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Introduction: Chronotype refers to individual preference in circadian cycles 
and is associated with psychiatric problems. It is mainly classified into early 
(those who prefer to be  active in the morning and sleep and wake up early) 
and late (those who prefer to be active in the evening and sleep and wake up 
late) chronotypes. Although previous research has demonstrated associations 
between chronotype and cognitive function and brain structure in adults, little is 
known regarding these associations in children. Here, we aimed to investigate the 
relationship between chronotype and cognitive function in children. Moreover, 
based on the significant association between chronotype and specific cognitive 
functions, we extracted regions-of-interest (ROI) and examined the association 
between chronotype and ROI volumes.

Methods: Data from 4,493 children (mean age of 143.06 months) from the 
Adolescent Brain Cognitive Development Study were obtained, wherein 
chronotype (mid-sleep time on free days corrected for sleep debt on school 
days) was assessed by the Munich Chronotype Questionnaire. Subsequently, the 
associations between chronotype, cognitive function, and ROI volumes were 
evaluated using linear mixed-effects models.

Results: Behaviorally, chronotype was negatively associated with vocabulary 
knowledge, reading skills, and episodic memory performance. Based on these 
associations, the ROI analysis focused on language-related and episodic memory-
related areas revealed a negative association between chronotype and left 
precentral gyrus and right posterior cingulate cortex volumes. Furthermore, the 
precentral gyrus volume was positively associated with vocabulary knowledge and 
reading skills, while the posterior cingulate cortex volume was positively associated 
with episodic memory performance.

Discussion: These results suggest that children with late chronotype have lower 
language comprehension and episodic memory and smaller brain volumes in the 
left precentral gyrus and right posterior cingulate cortex associated with these 
cognitive functions.
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1 Introduction

Chronotype is commonly defined as the individual preferences in the 
sleep–wake cycle (Zavada et al., 2005; Adan et al., 2012). It is typically 
classified into three types: morning, evening, and intermediate 
chronotypes, using a self-assessment tool such as the Munich Chronotype 
Questionnaire (MCTQ) (Roenneberg et al., 2003). Morning chronotype, 
also known as early chronotype, refers to the preference to be active in the 
morning, and sleep and wake early. Evening chronotype individuals, also 
known as late chronotypes, prefer to be active in the evening, and sleep 
and wake up late. The intermediate chronotype refers to the lack of a 
preference for morning or evening. Roenneberg et al. (2004) examined 
25,000 children from the MCTQ database and reported that most 
children are early chronotypes, and tend to shift towards late chronotypes 
around the age of 20 years. In addition, a recent study of 957 Colombian 
adolescents (mean age 14.6 years) revealed that late chronotype was 
associated with higher levels of behavioral problems (i.e., attention and 
social problems) measured using the Youth Self-Report and Child 
Behavior Checklist (Zhu et  al., 2023). Moreover, late chronotype is 
associated with an increased risk of psychiatric disorders, such as 
depression (Antypa et  al., 2016; Lunsford-Avery et  al., 2021). These 
findings suggest that chronotype plays an important role in mental health 
maintenance and is involved in the onset of psychiatric disorders. 
Additionally, chronotype-related brain structural differences may 
be associated with mental health issues (Zou et al., 2022). Given the 
importance of chronotype in mental health and its potential link to brain 
structure, it is crucial to explore whether chronotype is associated with 
cognitive function and brain structure. However, little is known about its 
association with cognitive function and brain structure in children.

Previous studies have focused on the relationship between 
chronotype and cognitive function in adults. Several studies have 
found higher intelligence scores, including for memory and processing 
speed, in late chronotypes (Roberts and Kyllonen, 1999; Gorgol et al., 
2020). In addition, late chronotype is associated with higher verbal 
intelligence quotients (Killgore and Killgore, 2007). Conversely, a 
recent study reported that early chronotype is associated with higher 
verbal ability after controlling for age and later bedtime (Gibbings 
et al., 2022). Although some studies, such as those mentioned above, 
have reported the influence of chronotype on cognitive function in 
adults, there is a paucity of research on the association of chronotype 
with cognitive function in children.

Furthermore, there is some evidence regarding the relationship 
between chronotype and brain structure in adults. One study reported 
that early chronotype is associated with higher and lower gray matter 
density in the lateral orbitofrontal cortex and posterior parietal cortex 
(i.e., precuneus and superior parietal lobule), respectively (Takeuchi 
et al., 2015). Another study found lower gray matter volume in the 
lateral occipital cortex and precuneus in adults with early chronotype 
than in those with late chronotype (Rosenberg et  al., 2018). 
Furthermore, a recent study on adults reported that early chronotype 
in adults was associated with smaller volume in the right entorhinal 
cortex (Kim et  al., 2023). The various parts of the brain wherein 
chronotype affects gray matter change seem to be particularly relevant 
to cognitive function, such as the processing of language (Hickok and 
Poeppel, 2004; Proverbio and Zani, 2005; He et al., 2013) and memory 
(Dickerson and Eichenbaum, 2010; Walhovd et al., 2010; Aladro et al., 
2018). However, no study to date has identified the association of 
chronotype with brain structure in children.

This study addresses two research questions. First, is chronotype 
associated with cognitive function in children? Second, if this is so, is 
chronotype associated with the brain structures involved in such cognitive 
function? To answer these questions, we  investigated the association 
between chronotype and cognitive function in a large sample of children 
from the Adolescent Brain Cognitive Development (ABCD) Study. To 
further analysis of regional brain volumes, based on the significant 
association between chronotype and specific cognitive functions, 
we extracted regions-of-interest (ROI) associated with those functions. 
Thereafter, we examined the association of chronotype with ROI volumes. 
We hypothesized that, in children, chronotype would be associated with 
one or more cognitive functions (i.e., language, memory, and processing 
speed), and with the regional brain volumes related to these specific 
cognitive functions. In light of the growing prevalence of sleep-related 
issues, a better understanding of chronotype may be  helpful for 
considering brain and mental health in childhood.

2 Materials and methods

2.1 Participants

The ABCD Study is the largest longitudinal study examining child 
brain development and mental health in the United States (Jernigan 
and Brown, 2018). Recruitment began in 2016 and ended in 2018; 
however, the study is ongoing to collect longitudinal data. Full 
recruitment details of the ABCD Study have been published previously 
(Garavan et al., 2018). The present study mainly used data from the 
ABCD 3.0 release, which included 11,878 adolescents aged 9–11 years 
[Mean age, 9.91 years (Min, 8.91; Max, 11.08)] recruited from 21 data 
collection sites. All parents provided written informed consent, and 
all children assented to participate. All procedures complied with the 
Declaration of Helsinki. The Research Ethics Committee of the 
University of Fukui approved the data analysis (Assurance No. 
FU-20210067).

In this analysis, we used the MCTQ data from the 2-year follow-up 
because there was no baseline data. Accordingly, we obtained data on 
brain structure and cognitive functioning at the 2-year follow-up. 
However, demographic data such as handedness, child race/ethnicity, and 
parental education were obtained at baseline (see Supplementary Table 1 
for the variables). First, 5,307 participants who had no data on chronotype 
were excluded. Second, quality control for structural imaging data and 
FreeSurfer cortical surface reconstructions were performed manually by 
the ABCD team. Eight hundred and ninety-three participants who had 
no T1 quality check and imaging data were excluded. Third, duplicate 
participants caused by the binding of all data tables were removed 
(n = 357). After the primary data cleaning process (n = 5,321), we excluded 
missing values for chronotype (n = 589) and cases ineligible for T1 quality 
check (n = 77), which was extracted using the identifier marked with “0” 
as unacceptable imaging results by the ABCD team. For quality control 
of chronotype data in the MCTQ, we excluded children whose reported 
sleep durations for school days or free days were longer than 15 h or 
shorter than 3 h per day along with missing values (n = 162), because these 
abnormal sleep durations were more likely caused by mistakes during 
data collection (Yang et al., 2023). For the final analysis, 4,493 participants 
were included. Demographic data are shown in Table 1. Data cleaning and 
statistical analysis were conducted using R (version 4.3.1; The R 
Foundation for Statistical Computing, Vienna, Austria).
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2.2 Demographic variables and covariates

The following covariates were included as categorical variables 
and dummy-coded: sex, handedness, race/ethnicity (White, Black, 
Hispanic, Asian, and other), and medication use. Based on previous 
studies (Paul et al., 2021; Hamatani et al., 2022; Hiraoka et al., 2023), 
annual household income was treated as a five-level categorical 
variable. The following covariates were included as continuous 
variables: age, parental educational level, pubertal status, weekly sleep 
duration, and total intracranial volume. Parental educational level was 
recorded as follows: 12th grade, high school, and general education: 
12 years; college and associate degrees: 14 years; bachelor’s degree: 
16 years; master’s degree: 18 years; professional and doctoral degrees: 
20 years. The pubertal development scale was used to assess pubertal 
status (Petersen et  al., 1988), and completed by both a parent or 
guardian and the participant, with the two scores averaged for the final 
value. The abovementioned covariates were selected based on previous 
ABCD-based studies (Owens et  al., 2021; Bernanke et  al., 2022; 
Hamatani et al., 2022; Hiraoka et al., 2023).

2.3 Chronotype measures

The MCTQ (Roenneberg et al., 2003) was used to assess chronotype 
in children. This standardized self-rating scale assesses an individual’s 
habitual sleep and wake times on school days and free days. The variables 
consist of (1) sleep start (bedtime and sleep onset latency), (2) sleep end 

(wake-up time), (3) alarm clock usage, and (4) sleep duration (total 
amount of time between sleep start and sleep end). Additionally, 
mid-sleep on free days (MSF) is calculated as the midpoint between sleep 
onset and wake-up time. Furthermore, MSF needs to be adjusted for 
sleep debt to obtain the corrected sleep midpoint on free days (MSFsc) 
because most individuals accumulate sleep debt during the school day 
and extend their sleep time on free days (Roenneberg et  al., 2003). 
Therefore, MSFsc, also known as chronotype index, is calculated as MSF 
minus a correction for sleep debt equal to half the difference between 
sleep duration on free days and average sleep duration over the week, 
which is only applied if sleep duration on free days is greater than sleep 
duration on school days. Chronotype was calculated by the ABCD team.

2.4 Cognitive measures

Cognitive function (executive function, processing speed, 
episodic memory, and language) was measured using the NIH 
Toolbox (Fox et al., 2021; Ott et al., 2022; Nolin et al., 2023). Cognitive 
tests comprised the flanker inhibitory control and attention task 
(assessing executive function), pattern comparison processing speed 
task (assessing processing speed), picture sequence memory task 
(assessing episodic memory), and picture vocabulary and oral reading 
recognition tasks (assessing language functioning; see 
Supplementary materials for the details of each task) (Fox et al., 2021; 
Ott et al., 2022; Nolin et al., 2023). Age-corrected scores were utilized.

2.5 Brain structural measures

Participants were scanned using three 3 T MRI scanners (Siemens, 
General Electric 750, and Philips) to obtain high-resolution T1-weighted 
three-dimensional structural images (1 mm isotropic) with acquisition 
parameters as previously described (Casey et al., 2018). Structural data 
were preprocessed by the ABCD data team using the standard 
morphometric pipeline (i.e., skull-stripping, white matter segmentation, 
etc.) in FreeSurfer (version 5.3.0) (Hagler et al., 2019). First, we extracted 
34 regions labeled with the Desikan-Killiany atlas-based classification 
for cortical regional volume and seven regions labeled with atlas-based 
segmentation for subcortical regional volumes (68 and 14 regions in 
total, respectively). Thereafter, based on the significant association 
between chronotype and certain cognitive measures, we extracted the 
ROIs associated with these cognitive functions.

2.6 Statistical analysis

For all dependent, independent, and continuous variables, outliers 
were winsorized at 3 standard deviations from the mean (R-package 
‘DescTools’). To investigate the association between chronotype and 
cognitive measures, we adapted a linear mixed-effects model (R-package 
‘lmerTest’, ‘MuMIn’, and ‘jtools’) with each cognitive measure modeled 
as the dependent variable and chronotype as the independent variable. 
Based on previous studies (Owens et al., 2021; Bernanke et al., 2022; 
Hamatani et al., 2022; Hiraoka et al., 2023), family ID (used to denote 
sibling status), multiple data collection sites, and twin or triplet status 
were modeled as random effects. Covariates included the 
abovementioned variables. To test the association between chronotype 

TABLE 1 Demographics.

Characteristic Total
(n  =  4,493)

Age (months) 143.06 (7.66)

Parental education (years) 15.43 (2.42)

Pubertal status (score) 2.08 (0.62)

Weekly sleep duration (h) 8.83 (1.15)

Chronotype (MSFsc, h) 3.76 (1.52)

Sex (n)

 Male 2,451 (54.55)

 Female 2,042 (45.47)

Race/ethnicity (n)

 White 2,581 (57.47)

 Black 493 (10.98)

 Hispanic 874 (19.45)

 Asian 93 (2.06)

 Other 452 (10.06)

Annual household income (US$) (n)

 < 49,999 1,120 (24.92)

 50,000–74,999 587 (13.07)

 75,000–99,999 656 (14.60)

 100,000–199,999 1,325 (29.50)

 ≥ 200,000 483 (10.75)

Data are presented as the mean (SD) or n (%). SD, standard deviation; MSFsc, midpoint of 
sleep on free days, corrected for sleep debt.
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and ROI volumes, we applied a linear mixed-effects model with ROI 
volumes modeled as the dependent variable and chronotype as the 
independent variable. In addition to multiple data collection sites and 
twin or triplet status, we included family ID as a random effect nested 
inside a random effect of MRI scanner to account for differences across 
MRI scanners and similarities within families, as previously reported 
(Heeringa and Berglund, 2020; Owens et al., 2021; Bernanke et al., 
2022). Covariates included the abovementioned variables and total 
intracranial volume. For additional analyses using 82 regional brain 
volumes, see Supplementary materials. In addition, we adopted a linear 
mixed-effects model to assess the association between ROI volume and 
cognitive measures. The ROI volumes were modeled as the independent 
variable and cognitive measures as the dependent variable, and the 
covariates were the same variables used to assess the association of 
chronotype with ROI volumes. The statistical threshold was set at 
p < 0.05, false discovery rate (FDR)-corrected using the Benjamini-
Hochberg method. Furthermore, we investigated the mediating effects 
of chronotype on the relationship between ROI volumes (where 
chronotype was associated with regional brain volumes) and cognitive 
measures. For the details of the mediation analysis, see 
Supplementary materials.

3 Results

3.1 The association of chronotype with 
cognitive measures

Cognitive data are shown in Table 2 and Figure 1. Chronotype was 
negatively associated with scores on the picture vocabulary (Figure 1A: 
FDR p < 0.001), oral reading recognition (Figure 1B: FDR p = 0.014), 
and picture sequence memory (Figure  1C: FDR p < 0.001) tasks, 
indicating that late chronotype is associated with lower levels of 
language and episodic memory.

3.2 The association of chronotype with 
brain structure

The cognitive results revealed associations of chronotype with 
language and episodic memory functions. Regarding the neural basis 
of language, previous studies have proposed an anatomical 
topographic organization such that speech perception is represented 
in the superior temporal gyrus, sound-meaning processing is 
associated with the middle temporal and inferior temporal gyri, the 
auditory-motor interface is involved in the supramarginal gyrus and 

superior parietal cortex, and articulatory-based speech codes are 
indicated in the inferior frontal gyrus and primary motor area (Hickok 
and Poeppel, 2004; Proverbio and Zani, 2005; Cattaneo, 2013). In 
addition, the volumes of the superior parietal cortex, supramarginal 
gyrus, superior frontal gyrus, and lateral occipital cortex are associated 
with performance in phonological decoding tasks (He et al., 2013). 
Based on these findings, we extracted 24 ROIs as language-related 
areas (see Supplementary Table 2 for details on these brain regions). 
On investigating the association between chronotype and these ROI 
volumes, chronotype was found to be  negatively associated with 
volume in the left precentral gyrus (Table  3 and Figure  2A: FDR 
p = 0.049).

Regarding the neural basis of memory, besides the middle temporal 
lobe (especially in the hippocampus, entorhinal area, and 
parahippocampal gyrus) (Dickerson and Eichenbaum, 2010; Walhovd 
et al., 2010; Aladro et al., 2018), the posterior cingulate cortex, precuneus, 
inferior parietal cortex, and lateral orbitofrontal cortex are thought to 
influence episodic memory processing (Cavanna and Trimble, 2006; 
Dickerson and Eichenbaum, 2010; Walhovd et al., 2010; Leech and Sharp, 
2014; Aladro et al., 2018). Among the various brain regions associated 
with the memory system, structural changes in the entorhinal cortex, 
precuneus, and posterior cingulate cortex have been associated with 
performance in episodic memory tasks (Walhovd et al., 2010; Özyurt 
et al., 2017; Pelletier et al., 2017; Aladro et al., 2018). Based on these 
findings, we extracted 14 ROIs as episodic memory-related areas (see 
Supplementary Table 2 for details on these brain regions). Investigating 
the association between chronotype and these ROI volumes, we found 
that chronotype was negatively associated with the right posterior 
cingulate cortex volume (Table 3 and Figure 2B: FDR p = 0.049). These 
results show that late chronotype is associated with smaller volumes of 
the left precentral gyrus and right posterior cingulate cortex. For 
significant associations between chronotype and the 82 regional brain 
volumes, see Supplementary results and Supplementary Table 4.

Subsequently, we investigated the associations between the volumes 
of ROIs in the left precentral gyrus and right posterior cingulate cortex, 
and scores on the picture vocabulary, oral reading recognition, and 
picture sequence memory tasks (Figure 3). The left precentral gyrus 
was positively associated with scores on the picture vocabulary 
(Figure  3A: β = 0.06, 95% CI [0.02, 0.09], R2 = 0.23, t = 2.83, FDR 
p = 0.007) and oral reading recognition (Figure 3B: β = 0.06, 95% CI 
[0.02, 0.10], R2 = 0.13, t = 2.90. FDR p = 0.007) tasks. In addition, the 
right posterior cingulate cortex was positively associated with scores on 
the picture sequence memory task (Figure 3C: β = 0.04, 95% CI [0.004, 
0.08], R2 = 0.10, t = 2.17, FDR p = 0.030). These results indicate that 
larger volumes of the precentral gyrus and posterior cingulate cortex 
are associated with higher levels of language and episodic memory, 

TABLE 2 Cognitive characteristic associated with chronotype.

NIH toolbox Standardized coefficients (β) 95% CI R2 t FDR-P

FICA −0.02 −0.05, 0.02 0.04 0.96 0.338

PV −0.09 −0.12, −0.05 0.23 5.16 < 0.001

ORR −0.05 −0.08, −0.01 0.12 2.64 0.014

PCPS −0.03 −0.07, 0.003 0.05 1.81 0.087

PSM −0.07 −0.11, −0.04 0.10 4.06 < 0.001

NIH, National Institutes of Health; FICA, flanker inhibitory control and attention; PV, picture vocabulary; ORR, oral reading recognition; PCPS, pattern comparison processing speed; PSM, 
picture sequence memory; CI, confidence interval; FDR, false discovery rate.
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respectively. For the mediating effect of chronotype on the relationship 
between these regional volumes and language and episodic memory 
performances, see Supplementary results and Supplementary Figure 1.

4 Discussion

This study investigated the relationship between chronotype and 
cognitive function in children. Subsequently, the relationship between 
chronotype and specific regional brain volumes related to cognitive 

function was examined. Chronotype is negatively associated with the 
scores on picture vocabulary, oral reading recognition, and picture 
sequence memory tasks (Figure  1). In addition, chronotype is 
negatively associated with the volumes of the left precentral gyrus and 
right posterior cingulate cortex (Figure 2). These findings suggest that 
late chronotype is associated not only with low language and episodic 
memory performance but also with reduced volumes of the precentral 
gyrus and posterior cingulate cortex. Furthermore, we examined the 
relationship between these regional brain volumes, and language and 
episodic memory performance, finding that the precentral gyrus and 

FIGURE 1

Association of chronotype with cognitive function based on the NIH Toolbox. Chronotype was negatively associated with scores on picture vocabulary 
(A), oral reading recognition (B), and picture sequence memory (C) tasks. Conversely, the associations with scores on the flanker inhibitory control and 
attention and pattern comparison processing speed tasks were not statistically significant (Table 2). *FDR p  <  0.05, ***FDR p  <  0.001. NIH, National 
Institutes of Health; FDR, false discovery rate; MSFsc, midpoint of sleep on free days, corrected for sleep debt.

TABLE 3 Brain structural characteristics associated with chronotype.

Brain region Standardized coefficient (β) 95% CI R2 t FDR-P

Language-related area

L precentral −0.04 −0.07, −0.01 0.49 3.01 0.049

Episodic memory-related area

R posterior cingulate −0.05 −0.08, −0.02 0.31 3.04 0.049

CI, confidence interval; FDR, false discovery rate; L, left; R, right.
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posterior cingulate cortex are positively associated with language and 
episodic memory skills, respectively (Figure 3). These findings may 
suggest that children with late chronotype have lower language 
comprehension and episodic memory and smaller brain volumes in 
the left precentral gyrus and right posterior cingulate cortex associated 
with these cognitive functions.

In contrast to previous reports that late chronotype in adults is 
associated with better memory and verbal ability (Roberts and 
Kyllonen, 1999; Killgore and Killgore, 2007; Gorgol et al., 2020), this 
study revealed a negative association between chronotype, and 
picture vocabulary, oral reading recognition, and picture sequence 
memory task performances, suggesting that late chronotype is 
associated with lower vocabulary, reading, and episodic memory 
skills in children. A possible reason for this discrepancy is age-related 
differences in preferred chronotype. Roenneberg et al. (2004) found 
that children (aged 10–12 years) exhibit an early chronotype and 
tend to shift toward a late chronotype around the age of 20 years, 
suggesting that early chronotype may be  biologically preferred 
during childhood (Roenneberg et al., 2004; Randler, 2011). Thus, in 
children with a mean age of 11.09 years, as in the current study, early 
chronotype may be preferable to maintain cognitive performance. 
Furthermore, late chronotype is associated with larger daily sleep 
debt, morning sleepiness, and poorer sleep quality (Taillard et al., 
1999, 2004; Khan et al., 2020). As good night-time sleep has been 
implicated in better language and memory consolidation (Cousins 
et al., 2019; Berens et al., 2022), children with late chronotype may 
be  particularly vulnerable to impaired vocabulary, reading, and 
episodic memory skills, possibly due to accumulated sleep debt.

Based on previous findings (Hickok and Poeppel, 2004; Proverbio 
and Zani, 2005; Cavanna and Trimble, 2006; Dickerson and 
Eichenbaum, 2010; Walhovd et al., 2010; Cattaneo, 2013; Leech and 
Sharp, 2014; Aladro et al., 2018) and our behavioral results, language-
related and episodic memory-related ROI analysis revealed negative 
associations between chronotype, and the left precentral gyrus and 
right posterior cingulate cortex volumes. Moreover, a larger left 
precentral gyrus volume was associated with higher scores on both the 
picture vocabulary and oral reading recognition tasks. Additionally, 
greater volume in the right posterior cingulate cortex was associated 
with better performance on the picture sequence memory task. These 
findings suggest that in children, late chronotype is associated with 
smaller volumes in the left precentral gyrus and right posterior 
cingulate cortex involved in language and episodic memory skills. In 
contrast, a few studies have reported that early chronotypes were 
associated with smaller gray matter volume in the entorhinal cortex, 
posterior parietal cortex, lateral occipital cortex, and precuneus in 
adults (Takeuchi et al., 2015; Rosenberg et al., 2018; Kim et al., 2023). 
Because these studies considered adults who may have gradually 
become late chronotypes post-childhood (Roenneberg et al., 2004), 
the relationship between the previous findings and our results in 
children cannot be clearly interpreted. Although sleep duration may 
be associated with structural brain health (Tai et al., 2022), the current 
results highlight the impact of late chronotype in children on the 
structural deterioration of the precentral gyrus and posterior cingulate 
cortex without poor sleep duration.

The precentral gyrus is involved in motor control (Rizzolatti and 
Luppino, 2001) and language processing (Hickok and Poeppel, 2004; 
Lee et al., 2014). Schug et al. (2022) reported that bilingual children 

FIGURE 2

Association of chronotype with cognition-related brain structure. Considering ROIs in both hemispheres that are associated with language and 
episodic memory (as chronotype was found to be associated with scores on picture vocabulary, oral reading recognition, and picture sequence 
memory tasks), chronotype showed negative associations with volumes in the left precentral (A) and right posterior cingulate (B). In other regions, the 
associations were not significant (Supplementary Table 3). *FDR p  <  0.05. ROI, region of interest; FDR, false discovery rate; MSFsc, midpoint of sleep on 
free days, corrected for sleep debt.
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have larger gray matter volume in the left precentral gyrus compared 
to monolingual children, suggesting that such structural characteristics 
play an important role in speech motor control (Behroozmand et al., 
2015) and its feedback processing (Parkinson et al., 2012), which is 
required for precise vocabulary knowledge and speech production. 
This region is also associated with sleep deprivation (Huang et al., 
2022), and is engaged in a premediated state to prepare the brain for 
motor execution and coordination (Chenji et al., 2016). In our study, 
a larger left precentral gyrus volume was associated with higher 
vocabulary knowledge and reading skills. Furthermore, the left 
precentral gyrus volume has a significant direct effect on the 
vocabulary knowledge level. Moreover, such volume has a significant 
indirect effect on the vocabulary knowledge level that is partially 
mediated through chronotype (Supplementary Figure  1A). While 
precentral gyrus volume was associated with the maintenance of 
vocabulary knowledge, these mechanisms may be partially mediated 
by chronotype.

In addition, the posterior cingulate cortex, a key node in the 
default mode network (Fransson and Marrelec, 2008), is involved in 

planning for the future, internal/external thought, attention, and 
episodic memory (i.e., autobiographical memories) (Hahn et  al., 
2007; Dickerson and Eichenbaum, 2010; Leech and Sharp, 2014), 
suggesting that structural and functional anomalies in this region are 
associated with the suppression of self-referential processing 
(Dastjerdi et  al., 2011). Moreover, a recent study reported that 
changes in functional connectivity in the posterior cingulate cortex 
seed predict sleepiness (Facer-Childs et al., 2019), suggesting that 
abnormalities in the neural network in the posterior cingulate cortex 
may influence the induction of sleepiness. Some studies reported that 
poorer sleep quality and sleep abnormality are associated with a 
reduction in the volume of the posterior cingulate cortex (Heidbreder 
et al., 2017; Liu et al., 2022). As late chronotype has been implicated 
in morning sleepiness and poorer sleep quality (Taillard et al., 1999, 
2004; Khan et al., 2020), the daily accumulation of late chronotype-
related sleep debt may strongly influence structural anomalies in the 
posterior cingulate cortex. Similarly, a larger posterior cingulate 
cortex volume was associated with better performance in episodic 
memory tasks, suggesting its involvement in memory maintenance. 

FIGURE 3

Association of brain structure with language or episodic memory. Considering ROIs in the left precentral and right posterior cingulate (i.e., regional 
volumes that were found to be associated with chronotype), the volume in the left precentral was positively associated with the scores on the picture 
vocabulary (A) and oral reading recognition (B) tasks. In addition, the volume of the posterior cingulate was positively associated with the scores on the 
picture sequence memory task (C). *FDR p  <  0.05, **FDR p  <  0.01. ROI, region of interest; FDR, false discovery rate.
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Furthermore, although the right posterior cingulate cortex volume 
has no significant direct effect on episodic memory level, such 
volume has a significant indirect effect on episodic memory level that 
is fully mediated through chronotype (Supplementary Figure 1C). 
This suggests that the posterior cingulate cortex volume may not 
be directly related to episodic memory performance. Alternatively, 
this structure may be associated with the maintenance of episodic 
memory through chronotype.

Our study has several limitations. First, our design was cross-
sectional; thus, we plan to investigate longitudinally whether late 
chronotype is associated with behavioral changes and brain structural 
development in childhood. Second, this study used a restricted 
cognitive assessment battery from the NIH Toolbox because of 
missing data on working memory-related tasks. Therefore, future 
research should examine associations with late chronotype using a 
broader spectrum of neuropsychological measures in childhood. 
Finally, in our design, the ROI volumes selected based on chronotype-
related cognitive characteristics were extracted from 24 ROIs as 
language-related areas and 14 ROIs as episodic memory-related 
areas, as previously reported (see Results section and 
Supplementary Table 2). Although previous studies have indicated 
that ROI extraction related to specific cognitive functions is effective 
in understanding the neural basis of cognitive function (Kanwisher 
et al., 1997; D'Esposito et al., 1999; Banich et al., 2009; Kurth et al., 
2010; Matyi and Spielberg, 2022), the limitation may include the 
selection of speculative ROIs. Therefore, we  investigated linear 
mixed-effect models for associations between chronotype and 82 
regional brain volumes. Our uncorrected results (p < 0.05) suggest 
that late chronotype was associated with smaller volumes in the left 
precentral gyrus, left lateral orbitofrontal cortex, right posterior 
cingulate cortex, right rostral middle frontal cortex, right pars 
orbitalis, and right superior parietal cortex, with a larger volume in 
the right cuneus (Supplementary Table 4). However, such additional 
analyses should be  interpreted with caution because these 
uncorrected results were not significant after FDR correction.

5 Conclusion

For the first time, associations were found between chronotype, 
and behavioral and brain structural characteristics in childhood. 
Behaviorally, late chronotype was associated with lower levels of 
vocabulary, reading, and episodic memory. Structurally, late 
chronotype was associated with volume reduction in the language-
related left precentral gyrus and episodic memory-related right 
posterior cingulate cortex. Our results suggest that children with late 
chronotype have lower language comprehension and episodic 
memory and smaller brain volumes in the left precentral gyrus and 
right posterior cingulate cortex associated with these 
cognitive functions.
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