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Inertial microfluidics allows for passive, label-free manipulation of particles
suspended in a fluid. Physical experiments can understand the underlying
mechanisms to an extent whereby inertial microfluidic devices are used in
real-world applications such as disease diagnostics. However, design
processes are often iterative and device optimisation can be improved.
Numerical modelling has complementary capabilities to physical experiments,
with access to full flow field data and control of design parameters. Numerical
modelling is used to uncover the fundamental mechanisms in inertial
microfluidics and provides evidence for physical experiments. In recent years,
numerical modelling has been increasingly coupled to machine learning
algorithms to uncover additional physics and provide fast solutions. In this
perspective, I discuss the role numerical modelling will play in future inertial
microfluidic device research and the opportunities to combine numerical
modelling with machine learning algorithms. Two key areas for future
research applying machine learning are highlighted; fast predictions of flow
fields and the optimisation of design parameters. Developments in these areas
would significantly reduce the resources required in device design and have the
potential to uncover new applications.
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1 Introduction to inertial microfluidics

Inertial microfluidic devices are able to manipulate particles based on their
geometric and mechanical properties (Zhou and Papautsky, 2013). One key
application is size- and softness-based separation of particles. Particles are
suspended in a pressure-driven fluid through a channel with a Reynolds number, (a
non-dimensional quantity indicating the ratio of inertial to viscous forces) that is larger
than in traditional microfluidic devices. Increasing the Reynolds number is achieved
through increasing the fluid flow rate through the device, allowing for a higher
throughput of samples. The Reynolds number is also sufficiently high for inertial
forces to be relevant to the overall flow physics as first observed by Segre and
Silberberg (1961).

The main inertial forces acting on a single particle are the shear gradient lift force
and the wall-induced force (Martel and Toner, 2014). The shear-gradient lift force is
caused by the u-shaped nature of the fluid velocity profile across the channel cross-
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section due to the no-slip condition at the wall as shown in
Figure 1A. Since the particle has a finite size, there is a velocity
gradient across the particle in the lateral direction, resulting in
the shear-gradient lift force which usually pushes the particle
towards the channel wall as shown by the blue arrow in
Figure 1A. The second force, the wall-induced force, is caused
by the increase in fluid pressure between the wall as shown in
Figure 1B. The wall-induced force pushes the particle away
from the wall.

At given lateral positions in the channel cross-section, the shear-
gradient lift force and the wall-induced force will balance, resulting
in lateral equilibrium positions of the particle, often referred to as the
Segré-Silberberg effect. The location of the lateral equilibrium
positions are dependent on the geometric and mechanical
properties of the particle such as size, shape and softness
(Kilimnik et al., 2011). As a result, particles with different
properties can be separated. When the concentration of particles
within the flow is large, a distinct lateral equilibrium position may
not exist due to overpopulation (Krüger et al., 2014). However,
focusing streams can still exist where particles migrate towards
equilibrium positions without being able to reach equilibrium.
These focusing stream are also dependent on the geometric and
material particle properties and therefore particle type separation
can still occur.

Another physical phenomena that exists in inertial microfluidic
flows is the axial ordering of particles often called particle trains
(Schaaf and Stark, 2020). Particles that migrate to their lateral
equilibrium positions will also form trains with a consistent
inter-particle spacing between them. If the concentration of the
suspension is too high the trains can break down and transition into
focusing streams.

The physical phenomena of lateral equilibrium positions and
axial-ordering can be exploited for a number of applications. The
property-dependent lateral equilibrium positions can be used for
passive, label-free manipulation of biological cells. This
manipulation can be as simple as creating cell-rich or cell-free
volumes. Particles can be separated or focused based on their
properties which in turn can be utilised for diagnostic purposes,
e.g., the detection of circulating tumour cells (CTCs) in blood
samples (Zhou et al., 2019). Crucially, cells remain viable after

passing through an inertial microfluidic device. This retention of
viability opens up opportunities to culture cells, e.g., CTC-based
organoids used to test the effectiveness of drugs (De Angelis
et al., 2022).

The axial ordering of particles can be exploited in
applications such as flow cytometry and cell encapsulation. In
flow cytometry, cells pass through fluorescence sensors to
accurately measure physical and chemical properties. The axial
ordering of particles in flow cytometry with a consistent inter-
particle spacing ensures robust measurements are taken (Wu
et al., 2023). In cell encapsulation, a single cell is placed within a
droplet. Tuning of droplet generation is well understood
(Lashkaripour et al., 2019). However, ensuring a single particle
is placed within each droplet is non-trivial. Encapsulation devices
can suffer from Poisson statistics leading to empty droplets or
doublets, reducing efficiency of the device and requiring post-
generation sifting to output the desired single cell droplets.
Consistent axial ordering via inertial microfluidics has been
shown to overcome Poisson statistics (Shahrivar and Del
Giudice, 2022).

Experimental (Segre and Silberberg, 1961), numerical (Chun
and Ladd, 2006), and analytical (Asmolov, 1999) studies of
inertial flows set the foundations for the seminal study of the
application of the phenomena to microfluidics by Di Carlo et al.
(2007), coining the term “inertial microfluidics.” The authors
demonstrated that inertial microfluidics has the ability to
passively and continuously separate cells of different sizes at
high throughput. Since then, many further investigations have
been conducted with a near linear growth in published studies as
shown in Figure 2. The majority of these studies use physical
experiments. However, in recent times the use of numerical
modelling has increased leading to a larger rate of increase of
numerical to experimental studies.

2 Introduction to artificial intelligence
and machine learning

Artificial intelligence (AI) andmachine learning has experienced
a boom in interest in recent years. Applications include language

FIGURE 1
Depiction of the twomain inertial forces acting on a particle in an inertial microfluidic device: (A) shear gradient lift force and (B)wall-induced force.
The balance of the two forces dictates the location of the lateral equilibrium position of the particle.
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translation and image recognition, allowing users to classify large
datasets quickly and accurately. Machine learning algorithms can
identify underlying patterns within datasets and predict future
behaviour. To be used for prediction, machine learning
algorithms require existing datasets to train on. The level of user
engagement with the training data classifies machine learning
algorithms into supervised, unsupervised and reinforcement
learning methods (Sarker, 2021).

In supervised learning, the algorithm is trained on labeled data,
meaning the input data is paired with the correct output. The
algorithm learns to map the input to the output, making
predictions or decisions based on that mapping. Common
algorithms used in supervised learning include linear or non-
linear regression for regression tasks and classification algorithms
such as decision trees, support vector machines, and neural
networks for classification tasks. Generating and labeling the
input data for supervised learning can be time consuming.

Unsupervised learning involves working with unlabeled data.
The algorithm explores the data without any supervision or
guidance, identifying patterns or structures within it. Unlike
supervised learning, there are no explicit ground truths, and the
algorithm is left to discover the inherent structure of the data on its
own. Common techniques in unsupervised learning include
clustering, where the algorithm groups similar data points
together, and dimensionality reduction, where the algorithm
simplifies the data while preserving its essential features.

Reinforcement learning is a type of machine learning where an
agent learns how to behave in an environment by performing
actions and receiving rewards. The agent explores the
environment and learns to make a sequence of decisions that
maximize a reward metric over time. The number of iterations
required to optimise performance can often be large, meaning that
the time taken for an iteration to occur should be minimised in order
to find a solution within an acceptable time frame.

In recent years, machine learning has been successfully applied
to a number of applications in the field of fluid mechanics, from
turbulence modeling (Guastoni et al., 2021) to flow control (Rabault
et al., 2019) and is rapidly becoming a core technology for
computational fluid dynamics. While a limited number of recent
studies have used machine learning for inertial microfluidic studies
(Su et al. 2021), the recent advances in machine learning and

numerical modelling coupling have yet to be fully exploited in
inertial microfludics1.

The increase in interest in numerical modelling of inertial
microfluidics and machine learning in the general fluid
mechanics field leads to the focus of this perspective article.
What are the future applications of numerical modelling in
inertial microfluidics and how can it be used in conjunction with
recent advances in machine learning? I discuss the advantages and
disadvantages of both physical experiments and numerical
modelling in Section 3.1 and highlight how they complement
each other. I highlight numerical modelling studies to date which
have mainly focused on investigating fundamental physical
mechanisms (Section 3.2) and supplementing experimental
studies through the control of design parameters (Section 3.3). In
Section 4.1 I discuss the current state-of-the-art for inertial
microfluidics and machine learning before providing an overview
of how machine learning has been applied to the broader field of
fluid mechanics, and the potential avenues for cross-exploitation in
inertial microfluidics in Section 4.2. In Section 4.3 I discuss some of
the challenges that must be overcome in order to more widely apply
machine learning to inertial microfluidics.

3 Numerical modelling in inertial
microfluidics

Numerical modelling in inertial microfluidics generally falls
into the category of computational fluid dynamics (CFD).
Originally developed for aerospace research, CFD has been
applied to many applications including energy generation
(Hewitt et al., 2017), automotive design (Ashton et al., 2016)
and cardiovascular disease (Morris et al., 2016). A number of
numerical methods exist including lattice Boltzmann, finite
volume, finite element, finite difference, and smoothed particle
hydrodynamics. Each method has advantages and disadvantages
depending on a given application. The choice of the method often
involves a judgement on which method is most suited to a given
application as well as the user’s existing expertise. For more
detailed technical discussion of numerical modelling in inertial
microfluidics, the interested reader is directed to recent reviews
on the subject (Razavi Bazaz et al., 2020; Owen et al., 2023). In
this section I will discuss how numerical modelling and physical
experiments compliment each other in Section 3.1. I will then
provide a brief overview on how numerical modelling has mainly
been utilised in inertial microfluidics: uncovering the
fundamental physics in Section 3.2 and supplementing

FIGURE 2
Comparison of the overall number of published studies in the
field of inertial microfluidics: experimental and numerical (blue) and
number of published numerical studies in inertial microfluidics (red)1.

1 Number of IMF studies Scopus query: TITLE-ABS-KEY (“inertial

microfluidics”) OR TITLE-ABS-KEY (“inertial focusing”) OR TITLE-

ABS-KEY (“inertial migration”) OR TITLE-ABS-KEY (“inertial separation”)

AND PUBYEAR > 2006. Number of Numerical IMF studies Scopus

query: TITLE-ABS-KEY (“inertial microfluidics”) OR TITLE-ABS-KEY

(“inertial focusing”) OR TITLE-ABS-KEY (“inertial migration”) OR TITLE-

ABS-KEY (“inertial separation”) AND PUBYEAR > 2006 AND (TITLE-

ABS-KEY (“numerical”) OR TITLE-ABS-KEY (“simulation”).
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experimental studies through the control of design parameters
in Section 3.3.

3.1 Synergy of numerical modeling and
physical experiments

Numerical modelling complements physical experiments.
Numerical modelling can give access to entire datasets, e.g., it is
possible to view the full fluidic field at any time and at any location
within the domain. In contrast, physical experiments can generally
only view particle positions in one or two planes due to physical
constraints placing high-speed cameras while images can only be
taken for a fraction of a second. Furthermore, measurements taken
by high-speed cameras generally focus only on the particle
behaviour due to the difficulty of measuring fluid behaviour. An
advantage of physical experiments is that they inherently represent
real-world devices. In contrast, a real-world representation in a
numerical model would either have a prohibitively high
computational cost and complexity or the physical model may
not yet exist, e.g., a real-world representation of a white blood
cell. As such, a numerical modeller must use expertise and
judgement to decide which physical mechanisms to include
within the simulation and develop models if they do not yet
exist. Figure 3 shows an example of how numerical modelling
and physical experiments can be used together to further our
understanding of inertial microfluidic devices.

3.2 Uncovering fundamental physics

Given the complementary advantages and disadvantages
discussed in Section 3.1, numerical modelling is suited to
investigating the fundamental physics of inertial microfluidics.
The physics involved in inertial microfluidics is dependent on a
large number of geometric properties of the channel, geometric and
material properties of the particle, and properties of the suspending
fluid. A selection of the major contributors to the overall physics are
shown in Figure 4. Numerical modelling can take a simplified
representation and investigate the effect of one or two key

parameters at a time. For example, previous studies have used
large parameter sweeps to investigate the effect of particle size
and softness on the focusing behaviour of single particles
(Kilimnik et al., 2011), and on pair and train formation (Schaaf
et al., 2019; Owen and Krüger, 2022).

Numerical modelling can also analyse specific parts of a system
in detail, and translate systems to alternative reference frames to ease
analysis. Kahkeshani et al. (2016) used these capabilities to
investigate the mechanism of the self-assembly of particles into
pairs. Through the use of co-moving reference frames and
parameter space sweeps of initial lateral positions, they
demonstrated the existence of attractors (forces of attraction)
between particles. These attractors can be used to predict the
preferred spacing between particles for a given flow Reynolds
number, identifying the transfer of preferred spacing as Reynolds
number increases.

Numerical modelling can be used to create non-physical
scenarios to disentangle competing effects. Prohm and Stark
(2014) used this capability to neglect the lateral motion of a
particle as it passed through a channel. By placing the particle at
carefully selected locations within the cross-section, the authors
were able to create inertial lift force maps for a given channel
cross-section, particle size, and Reynolds number. These force
maps were used to predict the lateral motion of a particle in the
cross-section as well as identifying stable and unstable
equilibrium positions.

3.3 Controlling design parameters

Numerical modelling can be used to efficiently optimise device
design parameters, both in terms of time and cost. This is
particularly true when investigating device geometric design
parameters that would require the redesign and fabrication of
multiple physical devices if conducted via physical experiments.
One such example was published by Palumbo et al. (2020) who used
numerical modelling to optimise a helical spiral channel for size-
based particle sorting. They investigated the effect of various
geometric parameters such as channel pitch, diameter, taper
angle, depth, and width, within the same study (> 200

FIGURE 3
Complementary physical experiments adapted from Zhou et al. (2019) and numerical simulations (unpublished). Physical experiments can provide
real-world images of particle behaviour obtained through microscopes in a limited number of planes and positions. Samples collected at the outlets of
physical experiments provide quantitative device performance data such a output purity and separation efficiency. Numerical simulations can provide
comprehensive particle and fluid behaviour in the device using a model of the system. Note that experimental images at the inlet and outlet are
stacked and represent a number of time instances, aggregated. Numerical images are of a single time instance.
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simulations), all of which would require bespoke iterations of the
device to determine the parameter effects.

A typical particle-resolved simulation may take approximately
24 h using 36 cores on a high performance computing cluster.
Assuming 10 simulations can be run in parallel on the cluster, a
numerical study of 200 simulations would take approximately
1 month to generate data. Furthermore, most of this time would
require low human effort given that simulations are automated once
they have been started and simulations are deterministic and
therefore one simulation is sufficient per device design. In
contrast, physical experiments require high human effort,
including sample preparation and set-up of devices, calibration of
equipment, and data collection once the experiment is running. A
typical device may take 1 h to set-up and perform the experiment.
Given, each device design should be tested at least three times to
ensure repeatability of results, an experimental study would take
approximately 3 months of high human effort time to complete.

While numerical modelling offers the opportunity to perform
large parameter sweeps for a single parameter, it is still constrained
when investigating the coupled behaviour of two or more
parameters as the number of required simulations grows with xn

where x is the number of points within the parameter sweep, and n is
the number of parameters under investigation. As a result,
parameter sweeps with multiple dependent parameters can
quickly become prohibitively large, even with the enhanced
performance with using numerical modelling. In Section 4 I
discuss how machine learning may address this issue.

4 Integration of numerical modelling
with machine learning

The use of artificial intelligence and machine learning has
grown significantly in recent years. Well-known applications

include language translation and image recognition. It has also
been successfully applied to fluid mechanics, while a limited
number of recent studies have used machine learning for
inertial microfluidic studies. I will discuss the current state-of-
the-art for inertial microfluidics and machine learning in Section
4.1. In Section 4.2 I will provide an overview of how machine
learning has been applied to the broader field of fluid mechanics,
and the potential avenues for cross-exploitation in inertial
microfluidics before briefly discussing some of the challenges
that must be overcome in order to apply machine learning to
inertial microfluidics in Section 4.3.

4.1 State-of-the-art in machine learning
applied to inertial microfluidics

Machine learning is a branch of artificial intelligence where
algorithms are developed to solve problems that would be too
costly to solve via human-developed algorithms. Artificial neural
networks (ANNs) are an increasingly popular method for
machine learning and have been shown to perform well. ANNs
evaluate example data, referred to as “training data,” recognise
patterns and learn to complete a task, often without the need for
further instruction. The interested reader is directed to detailed
review of ANN methodology and their applications (Abiodun
et al., 2019).

While the use of machine learning has yet to be fully exploited in
inertial microfluidics, some recent papers have successfully explored
its potential applications in this field. Su et al. (2021) used an ANN to
provide fast predictions of inertial lift forces on rigid, spherical
particles through straight channels with rectangular, triangular or
semi-circular cross-sections. These inertial lift force predictions
were integrated into a reduced-order simulation to estimate the
lateral equilibrium position of a given particle size, channel aspect

FIGURE 4
(A) Key parameters in inertial microfluidics: For a given application, parameters may be constrained. Some parameters are more likely to be
constrained, e.g. the size and softness of a target particle, while others may be design parameters that should be optimised for the given constrained
parameters. NB: Size in Geometric Properties refers to the scale factor of the device with same axial and cross-sectional shape, while Size in Particle
Properties refers to a characteristic length, usually particle radius or diameter. The ratio of the two sizes provides the confinement of the system.
(B–G) Example Geometric Properties. Axial shape: (B) straight, (C) curved. Cross-sectional shape: (D) square, (E) rectangular, (F) circular, (G) triangular.
Dashed line in (B) and (C) is the channel centreline. Particles in (D–G) show each lateral equilibrium position associated with the cross-section type.
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ratio and flow Reynolds number without directly modelling the
particle itself. As a result, computational time and cost is
significantly reduced in comparison to a simulation where the
particle is fully resolved. ANNs have also been used in the
prediction of microcirculatory networks. Ebrahimi and Bagchi
(2022) used particle resolved 3D simulations to train an ANN to
provide time dependent flow behaviour and red blood cell
distributions through capillary networks, accounting for the cell-
cell interactions that are crucial to the network behaviour that
traditional 1D network models omit.

Machine learning has also been used in the classification of
measurements obtained through physical experiments of inertial
microfluidics for disease diagnosis. Guillou et al. (2021) used a
bespoke inertial device to identify different mechanical properties in
white blood cells. Based on these properties, they used a logistic
regression model to determine the likelihood of sepsis. This device
has recently obtained FDA approval and is currently used in clinical
practice (Sorrells et al., 2023).

4.2 The potential for cross-exploitation of
machine learning in fluid mechanics and
inertial microfluidics

The integration of machine learning with numerical
modelling and CFD in particular, has surged in recent years.
A number of different machine learning methods exist and have
been successfully integrated into various fluid mechanics-based
applications as shown in Figure 5. Here I focus on two promising
areas where machine learning can be applied in inertial
microfluidics: fast flow field prediction and design parameter
optimisation. Readers who are interested in a broader discussion
of machine learning application to fluid mechanics are directed to
a recent review of the subject (Brunton et al., 2020). I first focus
on fast flow-field predictions.

A popular method for fast flow field predictions is physics-
informed neural networks (PINNs). PINNs allow for the
governing physical equations to be integrated into neural
network training so that they are trained to satisfy both the
governing equations and training data, resulting in smaller
training dataset size requirements. PINNs have successfully
been applied to a range of applications within fluid mechanics
such as supersonic flows and thrombus formation (Cai et al.,

2021). Application of PINNs to inertial microfluidics could allow
the simulation of scenarios that would be too computationally
expensive to predict via numerical modelling alone. Examples
include the particle-resolved dense suspension flows and
complex geometries where periodic boundary conditions
cannot be exploited.

The second promising area for the application of machine
learning algorithms in inertial microfluidics is design parameter
optimisation. By coupling fast flow-field predictions with
reward-based learning algorithms, is it possible to explore
parameter spaces significantly larger than is realistic via
numerical modelling alone, allowing multiple coupled
parameters to be explored simultaneously. Rabault et al.
(2019) demonstrated this capability for flow control
applications, using a deep-reinforcement and artificial neural
network framework to optimise a time-dependent jet for drag
reduction using a modest computation resources. Such a task
would be prohibitively expensive via numerical modelling and
parameter space exploration alone, even accounting for user
expertise and prior knowledge in flow control.

4.3 Challenges when applying machine
learning and numerical modelling to inertial
microfluidics

While the advancement of the inertial microfluidic field with
numerical modeling and machine learning algorithms is potentially
transformative, developing such algorithms is non-trivial, with a
number of challenges that must be overcome.

One significant challenge is the time and cost associated with
generating datasets used to train the algorithms. In the case of
unsupervised learning, where larger training datasets are often
required, generating the dataset can often be prohibitive with
access required to significant compute hardware for extended
periods of time. For example, a typical particle-resolved
simulation may take approximately 24 h using 36 cores on a
high-performance computing cluster. For a training dataset of
around 1,000 simulations, the datasets can easily exceed a year of
total compute time with costs in excess of £15,000 (£0.02 per core
hour). Given that the motivation for employing machine learning
algorithms is often to reduce time and costs associated with
individual simulations, it is important to identify applications
where the training costs do not exceed the benefit of the
machine learning algorithm output. While efforts have been
made to reduce or transfer training data between models, for
example Kim and Lee (2020) demonstrated that a neural
network could accurately predict flow behavior in flow with
Reynolds numbers three times larger than the datasets used to
train the model, generating sufficient training data remains a
significant barrier to overcome.

Key physical parameter identification is another challenge
with the use of machine learning in inertial microfluidics. The
underlying physical mechanisms in inertial microfluidics are not
fully understood and are the subject of ongoing research. In
particular, it may be the case that current numerical models are
missing critical aspects of the physical model that are required to
train machine learning algorithms. One such example is the

FIGURE 5
Areas where machine learning has been applied to
fluid mechanics.
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representation of cells. Numerical models of red blood cells are
relatively mature having been extensively investigated in other
research fields (Owen et al., 2018). As a result, existing models
that are representative of real-world behaviour can be exploited
in inertial microfluidics. In comparison, white blood cells are
more mechanically and geometrically complex than red blood
cells to model with representative numerical models yet to
be developed.

5 Conclusion

Inertial microfluidics is a method to manipulate particles based
on their geometric and mechanical properties. Exploitation of the
inertial forces allows for passive, label-free separation of particles
based on their size, softness and shape, while maintaining cell
viability for personalised therapeutics. The increased Reynolds
number also brings the additional benefit enhancing
throughput, making it possible to process larger samples
efficiently.

Early efforts focused on physical experiments. However, in
recent times interest in numerical modelling in inertial
microfluidics has increased due to the complementary
capabilities of physical experiments and numerical modelling.
In particular, the ability of physical experiments to inherently
represent the real-world is complemented by the ability of
numerical models to access complete data sets for fluid and
particle behaviour. Such behaviour is dependent on a large
number key parameters such as geometric and mechanical fluid
and particle properties. Numerical modelling has the ability to
model non-physical scenarios in order to isolate the effects of
individual parameters. It also has the ability to perform large
parameter space studies to identify trends and underlying
mechanisms. However, when the effects of multiple parameters
are coupled, such parameter space studies can become
prohibitively large.

Machine learning algorithms have been subject to significant
interest in many applications including fluid mechanics. Recent
studies have demonstrated that machine learning is able to
provide fast flow field predictions and to optimise parameters
for a given target performance within a system. These capabilities
have yet to be fully exploited within inertial microfluidics.
However, they have the potential to allow for multiple coupled
parameters to be explored simultaneously, providing fast
prediction of the flow field, reducing computational time, and
allowing larger parameter spaces to be explored. Machine
learning also has the capability to identify underlying complex
patterns, opening up the opportunity to identify previously
unknown, underlying physical mechanisms and provide
efficient device design optimisation. However, in order to fully
realise the potential of machine learning algorithms, numerical

models must be further developed to incorporate the key physical
parameters that govern inertial mechanisms and be able to
provide sufficient training data within a suitable time frame
and budget.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

BO: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Project administration,
Visualization, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for the
research, authorship, and/or publication of this article. BO is funded
through by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (803553) and
by the US-UK Fulbright Commission, All-Disciplines Fulbright Award.

Acknowledgments

The author would like thank Prof. Timm Krüger for his
invaluable guidance and feedback.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer SRB declared a past co-authorship with the author
BO to the handling editor.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abiodun, O. I., Kiru, M. U., Jantan, A., Omolara, A. E., Dada, K. V., Umar, A. M., et al.
(2019). Comprehensive review of artificial neural network applications to pattern recognition.
IEEE Access 7, 158820–158846. doi:10.1109/ACCESS.2019.2945545

Ashton, N., West, A., Lardeau, S., and Revell, A. (2016). Assessment of RANS and
DES methods for realistic automotive models. Comput. Fluids 128, 1–15. doi:10.1016/j.
compfluid.2016.01.008

Frontiers in Lab on a Chip Technologies frontiersin.org07

Owen 10.3389/frlct.2024.1328004

https://doi.org/10.1109/ACCESS.2019.2945545
https://doi.org/10.1016/j.compfluid.2016.01.008
https://doi.org/10.1016/j.compfluid.2016.01.008
https://www.frontiersin.org/journals/lab-on-a-chip-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frlct.2024.1328004


Asmolov, E. S. (1999). The inertial lift on a spherical particle in a plane Poiseuille flow at
large channel Reynolds number. J. Fluid Mech. 381, 63–87. doi:10.1017/S0022112098003474

Brunton, S. L., Noack, B. R., and Koumoutsakos, P. (2020). Machine learning for fluid
mechanics. Annu. Rev. Fluid Mech. 52, 477–508. doi:10.1146/annurev-fluid-010719-060214

Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E. (2021). Physics-informed
neural networks (PINNs) for fluid mechanics: a review. Acta Mech. Sin. 37, 1727–1738.
doi:10.1007/s10409-021-01148-1

Chun, B., and Ladd, A. J. (2006). Inertial migration of neutrally buoyant particles in a
square duct: an investigation of multiple equilibrium positions. Phys. Fluids 18,
2176587. doi:10.1063/1.2176587

De Angelis, M. L., Francescangeli, F., Nicolazzo, C., Signore, M., Giuliani, A., Colace,
L., et al. (2022). An organoid model of colorectal circulating tumor cells with stem cell
features, hybrid EMT state and distinctive therapy response profile. J. Exp. Clin. Cancer
Res. 41, 86–15. doi:10.1186/s13046-022-02263-y

Di Carlo, D., Irimia, D., Tompkins, R. G., and Toner, M. (2007). Continuous inertial
focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci.
104, 18892–18897. doi:10.1073/pnas.0704958104

Ebrahimi, S., and Bagchi, P. (2022). Application of machine learning in predicting
blood flow and red cell distribution in capillary vessel networks. J. R. Soc. Interface 19,
20220306. doi:10.1098/rsif.2022.0306

Guastoni, L., Güemes, A., Ianiro, A., Discetti, S., Schlatter, P., Azizpour, H., et al.
(2021). Convolutional-network models to predict wall-bounded turbulence from wall
quantities. J. Fluid Mech. 928, A27. doi:10.1017/jfm.2021.812

Guillou, L., Sheybani, R., Jensen, A. E., Di Carlo, D., Caffery, T. S., Thomas, C. B., et al.
(2021). Development and validation of a cellular host response test as an early
diagnostic for sepsis. PLoS ONE 16, e0246980. doi:10.1371/journal.pone.0246980

Hewitt, S., Margetts, L., and Revell, A. (2017). Building a digital wind farm. Archives
Comput. Methods Eng. 25, 879–899. doi:10.1007/s11831-017-9222-7

Kahkeshani, S., Haddadi, H., and Di Carlo, D. (2016). Preferred interparticle spacings
in trains of particles in inertial microchannel flows. J. Fluid Mech. 786, R3. doi:10.1017/
jfm.2015.678

Kilimnik, A., Mao, W., and Alexeev, A. (2011). Inertial migration of deformable
capsules in channel flow. Phys. Fluids 23, 3664402. doi:10.1063/1.3664402

Kim, J., and Lee, C. (2020). Prediction of turbulent heat transfer using convolutional
neural networks. J. Fluid Mech. 882, A18. doi:10.1017/jfm.2019.814

Krüger, T., Kaoui, B., and Harting, J. (2014). Interplay of inertia and deformability on
rheological properties of a suspension of capsules. J. Fluid Mech. 751, 725–745. doi:10.
1017/jfm.2014.315

Lashkaripour, A., Rodriguez, C., Ortiz, L., and Densmore, D. (2019). Performance
tuning of microfluidic flow-focusing droplet generators. Lab a Chip 19, 1041–1053.
doi:10.1039/C8LC01253A

Martel, J. M., and Toner, M. (2014). Inertial focusing in microfluidics. Annu. Rev.
Biomed. Eng. 16, 371–396. doi:10.1146/annurev-bioeng-121813-120704

Morris, P. D., Narracott, A., von Tengg-Kobligk, H., Silva Soto, D. A., Hsiao, S.,
Lungu, A., et al. (2016). Computational fluid dynamics modelling in cardiovascular
medicine. Heart 102, 18–28. doi:10.1136/heartjnl-2015-308044

Owen, B., Bojdo, N., Jivkov, A., Keavney, B., and Revell, A. (2018). Structural
modelling of the cardiovascular system. Biomechanics Model. Mechanobiol. 17,
1217–1242. doi:10.1007/s10237-018-1024-9

Owen, B., Kechagidis, K., Bazaz, S. R., Enjalbert, R., Essmann, E., Mallorie, C.,
et al. (2023). Lattice-Boltzmann modelling for inertial particle microfluidics
applications -A tutorial review. Adv. Phys. X 8, 2246704. doi:10.1080/23746149.
2023.2246704

Owen, B., and Krüger, T. (2022). Numerical investigation of the formation and
stability of homogeneous pairs of soft particles in inertial microfluidics. J. Fluid Mech.
937, A4–A31. doi:10.1017/jfm.2022.85

Palumbo, J., Navi, M., Tsai, S. S., Spelt, J. K., and Papini, M. (2020). Inertial particle
separation in helical channels: a calibrated numerical analysis. AIP Adv. 10, 0030930.
doi:10.1063/5.0030930

Prohm, C., and Stark, H. (2014). Feedback control of inertial microfluidics using axial
control forces. Lab a Chip 14, 2115–2123. doi:10.1039/c4lc00145a

Rabault, J., Kuchta, M., Jensen, A., Réglade, U., and Cerardi, N. (2019). Artificial neural
networks trained through deep reinforcement learning discover control strategies for active
flow control. J. Fluid Mech. 865, 281–302. doi:10.1017/jfm.2019.62

Razavi Bazaz, S., Mashhadian, A., Ehsani, A., Saha, S. C., Krüger, T., and Ebrahimi
Warkiani, M. (2020). Computational inertial microfluidics: a review. Lab a Chip 20,
1023–1048. doi:10.1039/c9lc01022j

Sarker, I. H. (2021). Machine learning: algorithms, real-world applications and
research directions. SN Comput. Sci. 2, 160–221. doi:10.1007/s42979-021-00592-x

Schaaf, C., Rühle, F., and Stark, H. (2019). A flowing pair of particles in inertial
microfluidics. Soft Matter 15, 1988–1998. doi:10.1039/C8SM02476F

Schaaf, C., and Stark, H. (2020). Particle pairs and trains in inertial microfluidics. Eur.
Phys. J. E 43, 50. doi:10.1140/epje/i2020-11975-6

Segre, G., and Silberberg, A. (1961). Radial particle displacements in Poiseuille flow of
suspensions. Nature 189, 209–210. doi:10.1038/189209a0

Shahrivar, K., and Del Giudice, F. (2022). Beating Poisson stochastic particle
encapsulation in flow-focusing microfluidic devices using viscoelastic liquids. Soft
Matter 18, 5928–5933. doi:10.1039/d2sm00935h

Sorrells, M. G., Seo, Y., Magnen, M., Broussard, B., Sheybani, R., Shah, A. M., et al.
(2023). Biophysical changes of leukocyte activation (and NETosis) in the cellular host
response to sepsis. Diagnostics 13, 1435. doi:10.3390/diagnostics13081435

Su, J., Chen, X., Zhu, Y., and Hu, G. (2021). Machine learning assisted fast prediction
of inertial lift in microchannels. Lab a Chip 21, 2544–2556. doi:10.1039/d1lc00225b

Wu, C., Wei, X., Men, X., Xu, Y., Bai, J., Wang, Y., et al. (2023). Open flow cytometer
with the combination of 3D hydrodynamic single cell focusing and confocal laser-
induced fluorescence detection. Talanta 258, 124424. doi:10.1016/j.talanta.2023.124424

Zhou, J., Kulasinghe, A., Bogseth, A., O’Byrne, K., Punyadeera, C., and Papautsky, I.
(2019). Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using
a multi-flow microfluidic channel. Microsystems Nanoeng. 5, 8. doi:10.1038/s41378-
019-0045-6

Zhou, J., and Papautsky, I. (2013). Fundamentals of inertial focusing in
microchannels. Lab a Chip 13, 1121–1132. doi:10.1039/c2lc41248a

Frontiers in Lab on a Chip Technologies frontiersin.org08

Owen 10.3389/frlct.2024.1328004

https://doi.org/10.1017/S0022112098003474
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1063/1.2176587
https://doi.org/10.1186/s13046-022-02263-y
https://doi.org/10.1073/pnas.0704958104
https://doi.org/10.1098/rsif.2022.0306
https://doi.org/10.1017/jfm.2021.812
https://doi.org/10.1371/journal.pone.0246980
https://doi.org/10.1007/s11831-017-9222-7
https://doi.org/10.1017/jfm.2015.678
https://doi.org/10.1017/jfm.2015.678
https://doi.org/10.1063/1.3664402
https://doi.org/10.1017/jfm.2019.814
https://doi.org/10.1017/jfm.2014.315
https://doi.org/10.1017/jfm.2014.315
https://doi.org/10.1039/C8LC01253A
https://doi.org/10.1146/annurev-bioeng-121813-120704
https://doi.org/10.1136/heartjnl-2015-308044
https://doi.org/10.1007/s10237-018-1024-9
https://doi.org/10.1080/23746149.2023.2246704
https://doi.org/10.1080/23746149.2023.2246704
https://doi.org/10.1017/jfm.2022.85
https://doi.org/10.1063/5.0030930
https://doi.org/10.1039/c4lc00145a
https://doi.org/10.1017/jfm.2019.62
https://doi.org/10.1039/c9lc01022j
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1039/C8SM02476F
https://doi.org/10.1140/epje/i2020-11975-6
https://doi.org/10.1038/189209a0
https://doi.org/10.1039/d2sm00935h
https://doi.org/10.3390/diagnostics13081435
https://doi.org/10.1039/d1lc00225b
https://doi.org/10.1016/j.talanta.2023.124424
https://doi.org/10.1038/s41378-019-0045-6
https://doi.org/10.1038/s41378-019-0045-6
https://doi.org/10.1039/c2lc41248a
https://www.frontiersin.org/journals/lab-on-a-chip-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frlct.2024.1328004

	Accelerating the development of inertial microfluidic devices using numerical modelling and machine learning
	1 Introduction to inertial microfluidics
	2 Introduction to artificial intelligence and machine learning
	3 Numerical modelling in inertial microfluidics
	3.1 Synergy of numerical modeling and physical experiments
	3.2 Uncovering fundamental physics
	3.3 Controlling design parameters

	4 Integration of numerical modelling with machine learning
	4.1 State-of-the-art in machine learning applied to inertial microfluidics
	4.2 The potential for cross-exploitation of machine learning in fluid mechanics and inertial microfluidics
	4.3 Challenges when applying machine learning and numerical modelling to inertial microfluidics

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


