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Chemotherapy alone or in conjunction with surgery and radiation is often used to
treat various cancer types. While effective at treating some tumors, the response
varies across patients with different malignancies. For some cancers, such as
glioblastoma, ovarian cancer, and soft tissue sarcoma, 85%–100% of patients
experience cancer recurrence and develop chemotherapy resistance, which
often leads to worse prognoses. These alarming statistics highlight an urgent
need to better understand the landscape of therapy resistance in cancer, in order
to develop improved treatment strategies and prevent recurrence. A central focus
has been the investigation of resistant tumor subclones and whether the use of
different alkylating agents and/or immune checkpoint inhibitors can ablate
different clones. However, very little effort has been directed towards studies
of the tumor microenvironment, a complex ecosystem of blood vessels,
fibroblasts, immune cells, signaling molecules, and extracellular matrix, in the
context of therapy resistance. In this perspective, we provide an overview of
different platforms, tools, and techniques that have been developed and used to
identify tumor microenvironment alterations due to therapy resistance. We also
address potential therapeutic strategies that involve components of the tumor
milieu and have been identified and tested to overcome treatment-induced
resistance. Identifying microenvironmental changes post-resistance presents
opportunities for new targeted treatment strategies. The current state of the
literature suggests a dire need for more engineered models that probe specific
microenvironment contributors to therapy resistance or ways in which the tumor
tissue can be harnessed to mitigate resistance.
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1 Introduction

Therapy efficacy and resistance remain barriers to effective cancer treatment. While
chemotherapy is widely used in treating most cancer types, approximately 90% of patients
undergoing chemotherapy treatment fail to achieve positive outcomes, predominantly due
to acquired treatment resistance (Imai and Takaoka, 2006). It is estimated that 80%–90% of
patient deaths are due to drug resistance (Ramos et al., 2021). While the vast majority of
studies that address therapy resistance have focused on the emergence of resistant subclones
in tumors, very few groups have focused on tumor microenvironment (TME)-induced
clinical resistance following therapy. Although the TME is one of the first barriers
encountered by therapeutic agents targeting tumors, its role in therapy efficacy and
resistance remains poorly understood.
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The TME is a highly complex architecture, physiologically
characterized by hypoxia, low pH, and high interstitial fluid
pressure (Zhong et al., 2020). One of the many cells that
populate the TME are cancer-associated fibroblasts (CAFs)
(Tilsed et al., 2022). CAFs have been shown to secrete
transforming growth factor-beta (TGF-beta), vascular endothelial
growth factor (VEGF), and fibroblast growth factor-2 (FGF2) to
promote metastasis in vitro models of colorectal cancer. CAFs also
contribute to fibrosis in the TME which reduces the availability of
therapies through blood vessel compression and subsequently leads
to increased interstitial pressure and poor drug penetration (Tilsed
et al., 2022; Agosti et al., 2023). In patients with colorectal
adenocarcinomas, CAFs have been shown to transfer exosomes
to tumor cells containing miR-92a-3p, resulting in
chemoresistance and metastasis (Bruch-Oms et al., 2023). CAFs
have also been shown to promote chemotherapy and
immunotherapy resistance through the Snail1-dependent
polarization of M2 macrophages which reduces their cytotoxic
behavior towards tumor cells (Agosti et al., 2023; Eckford and
Sharom, 2009). Potential treatment strategies that target Snail1 in
combination with standard alkylating agents could prevent the pro-
tumorigenic behavior of macrophages. Other relevant tumor-
supportive immune cells in the TME include monocytic myeloid-
derived suppressor cells (m-MDSCs) and polymorphonuclear
MDSCs (PMN-MDSCs). MDSCs, in particular, have been shown
to contribute to angiogenesis via VEGF secretion as well as regulate
aerobic glycolysis in breast cancer cells, resulting in worse prognoses
for patients (Lei et al., 2020).

Recently, there has been more emphasis on investigating the role
of cell surface transporters in the context of treatment resistance.
Efflux pump proteins, such as multidrug resistance associated
protein 1 (MDR-1), also called P-glycoprotein (P-gp), and ATP-
Binding Cassette protein 2 (ABCG-2) have consistently been
demonstrated to play a role in mechanisms of drug resistance in
several cancer cell lines (Eckford and Sharom, 2009). P-gp was
initially discovered in 1976 when researchers were investigating
colchicine resistance in CHO cells (Juliano and Ling, 1976).
However, later work with MCF-7 breast cancer cells revealed that
P-gp-deficient MCF-7 were resistant to several compounds that
P-gp usually confers resistance to (Eckford and Sharom, 2009). This
resulted in the discovery of the ATP-dependent breast cancer
resistance protein (BCRP/ABCG-2), involved in chemotherapy
resistance in several tumor types (Eckford and Sharom, 2009).
While these efflux transporters have been shown to contribute to
drug efflux in cancer cells, their role in the TME and in vascular
barriers remain understudied.

2 Current studies and models of
treatment resistance

2.1 Computational models of the TME

Recently, several computational models have been designed to
conduct theoretical studies on complex factors that regulate TME
dynamics in the context of therapy resistance. These models have
guided future experimental work while also enabling the validation
of results from clinical trials. Nikmaneshi et al., for instance,

developed a transport and cancer apoptosis model to study the
effect of glycemia on drug delivery to generalizable tumor models
with ECM components (Nikmaneshi et al., 2021). They found that
hyperglycemia improves drug delivery to tumors and that
neoadjuvant combination therapy is the most effective to ablate
tumors (Figure 1A). In a subsequent study, the authors refined their
model to capture the 3D architecture of tumor tissues and
investigate low concentration-high frequency treatment schedules.
They showed that these treatment regimens normalize tumor
vasculature, improve drug delivery, and decrease cancer cell
invasion (Nikmaneshi et al., 2023). Figures 1B,C highlight the
effects of treatment schedules on drug delivery and cell viability
from computational models. These theoretical results provide key
insights into optimal dosage strategies to prevent chemotherapy
resistance in the TME and can help guide clinicians to model
treatment response. Future studies in the clinic can be done to
validate the claim that metronomic treatment schedules increase
tumor cell death while preserving non-cancerous tissue. Other
computational agent-based studies have focused on correlating
tumor spatial progression and patient outcomes. One group
found that clustered adenocarcinoma tumors were strongly
associated with more favorable patient outcomes in terms of
recurrence, compared to tumors with random geographic
diversification (Wu et al., 2022). Another group developed an
agent-based pharmacokinetic model to optimize the treatment
regimen of glioblastoma (GBM) based on the dynamics of the
perivascular niche of its TME (Randles et al., 2021). The model
predicted treatment timing strategies of chemotherapy delivery 1 h
prior to radiation, in order to achieve optimal tumor ablation. The
authors validated their computational results with in vivo
experiments where PDGF-driven GBM mice were administered
Temozolomide 1 h prior to radiation. These animals did not
show evidence of acquired resistance and exhibited improved
survival rates, validating the use of in silico models to predict
tumor-TME-therapy interactions (Randles et al., 2021).
Figure 1D highlights the efficacy of the predicted optimal
schedule on tumor volume fraction compared to a suboptimal
schedule. In their computational model of perivascular dynamics
for optimized treatment schedules, Randles et al. validated their
simulations with in vivo experiments. Figures 1E,F highlight these
results, validating that the predicted improved response to the
optimal schedule results in improved survival rates in mouse
models of glioblastoma (ref). These results highlight the use of
computational models as validation tools for animal experiments.
Further comparisons to clinical data would confirm the value of
these models as a tool for developing optimized treatment plans that
improve overall survival.

Created with Biorender.com.

2.2 In Vivo models

Immunocompetent mouse models have enabled a greater
understanding of the effect of the immune system on cancer
progression and metastasis (Lei et al., 2016). Maniati et al.
characterized the TME of six syngeneic murine high-grade-serous
ovarian cancer (HGSOC) lines and identified several similarities to
biopsies of the human HGSOC TME, notably in the transcriptome,
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host cell infiltrates, vasculature, and tissue modulus (Maniati et al.,
2020). Transcriptional profiles of mouse tumors were analyzed and
machine learning was utilized to classify and correlate
chemotherapy sensitivity in mouse and patient tumors. Another
group developed a transgenic mouse model of mammary
carcinomas to study the role of the TME on Doxorubicin
resistance (Nakasone et al., 2012). Their model identified vascular
barrier disruption, which was influenced by tumor stage, and a lack
of matrix metalloprotease (MMP)-9 secretion in Doxorubicin-
sensitive tumors. MMP-9 was validated to contribute to barrier
disruption in Doxorubicin-resistant tumors, which was also
associated with CCR2+ monocyte recruitment and tumor relapse
(Nakasone et al., 2012).

More recently, animal models have been used to identify the
contributions of the immune system on resistance to immune
blockade inhibitors. Using a combination of human biopsies and
murine models of triple negative breast cancer, Huseni et al. showed
that interleukin-6 (IL-6) is associated with poor prognosis and
response to anti-PD-L1 inhibitors. A combination of anti-IL-
6 receptor and anti-PD-L1 treatments was able to re-sensitize
resistant murine models and improve anti-tumor cytotoxic T
lymphocyte responses, compared to monotherapy with anti-PD-
L1 alone (Huseni et al., 2023). This highlights the effect of cytokine
contributions from the TME on therapy resistance and how
alterations in the TME in resistant vs sensitive tumors can be
harnessed to re-sensitize tumors to standard agents.

FIGURE 1
Comparisons of computational models of drug delivery, cell viability, and respective in vivo validations. The models from Nikmaneshi et al., (A) and
Randles et al., (B, C) are both based on similar assumptions regarding cell proliferation behavior and the diffusivity of key molecules in the TME. However,
the Nikmaneshi et al. model relies on cubic lattices to model the tumor and represent cellular dynamic behavior whereas the Randles model was
implemented as a massively parallel simulation framework. (A) Impacts of hyperglycemic and normoglycemic conditions on drug delivery in
chemotherapy treatment (case a), concurrent combination treatment (case b), and neoadjuvant combination therapy (case c) (Juliano and Ling, 1976). (B)
Drug concentration in the tumor under various treatment regimens (Nikmaneshi et al., 2023). (C) Effect of various treatment regimens on cancer cell
viability (Nikmaneshi et al., 2023). (D) Prediction plots of tumor volume fraction under different treatment schedules (Randles et al., 2021). (E, F) In vivo
validation of computational model in (D). Post-treatment survival of mice treated with the optimized schedule (n = 20) versus the suboptimal schedule
(n = 22) (n = 2 chemoradiation schedules) (Randles et al., 2021). Licensed Under Creative Commons Attribute 4.0.
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Animal models have also been used to look at the tumor
vasculature. A study by Parrish et al. investigated the role of the
blood-brain barrier and efflux transporters in orthotopic xenograft
models treated with palbociclib, a cyclin-dependent kinase 4/
6 inhibitor. Post-treatment, animals with subcutaneous
GBM22 tumors had improved survival compared to those with
intracranial tumors (Parrish et al., 2015). The authors found that
combinations of palbociclib with efflux inhibitor elacridar lead to
significant improvement in brain delivery, suggesting that BBB
efflux transporters play a significant role in barrier and resistance
to treatment (Parrish et al., 2015). These findings highlight the role
of the vasculature in drug shuttling, resistance to treatment, and
prognoses, suggesting a potential for TME targeting in combination
with standard tumor-directed agents to improve
treatment outcomes.

2.3 In Vitro models

In vitro models enable complex modeling of the TME using
human cells to recapitulate patient response. These platforms also
allow for low-cost and high-throughput experiments where
components of the TME can be probed individually in the
context of therapy resistance and effects on tumor cells. Several
classes of in vitro models have been developed, including 2D
cultures, 3D in vitro models using organoid systems with
commercial cell lines or recently, patient-derived tissues, and
tissue engineered 3D models developed using bioprinting or
microfluidic technologies.

2.3.1 2D in vitro models
2D in vitromodels enable rapid assessment of the contributions

of the TME on therapy resistance and cancer cell invasion. Munoz
et al. developed a 2D model of GBM and identified that
overexpression of efflux transporter P-gp results in temozolomide
resistance (Munoz et al., 2015). Using a Transwell model of ovarcian
cancer, another group investigate the role of inflammatory cytokines
in IgA transcytosis. They showed that elevated TNF and
IL7 cytokines in the TME contribute to IgA transport and
improved responses to cytolytic killing by T cells in ovarian
cancer (Moon et al., 2014; Biswas et al., 2021). Gilmore et al.,
developed a 2D in vitro restricted exchange environment
chamber (REEC) to study oxygen and nutrient gradients of the
TME. They observed that cells form oxygen gradients within hours
and after several days of culture, form disk like patterns based on
hypoxic gradients. In Linville et al., studies of the blood-tumor
barrier for metastatic breast cancer were conducted. The study
mostly focuses on a 3D model to recapitulate the interaction, but
separate 2Dmodels were also studied and they found that the barrier
dysfunction in the 2Dmodel differed from findings in the 3Dmodel.
While these models provide rapid insights into the role of TME
components in drug delivery and resistance, their architecture fails
to mimic appropriate TME organization, and several groups have
opted for 3D models to circumvent these challenges.

2.3.2 3D in vitromodels using commercial cell lines
3D in vitro models provide a better recapitulation of the tumor

microenvironment through the addition of other cell types and

acellular components to mimic the 3D structure of tissues with the
presence of an ECM, vasculature, and immune cells (Hajal et al.,
2021). Various studies (Hajal et al., 2022; Jubelin et al., 2022) have
shown that gene expressions of 2D cell cultures differ from 3D
cultures, and 3D organoids cultured with other TME components
exhibit genomic and phenotypic profiles similar to those seen in
original patient tissues. These similarities to patient genomic profiles
allow 3D in vitro models to provide results that more closely
resemble results from clinical or in vivo environments.

In vitro 3D models using commercially available cells lines
enable the study of 3D TME interactions in the context of
therapy resistance for several tumor types. In a co-cultured
model of human umbilical vein endothelial cells (HUVECs) with
A549 adenocarcinoma cells and T24 bladder carcinoma cells, Bai
et al. identified that only the A549 co-coculture inhibited HGF-and-
FGF2-dependent HUVEC cell dispersion in the presence of therapy
AZD0530 (Src inhibitor originally developed for metastatic colon
cancer) (Bai et al., 2015). This suggests that therapies targeting the
epithelial-to-mesenchymal transition may offer clinical benefit to
control vascularization, through HGF and FGF-2, and its effects on
cancer spread in adenocarcinomas. In a different model of 3D tumor
spheroids using H460 lung cancer cells, Meng et al. demonstrated
enhanced activity of the hypoxia-activated prodrug TH-302
compared to monolayer cultures of H460 (Meng et al., 2012).
This highlights the contributions of the 3D tumor space in
assessing TME contributors to drug resistance and cancer spread.

2.3.3 3D in vitro models using patient-derived
cell lines

Patient-derived explant (PDE) models are ex vivo models that
allow for individualized characterization of tumor treatments from
resected human tumor and tissue samples. These personalized
medicine platforms enable high-throughput drug screening to
identify amenable therapies that achieve desired outcomes while
avoiding treatment resistance. These platforms can also be used to
probe the contributions of individual components of the TME that
were maintained from the original tumor in the context of therapy
response. One group was able to develop a well characterized cohort
of PDEs from prostate cancer patients which accurately captured the
TME integrity, tissue morphology, and androgen receptor (AR)
signaling found in vivo for these patients (Shafi et al., 2018). In
particular, the authors found that high levels of phosphorylated focal
adhesion kinase (pFAK) and activation of alpha-5 integrin in the
TME were associated with a tumor permissive state in two of the
PDE samples and de novo resistance to enzalutamide. In a different
3D model of patient-derived GBM in hydrogels, Wang et al.
demonstrated that 3D cultured GBM tumors exhibited increased
temozolomide resistance compared to 2D controls and increasing
the stiffness of the hydrogels in which GBM spheroids were
embedded resulted in greater treatment resistance (Wang
et al., 2021).

PDEs have also enabled studies of the tumor-immune
microenvironment and contributions to resistance. In mismatch
repair-deficient glioma explands, Touat and Li et al. observed poor
CD3+ T-cell infiltrates, no substantial intratumoral heterogeneity,
and poor response to PD-1 blockade. These PDEs were also resistant
to temozolomide. These findings contradict previous findings in
other tumors such as colorectal carcinomas where mismatch repair
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deficiency improves response to PD-1 inhibitors (Touat et al., 2020).
In another study of GBM patient brain slices, spatially resolved
transcriptomic sequencing was used to study the
immunosuppressive TME following JAK1/2 inhibitor treatment.
Interleukin-10 was identified to be linked to the transformation
of T-cells from effectors to dysfunctional and a decrease in myeloid
cells (Ravi et al., 2022). The authors then performed a case study on
JAK/STAT inhibition in a single GBM patient with recurrence post-
radiation after treatment with alkylating agents lomustine and
temozolomide and TTField therapy (Ravi et al., 2022). This
resulted in an increase in CD8+ and CD4+ T cell infiltration with
stable CD68+ expression compared to pre-treatment tissue staining.
Importantly, disease progression was stable for approximately
8.5 months after treatment (Ravi et al., 2022). These results
highlight ways in which the immune tumor landscape can be
targeted to improve survival and response to treatment, following
resistance to standard alkylating agents.

In addition to tumor explants, groups have also focused on the
development of patient-derived organoids (PDOs) to study clinical
response in a physiologically relevant context. Unlike PDEs which
consist in tumor sections or slices directly obtained from biopsies or
surgeries with minimal intervention, PDOs are generated from
dissociating the tumor tissue and growing the mixture of cells in
amenable 3D hydrogels composed of Matrigel or Collagen (Neal
et al., 2018). Neal et al. designed PDO models of melanoma, renal
cell carcinoma, and non-small cell lung cancer, which they later
treated with PD-1 immune inhibitors, following validation of the
presence of T lymphocytes, among other components of the
immune system. Their study identified that their PDO model
and treatment regimen was able to activate tumor-antigen
specific tumor-infiltrating lymphocytes to illicit an immune
response post-therapy (Neal et al., 2018). Another study using
PDOs of esophageal squamous cell carcinomas found that
CD44 expression was strongly correlated with enriched organoid
formation and resistance to 5-fluorouracil treatment (Kijima et al.,
2019). Other studies have validated CD44 as a therapeutic target in
the TME for esophageal squamous cell carcinomas, specifically with
tumor associated macrophages regulating the P13K-4EBP1-
Sox2 pathway, suggesting a potential use of CD44 inhibitors in
the treatment of resistant models (Kijima et al., 2019).

High-throughput screening in organoids has also been used to
identify inhibitors of breast cancer resistance protein (BCRP) in
intestinal tumors derived from mouse tissue (Zhang et al., 2017).
The development of a BCRP biosensor was also established to detect
the function of BCRP in the organoid model (Zhang et al., 2017).
This study provides a significant advancement in the study of efflux
transporters and their role in therapy resistance and cancer
progression, as well as the development of biomarkers of
resistance targeting components of the TME that may be
responsible for poor response to treatment (Hadj Bachir et al.,
2022; Meier et al., 2022; Harada and Sakamoto, 2022).

While current research into 3D in vitro models enables high-
throughput and targeted studies of the TME in cancer, very few
studies have focused on using 3D in vitromodels to probe individual
components of the TME in the context of therapy resistance,
particularly non-immune components. One explanation lies in
the lack of available tissue from patients with recurrent and
therapy-resistant tumors in order to properly model several

components of the TME of resistant tissues, such as vasculature,
stromal compartments, and ECM. PDOs are also a relatively small
subset of the organoid model space as most organoid systems are
derived from animal tissue, which validates the low availability of
patient tissue models for therapy resistance studies. While patient
derived models are valuable for precision medicine, they also have
limitations such as loss of cells and genomic background during
culture over time, study selection bias in choosing initial tissues, and
the inability to fully recapitulate the tumor microenvironment in 2D
cases and native immune responses in 3D cases (Hou et al., 2022).
The use of patient derived models must also adhere to strict
regulatory conditions to protect private patient information.
Despite these limitations, patient derived models still prove to be
extremely valuable in progressing cancer research, owing to their
ability to recapitulate genomic and phenotypic profiles found in a
specific patient for personalized medicine and rapid drug testing.

2.3.4 Tissue engineered models
The ability to include several components of the TME, including

cells, ECM, relevant fluid flow profiles, and hypoxic conditions in a
three-dimensional space makes tissue engineered models highly
amenable to studies of drug-tissue interactions in physiologically
relevant multi-organ systems. Herland et al. developed vascularized
organ chips of the gut, liver, and kidneys to successfully model the
pharmacokinetics of orally administered nicotine and intravenously
administered alkylating agent cisplatin (Herland et al., 2020). We
have previously designed microfluidic models of tissue engineered
BBB vasculatures that closely recapitulated BBB protein expression
in 3D endothelial cells and reliable molecular permeabilities
previously only observed in vivo (Hajal et al., 2022). In a
subsequent study, this vascular platform was combined with
patient-derived glioma tumor spheroids to show that lipoprotein
receptor (LRP-1) expression was improved at the tumor vasculature.
We harnessed this finding to develop cisplatin-encapsulated
liposomes for targeted delivery to GBM through LRP1 transport
at the BBB (Straehla et al., 2022). These results highlight the
potential of tissue engineered platforms to be employed to
validate mechanisms of therapy resistance at the scale of the
tumor tissue, and not simply tumor cells. Another group
developed a microfluidic model of the BBB, with GBM spheroids
cultured in an adjacent channel, and showed that combination of
doxorubicin with mannitol and gintonin enables a temporary
increase in BBB permeability to mitigate chemotherapy
resistance. Accelerated delivery of doxorubicin was also
associated with accelerated uptake of doxorubicin by the GBM
tumor spheroids in the device (Seo et al., 2022). Ayuso et al.
used a microfluidic model to recapitulate the hypoxic
microenvironment of ductal carcinoma in situ and test the
efficacy of Tirapazamine (Ayuso et al., 2018). They observed that
ductal carcinoma models cultured in the presence of Tirapazamine
developed necrotic regions within the tumor core where hypoxia
was measured to be the highest.

Other groups have also pushed the boundaries of tissue
engineered systems, with the development of entirely patient-
derived models of the GBM TME, using patient-derived glial
stem cells, astrocytes, microglia, and GBM cells. With this
patient-specific model, the authors showed that astrocyte and
microglia activation and reactivity in the TME strongly correlated
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with glioma cell stemness and invasion (Cornelison et al., 2022).
This was validated in animal models of GBM stem cells that were
used for therapy screening. By understanding the mechanisms
stromal cell activation through cancer stem cell progression,
researchers can develop targeted therapies to stromal
compartments involved in therapy resistance. Although these
models suggest important advances in the realm of tissue
engineered models of the TME for drug resistance, further
studies need to be performed to dissect individual contributions
of TME components in therapy resistance. These findings would
enable the development of preventative treatment combinations
with standard agents and inhibitors to TME components involved in
resistance, to potentially mitigate future resistance and achieve
improved response to standard first-line agents (Figure 2).

3 Discussion

Cancer recurrence is largely attributed to resistance to treatment
in tumors. While emphasis has been placed on identifying
mechanisms of resistance due to genomic alterations in tumor
subclones, the role of the evolving TME in treatment resistance

and cancer invasion remains poorly understood. This perspective
identified studies that set the foundation for further assays and
models that need to be developed to understand the role of complex
components of the microenvironment in treatment resistance.
Identifying these TME changes is essential in developing TME-
targeting therapies to combat resistance based on cancer-stroma-
immune interactions in post-treatment tumors.

The tumor vasculature, for instance, has been a target in cancer
treatment for several years with the development of FDA-approved
anti-angiogenesis agents that target VEGF (Meadows and Hurwitz,
2012; Hirata and Sahai, 2017) (Figure 2). Current FDA-approved
anti-angiogenesis agents such as sunitinib, sorafenib, and pazopanib
were approved as monotherapy treatments for renal cell cancer,
while bevacizumab was approved for use with chemotherapy to treat
colorectal, non-small cell lung, breast, and renal cancers.
Bevacizumab is approved for use in glioblastoma as a
monotherapy (Meadows and Hurwitz, 2012). While anti-
angiogenic agents looked promising when they were first
introduced, improved humanized models, imaging tools, and
genomic capabilities have quickly shown that targeting VEGF
may lead to more aggressive tumors, harboring resistance to
other agents (Meadows and Hurwitz, 2012). Additional work is

FIGURE 2
Graphical summary of TME models and their associated assays for assessing drug delivery and treatment resistance. Created with Biorender.com.
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needed to understand the evolving TME in resistance and develop
better treatment strategies that target the vasculature, but also other
understudied components of the TME.

Focusing on hypoxia in the TME, small molecule inhibitors,
such as carbonic anhydrase inhibitors, have also recently been
enrolled in clinical trials to treat hypoxic tumors (Supuran,
2020). SLC-0111, a carbonic anhydrase inhibitor, completed a
Phase I clinical trial to study antitumor effects in advanced
hypoxic solid tumors (NCT02215850). In 2017, it was enrolled in
an ongoing Phase Ib/II study to study the efficacy of the inhibitor in
combination with other therapeutic agents for the treatment of
pancreatic cancer (Supuran, 2020). In head and neck squamous
carcinoma, SLC-0111 was found to boost the effect of cisplatin in
inhibiting cancer invasion (Sarnella et al., 2022), suggesting potential
use in combination with standard alkylating agents to target both
hypoxia and replicating cancer cells.

The current literature suggests that there are several promising
platforms that can be used to study the TME and treatment
resistance independently. However, few have been developed to
combine these aspects into cohesive and validated models. The few
studies featured in this perspective highlight potential limitations in
scaling and standardizing these models. Access to representative
patient samples for ex vivo modeling is also challenging given the
need for sufficient fresh tumor tissue from tissue biobanks and
requirements for adherence to strict standards regarding patient
confidentiality over the use and publication of data. Ensuring
diversity in patient samples across metrics of race, gender,
sexuality, and socioeconomic status, among others features of
patient diversity, is also essential in developing results that can
be applicable and generalizable to a broad set of patients with
varying needs. These limitations can be overcome with
appropriate efforts in developing personalized human models of
the TME that can be used for therapy screening and resistance. The
positive results from models and trials in this perspective highlight
the importance of the TME in cancer treatment. Harnessing the
tumor milieu in cancer treatment represents the next frontier in
improving therapies and prognoses for patients with recurrent and
aggressive tumors.
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