinθ, 0( ) (27)

δμc r, t( ) � zeΦ r, t( )E t( ) cosθ (28)
δψ r, t( ) � −Y r, t( )E t( ) cosθ (29)

Here Φ(r, t), Y(r, t), and h(r, t) are functions of r and t.
By substituting Eq. 27–29 into Eqs 4–7, and neglecting the

products of the small quantities, we obtain the following equation
for h(r, t), ϕi(r, t), and Y(r, t):

L Lh r, t( ) − 1
]
∂h r, t( )

∂t
[ ] � G r, t( ) (30)
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LΦ r, t( ) − λc
kT

∂
∂t

Φ r, t( ) − Y r, t( ){ }

� dy r( )
dr

−z ∂Φ r, t( )
∂r

− 2λc
e

h r, t( )
r

{ } (31)

LY r, t( ) � 1
εrε0kT

z2e2n 0( ) r( ) Y r, t( ) −Φ r, t( ){ } (32)

with

L � ∂
∂r

1
r2

∂
∂r

r2 � ∂2

∂r2
+ 2
r

∂
∂r

− 2
r2

(33)

G r, t( ) � −zen0
ηr

dy

dr
ey r( )Φ r, t( ) (34)

y r( ) � ze

kT
ψ 0( ) r( ) (35)

] � η

ρ0
(36)

where y(r) is the scaled equilibrium electric potential, ] is the
kinematic viscosity of the liquid.

The initial and boundary conditions (Eqs 12–16) and the
equation of the motion of the particle (Eq. 11) can be rewritten
as those for h(r, t) and Y(r, t) as follows.

h r, 0( ) � ∂
∂r

h r, t( )
∣∣∣∣∣∣∣t�0 � 0 (37)

h a, t( ) � ∂
∂r

h r, t( )
∣∣∣∣∣∣∣r�a � 0 (38)

h R, t( ) � RU t( )
2E t( ) � Rμ t( )

2
(39)

Lh r, t( )|r�R � 0 (40)

η
∂
∂r

r Lh r, t( ) − 1
]
∂h r, t( )

∂t
( )[ ]∣∣∣∣∣∣∣∣

r�R
− ρ 0( )

el R( )Y R, t( )

+ ρ0R 1 − ϕ
ρp − ρ0
ρ0

( ) dμ t( )
dt

� 0 (41)

Eqs 16, 17 and give

∂
∂r

Y r, t( )
∣∣∣∣∣∣∣r�R � 1 (42)

∂
∂r

Φ r, t( )
∣∣∣∣∣∣∣r�a � 0 (43)

The transient electrophoretic mobility μ(t) can be obtained from
Eq. 39, viz.,

μ t( ) � 2h R, t( )
R

(44)

Eq. 31 for h(r, t) is most easily solved by using the Laplace
transformation with respect to time t. We introduce the Laplace
transforms ĥ(r, s), Ĝ(r, s), Y (r, s), and μ̂(s) of h (r, t),G (r, t), Y (r, t),
and μ(t), respectively, which are given by

ĥ r, s( ) � ∫∞

0
h r, t( )e−stdt (45)

Ĝ r, s( ) � ∫∞

0
G r, t( )e−stdt (46)

Ŷ r, s( ) � ∫∞

0
Y r, t( )e−stdt (47)

μ̂ s( ) � ∫∞

0
μ t( )e−stdt (48)

and the Laplace transform of Eq. 42 is

μ̂ s( ) � 2ĥ b, s( )
R

(49)

The Laplace transform of Eq. 29 thus gives

L Lĥ r, s( ) − s

]
ĥ r, s( )[ ] � Ĝ r, s( ) (50)

By solving Eq. 50 subject to Eqs 37–41 and using Eq. 49, we
obtain the following general expression for the Laplace transform
μ̂(s) of the transient electrophoretic mobility μ(t):

μ̂ s( ) � − 2a2

3S M a, S( ) + ΓS{ }
∫R
a
M a, S( ) −M r, S( ){ }Ĝ r, S( )dr

+Sρ
0( )
el R( )Ŷ R, S( )

3ηϕR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(51)

where

M r, S( ) � H r, S( ) −H* r, S( )Ω S( )
1 − 3ϕS−1H a, S( ){ } − 1 − 3ϕS−1H* a, S( ){ }Ω S( ) (52)

M a, S( ) � H a, S( ) −H* a, S( )R S( )
1 − 3ϕS−1H a, S( ){ } − 1 − 3ϕS−1H* a, S( ){ }R S( )

� H a, S( ) + 2
�
S

√
Ω S( )

1−Ω S( )
1 − ϕ − 3ϕS−1 1 + �

S
√

1+Ω S( )
1−Ω S( )( ) (53)

H r, S( ) � 1 + �
S

√ r

a
( ) exp − �

S
√ r

a
− 1( )[ ] + S

r3

3a3
(54)

H* r, S( ) � 1 − �
S

√ r

a
( ) exp �

S
√ r

a
− 1( )[ ] + S

r3

3a3
(55)

H a, S( ) � 1 + �
S

√ + S

3
(56)

H* a, S( ) � 1 − �
S

√ + S

3
(57)

Ω S( ) � 1 + �
S

√
ϕ−1/3

1 − �
S

√
ϕ−1/3 exp −2 �

S
√

ϕ−1/3 − 1( )[ ] (58)

S � s
]
a2 (59)

Γ � 2 ρp − ρ0( )
9ρ0

(60)

3 Results and discussion

Eq. 51 is the general expression Laplace transform of the
transient electrophoretic mobility μ(t) of a spherical colloidal
particle in a salt-free liquid medium. The transient mobility μ(t)
can be obtained from Eq. 51 by the numerical inverse Laplace
transformation. It can be shown that as in the case of steady
electrophoresis in salt-free media, the electrophoretic mobility is
determined almost solely by the second term of the right-hand side
of Eq. 51 (Ohshima, 2002a; Ohshima, 2003a; Ohshima, 2003b), viz.,

μ̂ s( ) � − 2a2

9 M a, S( ) + ΓS{ }
ρ 0( )
el R( )Ŷ R, S( )

ηϕR
(61)

This term comes from the contribution of the pressure due
to the counterions at the outer surface of the free volume (at
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r = R). Further, for the dilute case (ϕ≪ 1) we may approximate
Ŷ(R, S) by R/s and M(a, S) by H (a, S) so that Eq. 61 becomes

μ̂ s( ) � − 2a2

9 H a, S( ) + ΓS{ }
ρ 0( )
el R( )
ηϕs

(62)

By substituting Eq. 25 into Eq. 43 and using Eq. 8, we have for
the dilute case

μ̂ s( ) � Q

6πηa H a, S( ) + ΓS{ }s exp
zeψ 0( ) R( )

kT
[ ] (63)

An accurate analytic expression for the equilibrium potential
distribution around a spherical particle in a salt-free medium for the
dilute case (ϕ≪ 1) has already been derived (Ohshima, 2002a). The
expressions for ψ(0) (a) and ψ(0) (R) are given below.

Case 1. (low-surface-charge case)

Q

4πεrε0a
ze
kT

≤ ln
1
ϕ
( ) (64)

is satisfied, then

ψ 0( ) a( ) � Q

4πεrε0a
(65)

ψ 0( ) R( ) � 0 (66)

If the zeta potential ζ is identified as the surface potential defined
by ψ(0) (a)−ψ(0) (R), then we have

ζ � ψ 0( ) a( ) − ψ 0( ) R( ) � Q

4πεrε0a
(67)

which is the Coulomb potential. That is, in the low-surface-charge
case, the expression for the zeta potential ζ of a particle in a salt-free
medium agrees with the limiting form of the zeta potential of a
particle in an electrolyte solution with a very low electrolyte
concentration.

Case 2. (high-surface-charge-case)

Q

4πεrε0a
ze
kT

> ln
1
ϕ
( ) (68)

is satisfied, then

ψ 0( ) a( ) � kT

ze
ln

1
6ϕ

ze

kT
( ) Q

4πεrε0a
( )[ ] (69)

ψ 0( ) R( ) � −kT
ze

ln
1

6ϕ ln 1/ϕ( ) ze

kT
( ) Q

4πεrε0a
( )[ ] (70)

from which

ζ � ψ 0( ) a( ) − ψ 0( ) R( ) � kT

ze
ln

1
6ϕ ln 1/ϕ( ) ze

kT
( )2 Q

4πεrε0a
( )2[ ]

(71)
Eq. 71 demonstrates that in the high-surface-charge case,

unlike in the low-surface-charge case, the zeta potential ζ is no

FIGURE 1
The ratio μ(t)/μs of the transient electrophoretic mobility μ(t) to the steady electrophoretic mobility μs for spherical colloidal particles of radius a and
mass density ρp in a salt-free liquid medium of mass density ρ0 and kinematic viscosity ] as a function of the scaled time ]t/a2 for four values of the mass
density ratio ρp/ρ0 (ρp/ρ0 = 0, 1, 4, and 10).
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longer given by the Coulomb potential (Eq. 67) but by a more
complicated equation (Eq. 71). Eq. 71 depends less on Q than Eq.
67 and becomes a function of the particle volume fraction ϕ, as
the counter ion condensation occurs in the vicinity of the
particle surface.

By substituting the above results into Eq. 63, we obtain the
following results:

Case 1. (low-surface- charge case)

μ̂ s( ) � Q

6πηa H a, S( ) + ΓS{ }s �
2εrε0ζ
3η

1
H a, S( ) + ΓS{ }s (72)

Case 2. (high-surface- charge case)

μ̂ s( ) � Q

6πηa H a, S( ) + ΓS{ }s
kT

ze
( ) ln

1
ϕ
( )

� 2εrε0
3η

1
H a, S( ) + ΓS{ }s

kT

ze
( ) ln 1

ϕ
( ) (73)

In the limit of s→0, Eqs 72, 73 become the steady electrophoretic
mobility μs = μ(∞) at t =∞ of spherical colloidal particles in a salt free
medium (Ohshima, 2002a), that is,

Case 1. (low-surface- charge case)

μs � μ ∞( ) � lim
s→0

sμ̂ S( ) � 2εrε0ζ
3η

(74)

Case 2. (high-surface- charge case)

μs � μ ∞( ) � lim
s→0

sμ̂ S( ) � 2εrε0
3η

kT

ze
( ) ln

1
ϕ
( ) (75)

The transient electrophoretic mobility μ(t) can be obtained
analytically from Eqs 72, 73 by the inverse Laplace
transformation. The result is

Case 1. (low-surface- charge case)

μ t( ) � 2εrεoζ
3η

q2
q2 − q1

M
q1
��
]t

√
a

( ) − q1
q2 − q1

M
q2
��
]t

√
a

( ){ } (76)

Case 2. (high-surface- charge case)

μ t( ) � 2εrεo
3η

kT

ze
( ) ln

1
ϕ
( ) q2

q2 − q1
M

q1
��
]t

√
a

( ) − q1
q2 − q1

M
q2
��
]t

√
a

( ){ }
(77)

with

q1 � 9

2 1 + 2ρp
ρo

( ) 1 + 1
3

������
5 − 8ρp

ρo

√⎛⎝ ⎞⎠ (78)

q2 � 9

2 1 + 2ρp
ρo

( ) 1 − 1
3

������
5 − 8ρp

ρo

√⎛⎝ ⎞⎠ (79)

M z( ) � 1 − ez
2
erfc z( ) (80)

FIGURE 2
The 3-D plot of the ratio μ(t)/μs of the transient electrophoretic mobility μ(t) to the steady electrophoretic mobility μs for spherical colloidal particles
of radius a andmass density ρp in a salt-free liquid medium of mass density ρ0 and kinematic viscosity ] as a function of the scaled time ]t/a2 and themass
density ratio ρp/ρ0.
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where erfc(z) is the complementary error function, defined by

erfc z( ) � 2��
π

√ ∫∞

z
e−x

2
dx (81)

We see that Eq. 76 for the low-surface-charge case agrees
with the low κa limiting form of the transient electrophoretic
mobility μ(t) of a spherical colloidal particle of radius a in an
electrolyte solution of the Debye-Hückel parameter κ

(Ohshima, 2022a). For the high-surface-charge case, the
transient electrophoretic mobility μ(t) deviates from Eq. 76
and given by Eq. 77, which is independent of Q. In other
words, in the high-surface-charge case, as Q increases, the
zeta potential ζ does not increase linearly with Q (Eq. 71).
This is because the number of counterions condensed near the
particle surface increases, which tends to suppress the rise in the
zeta potential. Consequently, the particle zeta potential depends
less on Q.

It follows from Eqs 74–77 that the ratio of the transient
electrophoretic mobility μ(t) to the steady mobility μs = μ(∞) in
a salt-free medium is always simply given by

μ t( )
μs

� q2
q2 − q1

M
q1
��
]t

√
a

( ) − q1
q2 − q1

M
q2
��
]t

√
a

( ) (82)

for both cases 1 (low-surface- charge case) and 2 (high-surface-
charge case), irrespective of the magnitude of the particle
surface charge Q.

Figure 1 illustrates the ratio μ(t)/μs calculated with Eq. 82 as a
function of scaled time ]t/a2 for four values of the mass density ratio
ρp/ρ0, showing how μ(t) reaches the corresponding steady value μs. It
is observed that the transient mobility μ(t) of heavier particles with
larger mass density ρp requires a longer time to reach its steady value
μs. Figure 2 gives a 3-D plot of the ratio μ(t)/μs calculated with Eq. 82
as a function of scaled time ]t/a2 and the mass density ratio ρp/ρ0,
which covers wider ranges of ]t/a2 and the mass density ratio ρp/ρ0.

Figures 1, 2 show that the relaxation time required for μ(t) to
reach its steady value μs becomes longer as the mass density ratio ρp/
ρ0 increases. An approximate expression for the relaxation time T
can be derived as follows. As a crude approximation, Eq. 82
reduces to

μ t( )
μs

� 1 − e−t/T (83)

with

T � 1
9

1 + 2ρp
ρ0

( ) a2

]
(84)

where T can be regarded as the relaxation time.

4 Concluding remarks

We have developed a theory of the transient electrophoresis of
colloidal particles in a salt-free medium, which provides vital
information for designing effective electrophoresis measurement
systems related to micro- and nano-fluidic lab-on-a-chip
technologies. We first derived a general expression (Eq. 51 for
the Laplace transform μ̂(s) of the time dependent transient

electrophoretic mobility μ(t) of spherical colloidal particles in a
salt-free liquid medium containing only counterions when a step
external electric field is suddenly applied to the colloidal suspension.
On the bases of this general expression for μ̂(s) , we derived an
accurate analytic expression for μ(t), which takes the different forms
for the low-surface-charge case (Eq. 76) and the high-surface-charge
case (Eq. 77). Only for the low-surface-charge case, the transient
electrophoretic mobility agrees with that of a sphere in an electrolyte
solution in the limit of very low electrolyte concentrations. For the
high-surface-charge case, however, the transient mobility becomes
independent of the particle surface charge because of the counterion
condensation effects. Finally, we derived a simple expression (Eq.
82) for the ratio of the transient electrophoretic mobility to the
steady electrophoretic mobility, which is found to take the same
form irrespective of the magnitude of the particle surface charge.
Finaly, it is to be noted that since we have considered the transient
motion of colloidal particles under a weak electric field, an overshoot
phenomenon, which is sometimes observed in transient processes, is
not observed.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

HO: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization, Writing–original draft, Writing–review
and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Lab on a Chip Technologies frontiersin.org07

Ohshima 10.3389/frlct.2024.1438672

https://www.frontiersin.org/journals/lab-on-a-chip-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frlct.2024.1438672


References

Ayman, M., Saad, E. I., and Faltas, M. S. (2024). Transient electrophoresis of a
conducting cylindrical colloidal particle suspended in a Brinkman
medium. Z. fur Angew. Math. Phys. 75 (2), 53–23. doi:10.1007/s00033-023-
02182-8

Booth, F. (1950). The cataphoresis of spherical, solid non-conducting particles in a
symmetrical electrolyte. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 203 (1075), 514–533.
doi:10.1098/rspa.1950.0154

Carrique, F., Ruiz-Reina, E., Arroyo, F. J., and Delgado, Á. V. (2010). Dynamic
electrophoretic mobility of spherical colloidal particles in realistic aqueous salt-
free concentrated suspensions. J. Phys. Chem. B 114 (18), 6134–6143. doi:10.1021/
jp102350d

Chang, S. H. (2009). Transient electro-osmotic flow in cylindrical
microcapillaries containing salt-free medium. Biomicrofluidics 3 (1), 12802.
doi:10.1063/1.3064113

Chang, S. H. (2010). Electroosmotic flow in slit microchannel containing salt-
free solution. Eur. J. Mech. B/Fluids 29 (5), 337–341. doi:10.1016/j.euromechflu.
2010.04.003

Chang, S. H. (2012). Electroosmotic flow in a dissimilarly charged slit microchannel
containing salt-free solution. Eur. J. Mech. B/Fluids 34, 85–90. doi:10.1016/j.
euromechflu.2012.01.020

Chiang, C. C., and Keh, H. J. (2015a). Startup of electrophoresis in a suspension
of colloidal spheres. Electrophoresis 36 (24), 3002–3008. doi:10.1002/elps.
201500316

Chiang, C. C., and Keh, H. J. (2015b). Transient electroosmosis in the transverse
direction of a fibrous porous medium. Colloids Surfaces A Physicochem. Eng. Aspects
481, 577–582. doi:10.1016/j.colsurfa.2015.06.021

Delgado, A. V. (2001). in Interfacial electrokinetics and electrophoresis (New York:
Dekker).

Delgado, Á. V., Carrique, F., Roa, R., and Ruiz-Reina, E. (2016).
Recent developments in electrokinetics of salt-free concentrated
suspensions. Curr. Opin. Colloid and Interface Sci. 24, 32–43. doi:10.1016/j.
cocis.2016.06.004

Derjaguin, B. V., and Landau, D. L. (1941). Theory of the stability of strongly charged
lyophobic sols and of the adhesion of strongly charged particles in solutions of
electrolytes. Acta Physicochim. USSR 14, 633–662.

Dukhin, A. S., and Goetz, J. P. (2001). Ultrasound for characterizing colloids. Particle
sizing, zeta potential, rheology. Amsterdam: Elsevier.

Happel, J. (1958). Viscous flow in multiparticle systems: slow motion of fluids
relative to beds of spherical particles. AIChE J. 4 (2), 197–201. doi:10.1002/aic.
690040214

Henry, D. C. (1931) The cataphoresis of suspended particles. Part I.—the equation of
cataphoresis, Proc. R. Soc. A Math. Phys. Eng. Sci., 133, 106–129. doi:10.1098/rspa.1931.
0133

Huang, Y. C., and Keh, H. J. (2005). Transient electrophoresis of spherical particles at
low potential and arbitrary double-layer thickness. Langmuir 21 (25), 11659–11665.
doi:10.1021/la051171q

Hückel, E. (1924). Die Kataphorese der Kugel. Phys. Z. 25, 204–210.

Ivory, C. F. (1983). Transient electroosmosis: the momentum transfer
coefficient. J. Colloid And Interface Sci. 96 (1), 296–298. doi:10.1016/0021-
9797(83)90032-2

Ivory, C. F. (1984). Transient electrophoresis of a dielectric sphere. J. Colloid And
Interface Sci. 100 (1), 239–249. doi:10.1016/0021-9797(84)90432-6

Keh, H. J., and Huang, Y. C. (2005). Transient electrophoresis of
dielectric spheres. J. Colloid Interface Sci. 291 (1), 282–291. doi:10.1016/j.jcis.
2005.04.108

Keh, H. J., and Tseng, H. C. (2001). Transient electrokinetic flow in fine capillaries.
J. Colloid Interface Sci. 242 (2), 450–459. doi:10.1006/jcis.2001.7797

Khair, A. S. (2012). Transient phoretic migration of a permselective
colloidal particle. J. Colloid Interface Sci. 381 (1), 183–188. doi:10.1016/j.jcis.
2012.05.038

Kuwabara, S. (1959). The forces experienced by randomly distributed parallel circular
cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Jpn. 14 (4),
527–532. doi:10.1143/JPSJ.14.527

Lai, Y. C., and Keh, H. J. (2020). Transient electrophoresis of a charged porous
particle. Electrophoresis 41 (3–4), 259–265. doi:10.1002/elps.201900413

Lai, Y. C., and Keh, H. J. (2021). Transient electrophoresis in a suspension of charged
particles with arbitrary electric double layers. Electrophoresis 42 (21–22), 2126–2133.
doi:10.1002/elps.202000336

Lee, E. (2018). Theory of electrophoresis and diffusiophoresis of highly charged colloidal
particles. Amsterdam: Elsevier B.V.

Li, M. X., and Keh, H. J. (2020). Start-Up electrophoresis of a cylindrical particle with
arbitrary double layer thickness. J. Phys. Chem. B 124 (44), 9967–9973. doi:10.1021/acs.
jpcb.0c07436

Luo, R. H., and Keh, H. J. (2021). Electrophoresis and electric conduction in a salt-free
suspension of charged particles. Electrophoresis 42 (21–22), 2134–2142. doi:10.1002/
elps.202100181

Masliyah, J. H., and Bhattacharjee, S. (2006). Electrokinetic and colloid transport
phenomena. Hoboken: John Wiley and Sons.

Morrison, F. A. (1969). Transient electrophoresis of a dielectric sphere.
J. Colloid And Interface Sci. 29 (4), 687–691. doi:10.1016/0021-9797(69)
90221-5

Morrison, F. A. (1971). Transient electrophoresis of an arbitrarily oriented
cylinder. J. Colloid And Interface Sci. 36 (1), 139–145. doi:10.1016/0021-
9797(71)90250-5

O’Brien, R. W., and White, L. R. (1978). Electrophoretic mobility of a spherical
colloidal particle. J. Chem. Soc. Faraday Trans. Chem. Soc. Faraday Trans. 22 Mol.
Chem. Phys. 74, 1607–1626. doi:10.1039/F29787401607

Ohshima, H. (2002a). Electrophoretic mobility of a cylindrical colloidal particle
in a salt-free medium. J. Colloid Interface Sci. 255 (1), 202–207. doi:10.1006/jcis.
2002.8650

Ohshima, H. (2002b). Electrophoretic mobility of a spherical colloidal particle in
a salt-free medium. J. Colloid Interface Sci. 248 (1), 499–503. doi:10.1006/jcis.2002.
8232

Ohshima, H. (2003a). Dynamic electrophoretic mobility of spherical colloidal
particles in a salt-free medium. J. Colloid Interface Sci. 265 (2), 422–427. doi:10.
1016/S0021-9797(03)00470-3

Ohshima, H. (2003b). Numerical calculation of the electrophoretic mobility of a
spherical particle in a salt-free medium. J. Colloid Interface Sci. 262 (1), 294–297. doi:10.
1016/S0021-9797(03)00190-5

Ohshima, H. (2006). Theory of colloid and interfacial electric phenomena. Amsterdam:
Elsevier B.V.

Ohshima, H. (2022a). Approximate analytic expression for the time-dependent
transient electrophoretic mobility of a spherical colloidal particle. Molecules 27 (16),
5108. doi:10.3390/molecules27165108

Ohshima, H. (2022b). Transient electrophoresis of a cylindrical colloidal particle.
Fluids 7 (11), 342. doi:10.3390/fluids7110342

Ohshima, H. (2022c). Transient electrophoresis of a spherical soft
particle. Colloid Polym. Sci. 300 (12), 1369–1377. doi:10.1007/s00396-022-
05029-2

Ohshima, H. (2023a). Transient dynamic electrophoresis of a
spherical colloidal particle. Electrophoresis 45 (July), 706–711. doi:10.1002/
elps.202300153

Ohshima, H. (2023b). Transient electrophoresis of a spherical colloidal
particle with a slip surface. Electrophoresis 44 (23), 1795–1801. doi:10.1002/
elps.202200242

Ohshima, H. (2023c). Transient gel electrophoresis of a spherical colloidal particle.
Gels 9 (5), 356. doi:10.3390/gels9050356

Ohshima, H. (2024a). Transient dynamic electrophoresis of a soft particle.
Electrophoresis. doi:10.1002/elps.202300247

Ohshima, H. (2024b). Transient electrophoresis of spherical colloidal particles
in a multi-particle suspension. Colloid Polym. Sci. doi:10.1007/s00396-024-
05269-4

Ohshima, H., Healy, T. W., and White, L. R. (1983). Approximate analytic
expressions for the electrophoretic mobility of spherical colloidal particles and the
conductivity of their dilute suspensions. J. Chem. Soc. Faraday Trans. 2 79 (11), 1613.
doi:10.1039/F29837901613

Overbeek, J. T. G. (1943) Beih. Theor. Elektrophorese Relaxationseffekt, 54, 287–364.
doi:10.1007/BF02556774

Ragab, K. E. (2023). An investigation of the transient electrophoresis of conducting
colloidal particles in porous media using a cell model. Chin. J. Phys. 85 326–344. doi:10.
1016/j.cjph.2023.07.024

Saad, E. I. (2018). Start-up Brinkman electrophoresis of a dielectric sphere for Happel
and Kuwabara models.Math. Methods Appl. Sci. 41 (18), 9578–9591. doi:10.1002/mma.
5314

Saad, E. I. (2019). Unsteady electrophoresis of a dielectric cylindrical particle
suspended in porous medium. J. Mol. Liq. 289, 111050. doi:10.1016/j.molliq.2019.
111050

Saad, E. I., and Faltas, M. S. (2018). Time-dependent electrophoresis of a dielectric
spherical particle embedded in Brinkman medium. Z. fur Angew. Math. Phys. 69 (2),
43–18. doi:10.1007/s00033-018-0939-4

Frontiers in Lab on a Chip Technologies frontiersin.org08

Ohshima 10.3389/frlct.2024.1438672

https://doi.org/10.1007/s00033-023-02182-8
https://doi.org/10.1007/s00033-023-02182-8
https://doi.org/10.1098/rspa.1950.0154
https://doi.org/10.1021/jp102350d
https://doi.org/10.1021/jp102350d
https://doi.org/10.1063/1.3064113
https://doi.org/10.1016/j.euromechflu.2010.04.003
https://doi.org/10.1016/j.euromechflu.2010.04.003
https://doi.org/10.1016/j.euromechflu.2012.01.020
https://doi.org/10.1016/j.euromechflu.2012.01.020
https://doi.org/10.1002/elps.201500316
https://doi.org/10.1002/elps.201500316
https://doi.org/10.1016/j.colsurfa.2015.06.021
https://doi.org/10.1016/j.cocis.2016.06.004
https://doi.org/10.1016/j.cocis.2016.06.004
https://doi.org/10.1002/aic.690040214
https://doi.org/10.1002/aic.690040214
https://doi.org/10.1098/rspa.1931.0133
https://doi.org/10.1098/rspa.1931.0133
https://doi.org/10.1021/la051171q
https://doi.org/10.1016/0021-9797(83)90032-2
https://doi.org/10.1016/0021-9797(83)90032-2
https://doi.org/10.1016/0021-9797(84)90432-6
https://doi.org/10.1016/j.jcis.2005.04.108
https://doi.org/10.1016/j.jcis.2005.04.108
https://doi.org/10.1006/jcis.2001.7797
https://doi.org/10.1016/j.jcis.2012.05.038
https://doi.org/10.1016/j.jcis.2012.05.038
https://doi.org/10.1143/JPSJ.14.527
https://doi.org/10.1002/elps.201900413
https://doi.org/10.1002/elps.202000336
https://doi.org/10.1021/acs.jpcb.0c07436
https://doi.org/10.1021/acs.jpcb.0c07436
https://doi.org/10.1002/elps.202100181
https://doi.org/10.1002/elps.202100181
https://doi.org/10.1016/0021-9797(69)90221-5
https://doi.org/10.1016/0021-9797(69)90221-5
https://doi.org/10.1016/0021-9797(71)90250-5
https://doi.org/10.1016/0021-9797(71)90250-5
https://doi.org/10.1039/F29787401607
https://doi.org/10.1006/jcis.2002.8650
https://doi.org/10.1006/jcis.2002.8650
https://doi.org/10.1006/jcis.2002.8232
https://doi.org/10.1006/jcis.2002.8232
https://doi.org/10.1016/S0021-9797(03)00470-3
https://doi.org/10.1016/S0021-9797(03)00470-3
https://doi.org/10.1016/S0021-9797(03)00190-5
https://doi.org/10.1016/S0021-9797(03)00190-5
https://doi.org/10.3390/molecules27165108
https://doi.org/10.3390/fluids7110342
https://doi.org/10.1007/s00396-022-05029-2
https://doi.org/10.1007/s00396-022-05029-2
https://doi.org/10.1002/elps.202300153
https://doi.org/10.1002/elps.202300153
https://doi.org/10.1002/elps.202200242
https://doi.org/10.1002/elps.202200242
https://doi.org/10.3390/gels9050356
https://doi.org/10.1002/elps.202300247
https://doi.org/10.1007/s00396-024-05269-4
https://doi.org/10.1007/s00396-024-05269-4
https://doi.org/10.1039/F29837901613
https://doi.org/10.1007/BF02556774
https://doi.org/10.1016/j.cjph.2023.07.024
https://doi.org/10.1016/j.cjph.2023.07.024
https://doi.org/10.1002/mma.5314
https://doi.org/10.1002/mma.5314
https://doi.org/10.1016/j.molliq.2019.111050
https://doi.org/10.1016/j.molliq.2019.111050
https://doi.org/10.1007/s00033-018-0939-4
https://www.frontiersin.org/journals/lab-on-a-chip-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frlct.2024.1438672


Sherief, H. H., Faltas, M. S., and Ragab, K. E. (2021). Transient electrophoresis
of a conducting spherical particle embedded in an electrolyte-saturated
Brinkman medium. Electrophoresis 42 (16), 1636–1647. doi:10.1002/elps.
202100063

Spasic, A., and Hsu, J. P. (2005). Finely dispersed particles. Micro-. nano-, atto-
engineering (Boca Raton: Taylor and Francis).

Verwey, E. J. W., and Overbeek, J. T. G. (1948). Theory of the stability of lyophobic
colloids. Amsterdam: Elsevier B.V.

von Smoluchowski, M. (1921). “Elektrische endosmose und strömungsströme,” in
Handbuch der Elektrizität und des Magnetismus, Band II Stationäre ströme. Editor
E. Greatz (Leipzig: Barth).

Wiersema, P. H., Loeb, A. L., and Overbeek, J. T. G. (1966). Calculation of the
electrophoretic mobility of a spherical colloid particle. J. Colloid And Interface Sci. 22
(1), 78–99. doi:10.1016/0021-9797(66)90069-5

Yu, C.W., and Keh, H. J. (2024). Transient slowmotion of a porous sphere. Fluid Dyn.
Res. 56 (1), 015503. doi:10.1088/1873-7005/ad220c

Frontiers in Lab on a Chip Technologies frontiersin.org09

Ohshima 10.3389/frlct.2024.1438672

https://doi.org/10.1002/elps.202100063
https://doi.org/10.1002/elps.202100063
https://doi.org/10.1016/0021-9797(66)90069-5
https://doi.org/10.1088/1873-7005/ad220c
https://www.frontiersin.org/journals/lab-on-a-chip-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frlct.2024.1438672


Glossary

a Particle radius

e Elementary electric charge

E (t) Applied step electric field

k Boltzmann constant

n (r, t) Number density of counterions

n0 Average number density of counterions

p(t) Pressure

Q Total surface charge

R Radius of a spherical free volume containing a colloidal particle

T Absolute temperature

u (r, t) Liquid velocity

U (t) Transient electrophoretic velocity

v (r, t) Velocity of counterions

y Scaled electric potential

-z valence of counterions

ε0 Permittivity of a vacuum

εp Relative permittivity of a particle

εr Relative permittivity of a medium

η Viscosity of a medium

λc Drag coefficient of counterions

μ Transient electrophoretic mobility

μc Electrochemical potential of counterions

μ̂(s) Laplace transform of μ(t)

ρc (r, t) Charge density resulting from counterions

ρ0 Mass density of a medium

ρp Mass density of a particle

ϕ Particle volume fraction

Σ Surface charge density

ψ(r, t) Electric potential

ψ(0) (r) Equilibrium electric potential

ζ Zeta potential
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