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Tissue chips have become one of the most potent research tools in the
biomedical field. In contrast to conventional research methods, such as 2D
cell culture and animal models, tissue chips more directly represent human
physiological systems. This allows researchers to study therapeutic outcomes
to a high degree of similarity to actual human subjects. Additionally, as rocket
technology has advanced and become more accessible, researchers are using
the unique properties offered by microgravity to meet specific challenges of
modeling tissues on Earth; these include large organoids with sophisticated
structures and models to better study aging and disease. This perspective
explores the manufacturing and research applications of microgravity tissue
chip technology, specifically investigating the musculoskeletal, cardiovascular,
and nervous systems.
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1 Introduction

Researchers have begun to transition from traditional biomedical research methods to
tissue chips to better understand complexities of the human body. While conventional
monolayer cell culture and animal models are effective in the initial study of a condition or
cure, more intricate processes are required to truly predict how these factors will perform.
Tissue chips house cells akin to their natural state, implementing three-dimensional (3D)
culture, semipermeable membranes, and mechanical stimulation to precisely model their
typical environment (Yau et al., 2021; Rice et al., 2022). This allows researchers to accurately
mimic the body and its pathologies, to better understand both diseases and possible
therapeutics (Low and Tagle, 2016). These chips can incorporate microfluidic environments
as well as controllable software that alters fluid flow and pressure to meticulously recreate
the desired tissue (Bi et al., 2006; Yau et al., 2023a; Yau et al., 2023b).

In the past century, space exploration has greatly advanced at a low cost, as reusable
spacecrafts and rocket performance improve (Mu et al., 2022a). Accordingly, microgravity
has become much more accessible.

Microgravity simulators do exist on Earth. Experimental platforms such as 2D
clinostats, rotating wall vessels, and random positioning machines attempt to reproduce
the effects observed in true microgravity (Herranz et al., 2013). Interpreting data from these
simulators can at times prove complex and erroneous (Ferranti et al., 2020a; Silvani et al.,
2022) Another alternative are aircrafts that fly in parabolic maneuvers, creating true zero
gravity conditions, albeit for less than 30 s at a time (Zheng et al., 2017; Shelhamer, 2016;
Wang et al., 2015). However, these on-Earth simulations greatly reduce the cost and time
associated with microgravity studies in orbit. Overall, these simulated microgravity
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conditions appear to recreate similar conditions to what’s
experienced in space (Wuest et al., 2015). More studies are
necessary to identify possible differences in true and simulated
microgravity.

This perspective addresses the advantages and limitations of
microgravityand their impact on the ability of models to properly
mimic in-vivo conditions. Current research on the musculoskeletal,
cardiovascular, and nervous systems is discussed and insights are
provided on how implementation in microgravity could provide
improved results.

2 Unique properties of space

A lack of gravity causes cells to rapidly adapt, impacting a variety
of characteristics; in-vitro tissues form more sophisticated and
organized structures, similar to those seen in-vivo (Chang and
Hughes-Fulford, 2009). 3D cell aggregates, known as spheroids,
thus may benefit from utilization in space. Spheroids mimic the
natural spatial architecture of certain tissues, increasing cell-cell
interactions and the intricacy of structures compared to
conventional 2D cultures (Juarez-Moreno et al., 2022; Kadletz
et al., 2015). While spheroids have been proven as effective
models, they are not simple to produce. To alleviate these
difficulties, some have turned to microgravity. Various cells
exposed to microgravity saw an increase in cellular aggregation,
passively improving the formation of both tissue and tumor
spheroids (Masiello et al., 2014; Grimm et al., 2018; Aleshcheva
et al., 2016; Buken et al., 2019).

Microgravity expedites both the fabrication time and the
modeled disease progression of tissue chips. One cause is the
altered differentiation and proliferation of stem cells in
microgravity. Human induced pluripotent stem cells cultured on
the International Space Station (ISS) for 6 weeks showed a modified
expression of 2,000 genes compared to their Earth-cultured
counterparts (Giulianotti and Low, 2019). This modified
differences can prove beneficial for researchers; Hagiwara et al.
found that endothelial progenitor cells exposed to microgravity
show greater angiogenic potential, conceivably quickening the
vascularization of future tissue chips (Hagiwara et al., 2018).
Various other groups observed that mesenchymal stem cells are
guided towards an osteogenic phenotype in space without the need
for cytokines, accelerating the fabrication of bone tissue chips
(Gambacurta et al., 2019; Cazzaniga et al., 2016) Cardiac tissue
modeling has also shown potential; in addition to enhanced
angiogenesis, the proliferation and differentiation of
cardiomyocytes has been observed in microgravity (Jha et al.,
2016). Similarly, microgravity bolsters proliferation, survival, and
shortened cell cycles in neural crest stem cells (Han et al., 2021)
while stimulating neuroprotective effects in mesenchymal stem cells
(Otsuka et al., 2018).

Microgravity additionally eliminates loading force. In orbit,
astronauts lose cartilage, muscle, and bone mass due to the drastic
decrease in mechanical stimuli (Ganse et al., 2022; Comfort et al.,
2021; Mu et al., 2022a; Grimm et al., 2016; Willey et al., 2011). For
instance, bone cells are mechanosensory, sensing and relaying
mechanical signals. During load-induced strain, these cells release
signaling molecules (Wang et al., 2021), inducing either formation or

resorption (Juhl et al., 2021; Man et al., 2022). Without sufficient
loading, bone tissue will be catabolized (NIAMS, 2017). These effects,
along with the others listed, are summarized in Table 1:

While these loading-related diseases can be studied on Earth, the
methods to cause these catabolic effects in models are typically
limited to inducing the downstream chemical signaling seen in
mechanotransduction. However, many of these signaling
pathways are not well understood. A single stimulus may cause
the release of a multitude of factors. Even then, the dose and
frequency of downstream signaling molecules must be greatly
scrutinized to determine their similarity to real disease
conditions. Microgravity, however, offers the ability to directly
alter the physical stimulus that causes these downstream effects.
Instead of comprehensively mapping each pathway, one can directly
cause the lack of loading that induces this broad signaling naturally.
Thus, microgravity provides a rigorous testing environment for
therapies designed to fight against these conditions, offering a
streamlined ability to evaluate possible therapeutics.

To take full advantage of these benefits, tissue chips must be
optimally designed prior to their journey into LEO. Due to the
limited amount of current research done in space, anticipating
design issues, and correcting them when they occur, is a
challenging endeavor. Computer-aided design (CAD) has the
potential to steer clear of these limitations; CAD allows
researchers to increase the intricacies of their chip design,
perform extremely accurate measurements, and diversify methods
of fabrication (Tsur, 2020). These factors could be utilized to develop
improved tissue models for microgravity-based research before they
even have to get in a rocket. In a similar vein, machine learning
models can also be trained to review each study, developing new and
improved methods to fine tune previous ideas. As more information
is gathered, more will be understood by these models, resulting in
continuously optimized tissue chip designs for use in microgravity.

In addition to its plentiful biological applications, researchers
can also take advantage of microgravity’s physical properties to
improve the fabrication of tissue chips. Due to the lack of gravity,
forces such as convection and sedimentation do not occur in LEO.
This allows polymeric tissue scaffolds formed in solution, such as
hydrogels, to develop a much more homogeneous structure. This
enhanced architecture should, in theory, promote higher levels of
cell adhesion and interaction.

3 Advantages of microgravity

This review will focus primarily on how space may improve
musculoskeletal, cardiovascular, and nervous system tissue chips. As
of now, models of these systems can take the most advantage of
microgravity.

3.1 Musculoskeletal system

The musculoskeletal system is crucial to support our body and
preserve mobility. It comprises bone, muscle, cartilage, along with
other specialized connective tissues. Musculoskeletal diseases, like
osteoporosis and osteoarthritis, can be especially burdensome, as
they directly impact one’s ability to be active.
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Bone is a dynamic and complex tissue, constantly adapting to
external mechanical stimuli; moderate loading will strengthen bone,
but inadequate loading will diminish it (Rowe et al., 2022). To study
this phenomenon, Paek et al. developed an effective high-throughput
bone-on-a-chip platform to mimic the structure of an osteon, a
functional unit of bone, to act as a drug screening platform for
osteoporosis (Paek et al., 2023). The presence of sclerostin, in
which causes bone resorption, was used to assess drug efficacy.
While the therapeutic did decrease sclerostin concentration, the
chip itself did not truly model a diseased state. Thus, it is unclear
if the drug would be therapeutically effective. If taken to space,
microgravity could recapitulate the onset of osteoporosis;
additionally, the physical properties could generate a more
homogeneous osteon structure. Similarly, Galvan et al. developed a
tissue chip to model partially developed bone tissue (Galván-Chacón
et al., 2022). The passive osteogenic differentiation and increased
cellular arrangement could vastly improve their model. These
theoretical approaches have been verified by animal models in
LEO. Coulombe et al. confirmed the acceleration of osteoporosis
in space, even observing the intricacies of osteoporotic development,
like varying levels of bone loss depending on the skeletal maturity of
the animal (Coulombe et al., 2021).

Chondral breakdown in LEO has also been observed in mice
(Kwok et al., 2021). Some scientists have already taken advantage of
this with novel tissue models. Grodzinsky et al. utilized microgravity
to study inflammation-related interactions in a cartilage-bone-
synovium model (Dwivedi et al., 2022; Low and Giulianotti,
2019a). Shi et al. and van Loo et al., may benefit from the
influenced cell aggregation in LEO to further enhance their
spheroid cultures to study hypoxic chondrocytes and overall
cartilage formation, respectively (Shi et al., 2015; van Loo et al., 2024).

Skeletal muscle has similar potential in microgravity. On Earth,
Ortega et al. designed a muscle-on-a-chip to monitor two factors
lead to muscle atrophy (Ortega et al., 2019). Muscle atrophy is a
common consequence of aging (Altun et al., 2010), resulting from
immobilization and disuse (Bodine, 2013). By employing Ortega
et al.‘s tissue chip inmicrogravity, scientists could observe how a lack
of loading affects cellular signaling in muscle tissue, with real-time
monitoring. This would eradicate the current need for ethically
ambiguous animal models while providing invaluable information
that even on-Earth tissue models may implement to accurately
mimic atrophic progression. The effects of microgravity on
skeletal muscle atrophy have already been well documented in
tissue chips taken to the ISS (Parafati et al., 2023), astronauts in
orbit (Lee et al., 2022), and LEO-based animal models (Okada et al.,
2021). Interestingly, these effects remain with cells after their return
to Earth (Takahashi et al., 2021). These models, along with other
musculoskeletal chips, have potential to see the improvements
outlined in Figure 1:

3.2 Cardiovascular system

Cardiovascular diseases are a leading cause of mortality,
affecting over 17 million people each year (Amini et al., 2021).
As microgravity has promoted angiogenesis (Morbidelli et al., 2021;
Shi et al., 2017), induced spheroid formation in endothelial cells
(Dittrich et al., 2018), and expedited the differentiation of cardiac
progenitors from pluripotent stem cells (Jha et al., 2016), it may
provide an excellent environment for cardiac tissue modeling.

Figtree et al. (2017) cocultured cardiac myocytes, endothelial
cells, and fibroblasts to study cardiac fibrosis in vascularized cardiac

TABLE 1 This table showcases the multitude of effects that befall the human body in microgravity. The musculoskeletal system is exposed to a complete
lack of mechanical stimuli, causing muscle atrophy, cartilage degradation, and bone resorption. Further, the blood brain barrier undergoes an increase in
permeability, compromising the integrity of the brain’s primary protective system. Microgravity also accelerates tumor formation. In the heart, it provides
modified mechanisms of blood flow in addition to hemoglobin degradation and hemolysis. Overall, these results are due to the altered gene expression,
acceleration of disease, exposure to radiation, and exposure to the physical properties of microgravity in space.

Organ system Purported/Observed effects of µg Presumed causes

Nervous ↑ BBB permeability Altered gene expression

↑ Proliferation and survival of neural crest stem cells

Shortened cell cycles

↑ Neuroprotective effects Acceleration of degenerative and aging-based diseases

↑ Tumor formation

Cardiovascular Altered mechanics of blood flow Exposure to increased levels of radiation

↑ Angiogenesis

↑ Proliferation and differentiation of cardiomyocytes

Hemoglobin degradation Exposure to unfamiliar physical properties of microgravity

Hemolysis

Musculoskeletal Passive osteogenic differentiation Lack of mechanical stimuli

Bone resorption

Cartilage degradation

Muscular atrophy
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spheroids. While their model was successful, the increased cellular
aggregation and angiogenic potential in microgravity would likely
further strengthen their model. Additionally, adapting successful
animal cardiac models (Liu et al., 2021; Chen et al., 2019) to
microgravity-exposed tissue chips might provide a more
repeatable, accurate method to study drug efficacy, especially as
microgravity could accelerate disease progression (Lynch et al.,
2007; Walls et al., 2020).

Vascular damage is another factor of cardiovascular disease that
has been observed during zero gravity conditions. To understand
these outcomes, large scale artery dynamics were modeled in
simulated microgravity, providing key insights on their modified
mechanics (Caddy et al., 2024).

Tang et al. created a heart-on-a-chip platform with induced
pluripotent stem cells to evaluating therapeutics and study the
importance of the endothelial layer. The aforementioned impacts
on cell differentiation and organization observed in microgravity
could assist this model even further in its accuracy (Tang et al.,
2022). Collectively, cardiovascular tissue chips have not yet
implemented microgravity as much as musculoskeletal models,
yet they maintain a high degree of potential.

3.3 Nervous system

The nervous system grants us the ability to breathe, think, and
move, making it uniquely devastating when this essential network

fails. In 2019, 10 million died due to neurological disorders, with a
burden of disease that continues to increase (Ding et al., 2022;
Feigin et al., 2020). Thus, understanding its underlying processes
are essential. To perform these investigations, tissue chips are
employed as in-vitro blood-brain-barrier (BBB) models to develop
permeable therapeutics and recreate malignant tumors.

Neurodegenerative diseases such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), and multiple sclerosis affect millions.
These chronic conditions devastate both patients and their
families (Praznikov Victor, 2022). Tissue chips offer an
opportunity to better grasp the complexities of these diseases.
Park et al. developed a microfluidic chip with 3D neurospheroids
to precisely capture in-vivo conditions seen in AD, such as
reduced viability and disrupted neural networks (Grimm et al.,
2022). By promoting increased spheroid formation in
microgravity (Grimm et al., 2020), this already effective model
could be further perfected to model AD. Shin et al. similarly
created a chip to model AD-associated BBB dysfunction,
demonstrating how plaque deposition increases BBB
permeability (Shin et al., 2019). In LEO, this model could
experience increased cell-cell interaction, cell adhesion, and
possible accelerated disease progression (Low and Giulianotti,
2019b; Yau et al., 2023b) to further improve their AD tissue chip
design. The study of the BBB under microgravity has already been
a topic of interest for scientists. In fact, Hinojosa et al. have sent
their model of the BBB to the ISS to studying real-time cell-cell
interactions (Reporter, 2020). In 2018, Leong et al. developed a

FIGURE 1
This figure demonstrates that future developments, such as using the 3D printer on the ISS, can allow scientists to manufacture tissue chips in space
rather than Earth. The types of research that can be done in microgravity conditions are displayed, specifically using the musculoskeletal system as an
example. This figure was created with Biorender.com.
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microfluidic device for use in space to understand the relationship
between the brain and vasculature, as well as the impact of
neuropsychiatric drugs (Reporter, 2022).

Tsybko et al. studied how glial cell-derived neurotrophic factor
(GDNF), which can promote the recovery of motor function in PD
(Björklund et al., 1997), is affected in mouse brains exposed to
simulated microgravity (Tsybko et al., 2015). This study also found
that spaceflight had negative effects on the dopamine system, with
dysregulation of genetic control over GDNF being a potential cause.
This offers new insight to protect the health of astronauts, as well as
new methods to create Parkinsons-on-a-chip models by using
microgravity.

In addition to AD and PD, brain tumormodels may benefit from
microgravity. Glioblastomas are aggressive tumors with low life
expectancies (Jovčevska, 2020). This level of importance makes them
prime candidates for accelerated study in microgravity. To better
model BBB permeability observed in glioblastomas, Silvani et al.
used microgravity to decrease the expression of tight junction
proteins, directly increasing permeability. This low gravity-
induced permeability could also act therapeutically, temporarily
allowing chemotherapeutics to cross the BBB (Silvani et al.,
2021). Other brain tumor models are likely to benefit from the
enhanced tumor formation and structural architecture seen in
microgravity (Samiei et al., 2020).

Similar to Silvani et al.’s observations, microgravity has been
seen to decrease the BBB’s tight junction proteins in mice. This
acceleration of neurodegeneration is another concern for astronauts.
A novel BBB-on-a-chip could be created to visualize how
microgravity affects the brain via specific gene expression (Yan
et al., 2021) and oxidative stress (Chen et al., 2009) previously
observed in animal studies. Understanding the mechanism behind
these spaceflight-induced physiological changes can allow scientists
to develop possible solutions.

3.4 Physiological effects of microgravity

While microgravity has its benefits for furthering research,
astronauts who spend significant amounts of time in LEO
observe changes in their tissue functions. In this vein, tissue
chips can be utilized to understand how prolonged exposure to
microgravity impacts systems such as the musculoskeletal,
cardiovascular, and nervous systems are impacted.

The aforementioned loss of musculoskeletal tissue likely arises
from a loss of load, but it may be exacerbated by radiation (Hamilton
et al., 2006).

This radiation has also been observed to increase oxidative
stress and inflammation in the carotid arteries of astronauts (Lee
et al., 2020) along with structural remodeling and fibrotic
alterations of cardiac tissue (Xu et al., 2021). Tissue chips may
be the ideal option to study these phenomena. This research may
also prove beneficial on Earth, providing insights into the heart
damage seen in thoracic cancer radiation therapy (Schaue and
McBride, 2015).

Venous thrombosis (Auñón-Chancellor et al., 2020), anemia,
and decreased hemoglobin concentration (Trudel et al., 2020;
Nicogossian, 2003) have all been observed in astronauts on the
ISS. Further haemodynamic studies, such as Caddy et al.’s,

are necessary to resolve these issues (Caddy et al.,
2024).Alternatively, the hemoglobin degradation and hemolysis
(Trudel et al., 2022) can be utilized in tissue chips to evaluate
mechanisms of hemolysis-causing diseases, such as malaria, or test
possible therapies. Anemia also increases the susceptibility to
infectious diseases like tuberculosis (Gelaw et al., 2021),
providing a more rigorous testing apparatus if implemented.

Gray and white matter alterations, cognitive and motor ability
reductions, and the development of neuro-optic syndrome have all
been detected after spaceflight (Riascos et al., 2019; Marfia et al.,
2022; Roberts et al., 2019). The study of brain organoids in
microgravity is necessary to understand the impact of radiation
on astrocytes and neural architectures, like the BBB, to avoid these
outcomes (Roggan et al., 2023).

3.5 Limitations of research in zero gravity

While microgravity has the potential to further biomedical
research in a new frontier, it must be scrutinized before it can
achieve clinical relevance. The same changes in gene expression
that benefit researchers, such as cell differentiation and
proliferation, can be problematic when trying to apply results
from drug studies to human subjects. A drug may be effective in
microgravity when cells express certain genes, but when that same
drug is implemented on Earth, it may not completely translate its
efficacy. Perhaps a gene needed for the drug’s success was
upregulated in microgravity but downregulated on Earth.
Additionally, microgravity causes complex changes cytoskeleton
organization (Wu et al., 2022). Some studies have shown that
microgravity decreases expression of actin while others found the
opposite to occur (Bradbury et al., 2020).

These observations also depend on cell type; in human
neuroblastoma cells, microgravity showed microtubule bending
but had no influence on actin dynamics (Rösner et al., 2006). In
glioma cells, microgravity resulted in B-tubulin disorganization
(Wang et al., 2016). However, cardiovascular progenitor cells
cultured in space increased the expression of cytoskeleton genes
(Baio et al., 2018).

Space research has striking potential in terms of tissue chip
research, but the in-space changes of cells and disease progression
must be investigated further before it can be accepted as a true
replica of disease conditions on Earth. It is possible that exposure
to microgravity itself could alter a disease’s mechanisms rather
than only accelerating their progression. Also, in-space facilities
have strict loading capacity and experimental limitations, perhaps
leading to oversimplification, and therefore inaccuracy, of the
tissue chip models on board (Mu et al., 2022b; Ferranti et al.,
2020b). In addition, cosmic radiation may greatly impact the
efficacy of these tissue chips (Li et al., 2018; Nwanaji-Enwerem
et al., 2022; Soucy et al., 2011; Belli et al., 2002). Perhaps protective
apparati could be developed to mitigate the exposure to this
radiation, or at the very least attenuate it to a lesser degree. In
all, these observations obtained from microgravity-exposed tissue
chips require more time before they can be directly utilized in
clinically relevant comparisons. They can, however, provide a
foundational understanding, whose breadth will continue to
expand over time.
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4 Discussion

As tissue chip and space travel technologies advance, scientists
can fully utilize the accelerated disease progression, cell aggregation,
spheroid formation, and variation in genetic expression in
microgravity to further biomedical research. These characteristics
will lead to a deeper understanding of the mechanisms, signaling,
and therapeutic possibilities for an array of conditions. This has
begun for the musculoskeletal, cardiovascular, and nervous systems,
and others will likely follow suit. In the future, it is likely
microgravity will become ubiquitous in this field, providing
researchers with passive methods to most accurately model
disease and rigorously assess therapies. Through this
investigation of accelerated disease conditions and unique
properties, microgravity can aid us in creating effective and long-
lasting therapies, using space to improve the quality of life for us here
on Earth.
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