
Categorising hybrid material
microfluidic devices

Tom Carvell1, Paul Burgoyne2, Alasdair R. Fraser2 and
Helen Bridle1*
1Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh, United Kingdom, 2Tissues, Cells and Advanced
Therapeutics, Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh,
United Kingdom

Microfluidic devices are useful tools for a wide range of biomedical, industrial, and
environmental applications. Hybrid microfluidic devices utilising more than two
materials are increasingly being used for their capacity to produce unique
structures and perform novel functions. However, an analysis of publications
across the field shows that whilst hybrid microfluidic devices have been reported,
there remains no system of classifying hybrid devices which could help future
researchers in optimising material selection. To resolve this issue, we propose a
system of classifying hybrid microfluidic devices primarily as containing either
hybrid structural, chemical, or electrical components. This is expanded upon and
developed into a hierarchy, with combinations of different primary components
categorised into secondary or tertiary hybrid device groupings. This classification
approach is useful as it describes materials that can be combined to create novel
hybrid microfluidic devices.
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Introduction

The term microfluidics describes the manipulation of tiny volumes of fluid within
channels at the microscale (Akbari et al., 2023). Prior to the advent of microfluidics as a
defined field, micro-sized channels were often contained within components of
scientific and engineering instruments mostly unrelated to microfluidic applications
(Ren et al., 2013; Convery and Gadegaard, 2019). Currently when compared with early
microfluidics, microchannels with various geometries are used for many different
applications and have huge potential for use within biomedical science
(Ramachandraiah et al., 2017; David et al., 2019; Lu et al., 2019; Pritchard et al.,
2019; Guzniczak et al., 2020; Xie et al., 2022), industrial processing (Estrada-Osorio
et al., 2024; Jayan et al., 2024; Wang et al., 2024; Yi et al., 2024), environmental research
(Hill et al., 2022; AlMashrea et al., 2024; Du and Yang, 2024; Sun et al., 2024) and
increasingly reaching into other fields (Apoorva et al., 2024; Lei et al., 2024; Reyes et al.,
2024). The manufacturing of these microchannels relies upon the use of appropriate
techniques, equipment, and materials to produce microfluidic devices consistently and
accurately (Ren et al., 2013; Gale et al., 2018; Scott and Ali, 2021; Akbari et al., 2023).
New applications often require new channel geometries and the integration of novel
components, and it is therefore not unreasonable to suggest that new manufacturing
techniques and materials will be necessary to facilitate new microfluidic applications.
Hybrid microfluidic devices, comprised of more than one type of material, can be used
to meet these requirements. As part of the evaluation of the current state of microfluidic
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device manufacturing, this mini review focuses on hybrid
microfluidic devices that utilise a combination of fabrication
techniques and are comprised of at least two materials. Hybrid
devices have been reviewed elsewhere but the reviews focus on a
summary of the concepts of combining materials (Ren et al.,
2013) or require substantial updating in line with current
findings (Hou et al., 2017).

Materials and methods

This review expands upon two previous publications (Ren
et al., 2013; Hou et al., 2017) that simply described material
considerations for use in hybrid microfluidic devices, and for the
first time provides a system of categorization of hybrid
microfluidic devices. Between February and March 2024,
literature searches of PubMed were performed using the
following terms: “Hybrid microfluidic device,” “PDMS hybrid
device,” “Composite microfluidic device,” “Glass hybrid device,”
“PMMA hybrid device,” and “Polymer hybrid device” with a
focus on relevant literature published since 2013.

Although this review aims to provide an update to previous
hybrid device reviews, it is not an exhaustive list; examples of

devices were chosen to demonstrate both the diversity in material
choice and flexibility with which they can be combined for
different applications. This was considered of particular
importance as it is known that material selection impacts flow,
biocompatibility and function of microfluidic devices (Nielsen
et al., 2020). A range of papers with different applications were
therefore included, and this review will aid researchers in
material choice for future microfluidic device designs. The
materials related to tubing and fluid connections were
considered outside the scope of this review.

Outcomes

Hybrid microfluidic devices have previously been described in a
variety of ways and do not have sub-categories to define related
device compositions. We propose categorising hybrid microfluidic
devices into three primary categories; composites as electrical
components; composites as chemical components and composites
as structural components.

When considering primary categories, hybrid devices can
contain electrical components (comprehensively reviewed in
(Tawade and Mastrangeli, 2024)) that are integrated and used

FIGURE 1
Categorisation of hybrid microfluidic devices. The three primary categories of chemical (surface coating in yellow, microchannel in red), structural
(materials shown in yellow and red) and electrical (electrodes in black) can be combined to form secondary or tertiary categories of device.
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TABLE 1 Categorisation of hybrid microfluidic devices.

Hybrid
device sub-
category

Material Composited with Manufacturing
technique(s)

Application(s) Exemplar
reference

Section A: Primary hybrid devices

Structural Photosensitive
resin

Adhesive tape DLP-3D printing and stacking Demonstrating shear stress
chip and hydrogel
microsphere generation

Qiu et al. (2023)

PDMS PMMA and adhesive tape Photolithography and laser ablation ‘Lab-on-a-chip’ Hassanpour-Tamrin
et al. (2021)

Glass Stereolithography 3D-printing of
moulds and casting

Droplet microfluidics, fluid
mixing

Vedhanayagam et al.
(2023)

Replica moulding, solvent assisted
bonding

Solution exchange and
interleukin-2 detection

Pramanik and Suzuki
(2019)

PMMA, adhesive tape and glass Laser ablation, stacking Cell encapsulation Enck et al. (2020)

PDMS membrane Soft lithography and chemical
etching

Mechanically active organ-
on-a-chip

Huh et al. (2010)

Agarose/agar Soft lithography and hydrogel
injection

Complex gradient of
diffusible molecules

Wu et al. (2006)

Hydrogel, glass, epoxy, and
adhesive tape

Photopatterning and stacking Multifunctional microfluidic
systems

Beebe et al. (2000)

Hydrogel and PMMA Soft lithography, moulding, laser
ablation

3D cell culture Do et al. (2023)

Polycarbonate Soft lithography Cell culture Chang et al. (2014)

Sol-gel method ‘Lab-on-a-chip’ Suzuki et al. (2010)Polyvinylchloride

Polypropylene

PMMA Soft-lithography, laser ablation and
stacking

Production of monodisperse
water-in-oil droplets

Nakatani et al. (2020)

Various thermoplastics Carbon–nitrogen covalent bonding Continuous flow polymerase
chain reaction

Sivakumar et al. (2020)

poly (lactic-co-glycolic acid) Photolithography, moulding 3D cell culture with a blood
vessel architecture

Yuan et al. (2012)

PMMA and cotton 3D printing, soft lithography,
thermal bonding

Tumour-on-a-chip Palacio-Castañeda et al.
(2020)

PMMA Silicon Laser ablation ‘Lab-on-a-chip’ Capodacqua et al. (2023)

Silicon Micromilling, stacking Microbioreactors Abaci et al. (2012)

Polyethylene terephthalate
membrane

Micromilling, chemical bonding Cytotoxicity of drug testing Nguyen et al. (2019)

Polybutyl methacrylate Laser ablation, micromilling,
thermal fusion bonding

‘Lab-on-a-chip’ Li et al. (2023)

Thermoplastic elastomers
(various)

Laser ablation, thermal diffusion
bonding

Organ-on-a-chip/real-time
live-cell analysis

Busek et al. (2021)

Polycarbonate,
polytetrafluoroethylene and
aluminium

Stacking Enrichment of exosomes Hua et al. (2023)

Acrylate-based resin and
adhesive tape

3D-printing, stacking ‘Lab-on-a-chip’ Razavi Bazaz et al. (2020)

Polyimide film Laser ablation, stacking ‘Lab-on-a-chip’ Thaweeskulchai and
Schulte (2023)

Glass, photoresist Dry film photoresist ‘Lab-on-a-chip’ Fan et al. (2018)

Adhesive tape Laser ablation, micromilling ‘Lab-on-a-chip’ Ku et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Categorisation of hybrid microfluidic devices.

Hybrid
device sub-
category

Material Composited with Manufacturing
technique(s)

Application(s) Exemplar
reference

SU-8 Photolithographic techniques, laser
ablation

Cell separation, medium
exchange

Carvell et al. (2024)

Fluoroethylene
propylene

Polyimide Laser ablation, thermal bonding Fluid mixing Kim et al. (2016)

Wax and
polyolefins-based
films

PMMA or PVC or glass Laser ablation, thermal bonding Various biochemical
applications, demonstration
of bacterial cultivation

Wei et al. (2023)

Glass Adhesive tape Laser ablation, micromilling ‘Lab-on-a-chip’ Ku et al. (2018)

Silicon, aluminium oxide Anodization of aluminium, deep
reactive-ion etching, wet etching,
clamping

Gas-permeable cultivation
of HACaT-cells

Bunge et al. (2018)

Polyurethane-
methacrylate

Polyurethane-methacrylate
coated glass

Casting, conformal coating, UV
curation

‘Lab-on-a-chip’ Kuo et al. (2009)

Polyvinyl chloride Silicon Laser ablation, jigsaw assembly Separation of cells Zhu et al. (2021)

Chemical PDMS Hydrogel Soft lithography Cardiomyocyte culture Annabi et al. (2013)

Zinc oxide quantum dots Soft lithography Temperature-sensitive
microfluidic device

Zhou et al. (2009)

Polycaprolactone-collagen
membrane and cyclic olefin
copolymer

Micromilling, moulding,
electrospinning

Lung-on-a-chip Kanabekova et al. (2024)

Glass Acrylate-based photo-co-
polymers

Stereolithographic ‘3P-printing’
using a ‘Print-Pause-Print protocol’

Not author defined Ahmadianyazdi et al.
(2023)

Electrical PMMA Platinum electrodes Micromilling, hot-embossing, wire
embedding

Cell viability analysis Eades et al. (2023)

Silicon Gold nanoparticles Combining extrusion printing and
aerosol jet printing

Amperometric sensing of
lactate in sweat

Du et al. (2024)

Section B: Secondary hybrid devices

Structural,
electrical

PDMS Glass, electrical components Soft lithography and sputtering Analyte separation or
serotonin detection

Moraes et al. (2012),
Shameli et al. (2012)

Etching, sputtering, soft lithography Polymerase chain reaction Kaigala et al. (2008)

Anisotropic etching of an
amorphous bulk material

Various Mu et al. (2009)

Various, but mostly the
incorporation of electrodes in chip

‘Lab-on-a-chip’ Qiu et al. (2003), Li et al.
(2008), Zhou et al. (2010)

Casting Concentration of analyte Matsui et al. (2007)

Photolithography, etching, stacking DNA sequencing Blazej et al. (2006)

Soft lithography, spin coating,
aerosol printing of nanoparticles
inside microfluidic structures

Authors demonstrated
bipolar electrode
experiments; other
applications possible

Broccoli et al. (2023)

Photolithography, sputtering,
reactive ion etching, printed circuit
board

Cell-scale precise
temperature control

Lei et al. (2019)

Glass, polyimide, electrical
components

Photolithography, spin coating,
electrode patterning

Droplet digital nucleic acid
amplification

Coelho et al. (2023)

PMMA, glass, electrical
components

Photolithography, hole punch,
mechanical pressure assembly

‘Lab-on-a-chip’ Pérez-Sosa et al. (2022)

SU-8, electrical components Photolithography Microparticle manipulation Guo et al. (2010)

Lactate monitoring Wu et al. (2005)

(Continued on following page)
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TABLE 1 (Continued) Categorisation of hybrid microfluidic devices.

Hybrid
device sub-
category

Material Composited with Manufacturing
technique(s)

Application(s) Exemplar
reference

Polycarbonate, electrical
components

Soft lithography ‘Lab-on-a-chip’ Kuo et al. (2003)

SU-8 and polycarbonate Soft lithography, moulding and hot
embossing

Single cell and manipulation Chartier et al. (2003)

SU-8 and quartz Spin-coating and soft-lithography Isolectric focusing of
proteins

Ou et al. (2009)

Polyimide, graphene electrodes Laser ablation, stacking Wearable devices, point-of-
care diagnostics

Thaweeskulchai and
Schulte (2022)

Glass, silicon, polyimide Stacking, printed circuit board
technology

Detection of magnetically
labelled protein

Wu et al. (2010)

Glass Silicon Photolithography and wet chemical
etching

Polymerase chain reaction Wang and Burns (2009)

Polycarbonate
film

Glass fibres, Mediprene OF
400M, electrical components

Photolithography,
micromachining, or injection
moulding

Extraction of nucleic acids
from blood

Brassard et al. (2019)

Structural,
chemical

PDMS Agar Casting and layering Investigating the oviposition
behaviour of Drosophila

Leung et al. (2015)

Soft lithography Investigating associative
learning behaviour of C.
elegans

Zhu et al. (2023)

Agar and glass Replica moulding and stacking Single cell dynamic studies Wong et al. (2010)

Poly (lactic-co-glycolic) acid
coated glass

Soft lithography, electrospinning In situ monitoring of stem
cells

Hesari et al. (2016)

Poly-2-hydroxy ethyl
methacrylate

Micromoulding, casting Used to replicate a perfusion
microfluidic-based cell
culture device

Santaniello et al. (2015)

Glass and hydrogel Photolithography, gel casting Hydrogel matrix
degradability-dependent 3D
cell invasion models

Trappmann et al. (2017)

Device 1: Polycarbonate track-
etched membrane

Soft lithography, plasma treatment,
electroplating, engraving, stacking

In vivo detection of small
extracellular vesicles

Cong et al. (2024)

Device 2: indium-oxide coated
glass, nickel materials

Chromatography paper Wax printing, PDMS casting Detection of Campylobacter
jejuni

Chen et al. (2023)

PMMA Poly-2-hydroxy ethyl
methacrylate

Micromoulding, casting Used to replicate a perfusion
microfluidic-based cell
culture device

Santaniello et al. (2015)

Paper Laser ablation and clamping Detection of IgG Sanjay et al. (2020)

Polyethylene terephthalate and
paper

Laser ablation and stacking Detection of cyclamate Liu et al. (2023)

Detection of potassium from
whole blood

Tseng et al. (2022)

Paper and glass Laser ablation, thermal bonding Enzyme-linked
immunosorbent assay

Abate et al. (2020)

Adhesive tape and
polyethersulfone membrane

Laser ablation, stacking Cleaning of urea/‘Lab-on-a-
chip’

Gupta et al. (2023)

Polymer supports Cell-containing bioinks or
hydrogels

3D-printing 3D cell culture models Richard et al. (2020)

Cell culture Krakos et al. (2023)

(Continued on following page)
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as sensors or for performing functions such as organ-on-chip
monitoring, or cell-matrix interactions within the microfluidic
channel. Second, chemical components are integrated into
hybrid devices in the form of surface coating materials
(reviewed in (Tu et al., 2012)), or as catalysts (reviewed in
(Solsona et al., 2019)) for chemical reactions and others. The
third category is hybrid devices using composite materials as
structural components. Here, two different materials are bonded
together to form the walls of the microchannel or as one material
acting as a filter within the microchannel, as well as for less

functional reasons, such as one material simply acting as a
support substrate. When the microfluidic device has a single
function, they can be referred to as a primary hybrid device, but
different combinations are possible and secondary (containing
two types of hybrid components), and tertiary (containing all
three types of hybrid components) are also possible to fabricate.
This is presented schematically in Figure 1 where examples of
microfluidic structures are depicted for each category. In the
structural component bubble, an inertial focusing channel is
shown and has been fabricated with two materials shown in

TABLE 1 (Continued) Categorisation of hybrid microfluidic devices.

Hybrid
device sub-
category

Material Composited with Manufacturing
technique(s)

Application(s) Exemplar
reference

Silicon Perfouoro copolymer and
biomolecules

Photolithography, reactive ion
etching, biomolecule conjugation

Detection of
carcinoembryonic antigen

Washburn et al. (2009)

Glass Polycaprolactone Oxygen radical exposure of masks
composited with glass microfibres

‘Lab-on-a-chip’,
demonstrated colorimetric
assay for protein
quantification

Bandara et al. (2018)

PDMS and enzyme-contained
hydrogel

Hard and soft lithography, surface
activation of glass, enzyme
immobolisation

Multi-enzymatic reactions Simon et al. (2019)

PDMS and poloxamer Photolithography, channel coating Deterministic lateral
displacement-dependent cell
isolation from breastmilk

Hawkins et al. (2024)

Photocurable
resin

Hydrogel, polystyrene, well
plates

Micromilling, 3D printing Segregated coculture of cells Berry et al. (2017)

Cloth Paper, metal-organic
frameworks composited with
molecularly imprinted polymers

Printing, ‘origami-folding process’,
clamping

Colorimetric detection of
gonyautoxin

Xiang et al. (2024)

Section C: Tertiary hybrid devices

Structural,
chemical and
electrical
components

PDMS Paper, glass, electrical
components

Soft lithography, laser ablation,
stacking

Detection of N. meningitidis Dou et al. (2014)

Hole-punching, soft-lithography,
laser ablation

Detection of S. aureus and S.
enterica

Zuo et al. (2013)

PMMA Polymethacrylic acid (as a
copolymer), glass, paper and
electrode components

Free radical polymerisation and
casting of copolymer and dry
casting on glass. Biosensor
integration into the device

Detection of creatine Tzianni et al. (2022)

Polyethylene terephthalate and
paper

Laser ablation and stacking Urine and blood analysis Laurenciano et al. (2021)

Microelectrode, carbon
nanofibers-decorated gold
nanoporous structures

Laser ablation, micromilling,
electrode modification

Detection of prostate-
specific antigen

Felici et al. (2023)

Electrical components,
aluminium, rubber

Electrode functionalisation, laser
ablation, stacking

Detection of miR-122 and
potential for diagnosis of
drug-induced liver injury

Roychoudhury et al.
(2023)

Electrical components, silicon,
glass

Laser ablation, stacking, solvent-
assisted bonding

Blood lysate preparation Haque et al. (2023)

Glass Shape memory copolyacrylate,
electrical components

Micromoulding, photolithography,
casting

Particle separation Yang et al. (2018)

Note: ‘Lab-on-a-chip’ refers to a generic application and is included where the author has not stated a particular application. Abbreviations: digital light processing (DLP), polymethyl

methacrylate (PMMA), polydimethylsiloxane (PDMS), polyvinylchloride (PVC), ultraviolet (UV).
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yellow and red. The chemical components bubble shows a
microchannel structure (red) with a functional coating
(yellow) whereas the electrical component bubble depicts a
microfluidic device with an integrated component (black circuit).

At least two different materials need to be incorporated for a
device to be categorised as a primary hybrid microfluidic device
and must form the microchannel walls to be considered a primary
structural device. Hybrid devices can be considered primary
electrical component devices where an electrical component is
integrated but the channel is comprised of only one material. A
primary chemical component can be considered a hybrid device
where the microchannel is coated with a chemical reagent or the
device itself is comprised of a functionalised material to perform
the intended application. For the purposes of this review, devices
containing reservoirs or those that require the introduction of
reagents to the fluidic system are not classified as part of the
chemical component category. All other hybrid devices can be
considered as devices characterised as having combinations of
these primary components and are therefore defined as
secondary or tertiary hybrid devices. An extensive, but not
exhaustive, list of example hybrid devices across the hierarchy
is presented in sections A, B and C of Table 1 with discussions of
specific devices of interest.

Section A of Table 1 lists microfluidic devices that can be
categorised as a primary hybrid device and can be further divided
into devices containing structural, chemical, or electrical hybrid
components. Polydimethylsiloxane (PDMS) and polymethyl
methacrylate (PMMA) are two of the most commonly used
substrates in hybrid microfluidic device manufacture owing to
their biocompatibility, flexibility in application, capacity to bond
to a wide range of materials and cost-effectiveness (Nielsen et al.,
2020). PDMS substrates can be easily modified to generate
relatively complex 3D structures employing the widely used
technique of soft lithography. However, although PDMS has
proven a useful material for many applications, microchannels
constructed of PDMS have been shown to absorb small molecules
and deform under fluid pressure (Raj M and Chakraborty, 2020).
These two issues can impact device functionality where the
correct microchannel architecture or the quantification of
biomolecules are critical for the application (Hou et al., 2017;
Nielsen et al., 2020; Raj M and Chakraborty, 2020). PMMA, on
the other hand, does not deform under fluid pressure, can be fully
optically transparent, and has higher chemical inertness and
greater biocompatibility than PDMS (Gencturk et al., 2017).
Despite being one of the most widely used materials in
microfluidic devices for cell biology applications, PMMA is
not as versatile as PDMS when it comes to generating
complex microchannel architectures (Gencturk et al., 2017).
Other substrate materials have been used for structural hybrid
devices, but their use may be limited by cost, complexity of
fabrication technique or issues relating to chemical or biological
compatibility. Glass generally has higher costs than
thermoplastics but retains excellent biocompatibility, optical
transparency and robustness (Hou et al., 2017). Likewise,
despite some advantages, silicon lacks optical transparency
and photosensitive resins often have poor biocompatibility
(Ren et al., 2013; Hou et al., 2017).

As listed in Table 1, hybrid devices utilising PDMS often use soft-
lithography and hybrid devices utilising PMMA often use laser ablation
for manufacture. Laser ablation is a low-cost, highly replicable
fabrication technique and can be used to cut or, etch PMMA at a
much higher throughput rate than the use of soft lithography with
PDMS (Gencturk et al., 2017; Hou et al., 2017). Generally, where hybrid
devices in section A of Table 1 are categorized as having primary
electrical or chemical components, a chemically or biologically inert
material was used for the microchannel structure to act as a scaffold
material for the chemical or electrically compatible material in order to
perform their function.

Section B of Table 1 lists secondary hybrid microfluidic devices
where materials have been combined to produce a structural channel
whilst also simultaneously providing an electrical or chemical
functionality. Similarly to primary component hybrid devices, the
majority of listed devices are comprised of polymer materials as a
base substrate and are often combined with glass, but more recently a
range of other materials such as paper, hydrogels and other inorganic
materials have also been used. Hydrogels have been used as bioscaffolds
(Trappmann et al., 2017) for cell attachment whereas paper has been
used as a fluid carrier (Chen et al., 2023). The photoresist SU-8 has
extremely high biocompatibility and has historically been utilised as a
critical material in microelectronics (Nemani et al., 2013). In some
secondary hybrid devices, the coating of microchannels is used to
convey a chemical functionality to an otherwise relatively chemical inert
microchannel (Hesari et al., 2016) or may contain bioink materials for
cell culture (Richard et al., 2020).

The third category, tertiary hybrid microfluidic devices, contain
all three of the components discussed previously and a range of
examples are listed in section C of Table 1. As before, polymers and
glass are the primary substrate materials used in fabrication. Many
of these devices utilise the electronic components purely as
biosensors although some are used to generate electrical fields to
enable a specific function in the device. It is of note that tertiary
hybrid devices often have greater complexity and by definition are
comprised of more materials than those classified as primary or
secondary hybrid devices.

Conclusion

Many microfluidic devices are comprised of at least two
materials, but modern multifunctional devices often use more.
This review provides an important, but not exhaustive, review of
current hybrid material microfluidic devices and proposes a new
categorisation system for devices made of multiple materials.
Whilst hybrid devices have not previously been systemically
categorised, this review aims to provide a new approach to
describe intra- and intergroup commonalities, and an insight
into why different materials were selected for combination. The
development of devices using multiple, diverse materials to
achieve complex functionality requires the use of a range of
manufacturing techniques, and this review further aims to aid
researchers in their selection of materials for future hybrid device
fabrication. We acknowledge that as microfluidic device
functions increase in complexity with the integration of more
materials this review may require updating in the future.
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