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To acquire statistical regularities from the world, the brain must reliably process,

and learn from, spatio-temporally structured information. Although an increasing

number of computational models have attempted to explain how such sequence

learning may be implemented in the neural hardware, many remain limited in

functionality or lack biophysical plausibility. If we are to harvest the knowledge

within these models and arrive at a deeper mechanistic understanding of

sequential processing in cortical circuits, it is critical that the models and their

findings are accessible, reproducible, and quantitatively comparable. Here we

illustrate the importance of these aspects by providing a thorough investigation

of a recently proposed sequence learning model. We re-implement the modular

columnar architecture and reward-based learning rule in the open-source NEST

simulator, and successfully replicate the main findings of the original study.

Building on these, we perform an in-depth analysis of the model’s robustness

to parameter settings and underlying assumptions, highlighting its strengths and

weaknesses. We demonstrate a limitation of the model consisting in the hard-

wiring of the sequence order in the connectivity patterns, and suggest possible

solutions. Finally, we show that the core functionality of the model is retained

under more biologically-plausible constraints.

KEYWORDS

reproducibility, sequence learning model, modularity, reward-based learning, spiking

networks

1. Introduction

Navigating in a dynamic environment requires actions and decisions that are precisely

coordinated in time and space, matching the spatio-temporally structured stimuli upon

which they are based. Therefore, the ability to learn, process and predict sequential patterns

is a critical component of cognition, with recent experimental findings showing a multitude

of brain regions to be involved in sequence processing (Dehaene et al., 2015; Wilson et al.,

2018; Henin et al., 2021). Some areas, such as the hippocampus, specialize on (spatial) tasks

that rely mainly on the ordinal information within the sequence and compress the temporal

features, for instance by recalling sequences faster than experienced (August and Levy, 1999).

Other regions, including early sensory areas such as the primary visual cortex, are capable of

learning and recalling not just the order of a series of stimulus patterns, but also the duration
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of the individual elements (Xu et al., 2012; Gavornik and Bear,

2014). In fact, the ability to represent both the ordinal and temporal

components of a sequence are two of the most fundamental

requirements for any system processing sequential information.

However, most existing models of unsupervised biological

sequence learning address only the first of these two criteria,

focusing on acquiring the order of elements and typically failing

to account for their duration. They either cannot intrinsically

represent the time intervals (Klos et al., 2018; Bouhadjar et al.,

2021), or they assume a fixed and identical duration for each

element that is limited by the architecture (Maes et al., 2021), or

they produce longer sequences that arise spontaneously even in the

absence of structured input (and hence are not related to it, Fiete

et al., 2010). Other studies have shown that event and stimulus

duration can be encoded via transient trajectories in the neural

space through the sequential activation of different cell assemblies,

but these mechanisms were either restricted in time (Duarte and

Morrison, 2014; Duarte et al., 2018), explored in the context of

working memory (Mongillo et al., 2008; Fitz et al., 2020) or relied

on heavily engineered network architectures (Klampfl and Maass,

2013).

Seeking to unify these computational features, Cone and

Shouval (2021) recently proposed a novel, biophysically realistic

spiking network model that avoids the problem of temporal

compression while maintaining the precise order of elements

during sequence replay. Relying on a laminar structure, as well as

experimentally observed cell properties, the system uses a local,

eligibility-based plasticity rule (3-factor learning rule see, e.g., Porr

and Wörgötter, 2007; Frémaux et al., 2015; Gerstner et al., 2018;

Magee and Grienberger, 2020) to learn the order of elements by

mapping out a physical path between stimulus-tuned columns

(akin to Zajzon et al., 2019), with the duration of each item being

encoded in the recurrent activations within the corresponding

column. The learning rule, based on the competition between

two eligibility traces and a globally available reward signal, is

grounded in recent experimental findings (He et al., 2015; Huertas

et al., 2016). This modular architecture allows the network to

flexibly learn and recall sequences of up to eight elements with

variable length, but only with simple transitions between items

(first-order Markovian). More intricate sequences with history

dependence (i.e., higher-order Markovian) can be learned, but

require additional structures for memory. Given the increased

complexity, this ability is only demonstrated in a continuous rate-

based model.

The code for the model is available in MATLAB. As this is

a proprietary, closed-source software, models expressed in this

manner have accessibility issues (not every scientist can afford a

license) and bear a greater risk of becoming non-executable legacy

code, if the code is not regularly maintained (for an example,

see to Brinke et al., 2022). Additionally, as MATLAB is a general

purpose numeric computing platform, the researcher must develop

all neuroscientific models and simulation algorithms de novo,

which presents a higher risk for implementation errors and poorly-

suited numerics (Pauli et al., 2018).

In this article we therefore present a replication of the original

study, which serves the twin purpose of testing the original

findings and providing a more accessible version of the model

to the computational neuroscience community. Specifically, we

re-implement their model using the open source software NEST

(Gewaltig and Diesmann, 2007) to simulate the networks and

Python for data analysis, thus ensuring a reusable and maintainable

code base.

Here, we use the term replication in the R5 sense described

by Benureau and Rougier (2018), i.e., striving to obtain the same

results using an independent code base, whereas a reproduction

(R3) of the model would have been achieved if we had obtained the

results of the original study using the original code. However, others

have argued these terms should be used the other way around: see

Plesser (2018) for an overview and analysis.

Our re-implementation successfully replicates the principal

results on the spiking network model from the original publication.

Going beyond the reported findings, we perform an extensive

sensitivity analysis of the network and learning parameters, and

identify the critical components and assumptions of the model.

We test the model at multiple scales and infer basic relations

between the scale and numerical values of different parameters.

Additionally, we show that the original model and implementation

rely on pre-wired feedforward projections between the columns to

successfully learn the order of elements within a given sequence.

We discuss why learning fails when generalizing to a more

plausible architecture in which projections between all columns

are allowed, and provide two possible solutions which restore

the system’s functionality. Finally, we demonstrate that the core

learning mechanisms can be retained in a functionally equivalent

network architecture that contains only local inhibitory circuits, in

line with cortical connectivity patterns (Brown and Hestrin, 2009).

The challenges we faced in replicating this study highlight

the importance of detailed and accurate documentation, as well

as access to the model code. In fact, a successful replication of

the main results would not have been possible without being able

to refer to the original implementation. In addition to multiple

discrepancies between the model description and the code, some of

the conceptual limitations we reveal here arise from certain critical

implementation details (as discussed in Pauli et al., 2018).

Our findings thus demonstrate that undertakings such as these

to replicate a study can also serve to improve the overall quality

and rigor of scientific work. Moreover, if carried out shortly after

the original publication, such in-depth analysis can lead to a better

understanding of the computational model and thus both increase

the likelihood that further models will be based on it, and decrease

the likelihood that thosemodels contain incorrect implementations

or implicit (but critical) assumptions.

2. Results

To investigate how temporal sequences of variable durations

can be acquired by cortical circuits, Cone and Shouval (2021)

propose a chain-like modular architecture where each population

(module) is tuned to a specific element in the sequence, and

learning translates to modifications of the synaptic weights within

and between modules, based on reward signals. We re-implement

the model, originally in MATLAB, using the open-source software

NEST. For access to the original code and our re-implemented

version, please see the Data Availability Statement below.
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FIGURE 1

Sequence learning task and network architecture. (A) A sequence of three intervals (elements) is learned by a network with as many dedicated

populations (columns). The individual populations are stimulated sequentially, with a global reward signal given at the beginning and the end of each

element. After training, the recurrent and feedforward weights are strengthened, and the sequence is successfully recalled following a cue. The

fullness of the colored sections on the right illustrates the duration of the activity (firing rates) above a certain threshold. (B) Each stimulus-specific

column is composed of two excitatory, Timers (T) and Messengers (M), and two corresponding inhibitory populations, IT and IM. Solid (dashed)

arrows represent fixed static (plastic) connections. Cross-columnar inhibition always targets the excitatory population in the corresponding layer (L5
or L2/3). (C) Firing rates of the excitatory populations during learning (top three plots) and recall (bottom plot) of four time intervals (500; 1,000; 700;

and 1,800ms). Light (dark) colors represent T (M) cells. Dashed light blue curve in top panel inset shows the inhibitory population IT in L5. Green (gray)

vertical bars show the 25ms reward (trace refractory) period, 25ms after stimulus o�set (see inset). (D) Spiking activity of excitatory cells (top) and

corresponding ISI distributions (bottom), during recall, for the network in (C). In the raster plot, neurons are sorted by population (T, M) and

sequentially by column (see color coding on the right).

The model is schematically illustrated in Figure 1A.

Following a training period where the modules are

stimulated in a particular order over multiple trials, the

network should be able to recall/replay the complete

sequence from a single cue. If learning was successful,

both the order and duration of the elements can be

recalled faithfully.

Initially, each module exhibits only a transient activity in

response to a brief stimulus (50ms, see Section 4), as the

connections are relatively weak. The duration of each sequence

element is marked by a globally available reward signal, forming

the central component of a local reinforcement learning rule based

on two competing, Hebbian-modulated eligibility traces (Huertas

et al., 2016). This synapse-specific rule is used to update the weights
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of both recurrent and feedforward connections, responsible for the

duration of and transition between elements, respectively. After

learning, these weights are differentially strengthened, such that

during a cued recall the recurrent activity encodes the current

element’s extent, while the feedforward projections stimulate the

module associated with the next sequence element.

The modules correspond to a simplified columnar structure

roughly mapping to L2/3 and L5 in the cortex. The columns

are composed of two excitatory populations, Timer (T) and

Messenger (M), and two associated inhibitory populations IT and

IM (Figure 1B), each containing 100 LIF neurons and conductance-

based, saturating synapses (see Section 4). Timer cells learn to

represent the duration through plastic recurrent connections, while

Messenger cells learn the transitions to the column associated with

the next sequence element. Note that, unless otherwise mentioned,

feedforward projections exist only between columns corresponding

to consecutive items in the input sequence. In other words, the

sequence transitions are physically traced out from the onset,

only the weights are learned (see also Section 3). Cross-inhibition

between the columns gives rise to a soft winner-take-all (WTA)

behavior, ensuring that only one column dominates the activity.

2.1. Sequence learning and recall

This modular architecture allows the system to robustly learn

and recall input sequences with variable temporal spans. Figure 1C

depicts the population responses before and after the network has

learned four time intervals, 500; 1,000; 700; and 1,800ms (see also

Figure 3 in Cone and Shouval, 2021). At first, stimulation of one

column produces a brief response, with initial transients in the

stimulated Timer and L5 inhibitory cells IT (see Figure 1C, top

panel and inset). With the inhibitory firing rate decaying faster than

the Timers’ due to higher threshold and lack of recurrence (see

Section 4), there is a short window when the net excitation from

the Timer cells elicit stronger responses from the Messenger cells.

During training, when each column is stimulated sequentially,

the recurrent Timer projections are strengthened such that their

responses extend up to the respective reward signal (green vertical

bars). At the same time, the feedforward projections from the

Messenger cells on to the next column are also enhanced, such

that upon recall (stimulation of first column), they are sufficient

to trigger a strong response in the corresponding Timer cells.

This chain reaction allows a complete replay of the original

sequence, preserving both the order and intervals. The activity

propagation during recall is illustrated in Figure 1D (see Figure

3S4 in Cone and Shouval, 2021). The network displays realistic

spiking statistics (coefficient of variation of 1.35 and 0.95 for Timer

and Messenger cells), with Messenger cells having lower firing

rates than Timer cells, roughly consistent with the experimentally

observed values (Liu et al., 2015).

2.2. Learning and recall precision

The model exhibits fluctuations in the learning process and

recall accuracy of sequences as a consequence of noise and

the stochastic nature of spiking networks. For sequences of

intermediate length, the recall times typically vary within ±10–

15% of the target duration (see Figure 2A, left). However, this

range depends on several parameters, and generally increases

with duration or sequence length (see Supplementary Figure 1).

Nevertheless, averaged over multiple network instances, these

effects are attenuated and learning becomes more precise

(Figure 2A, right).

These fluctuations can also be observed at the level of

synaptic weights. Whereas the recurrent weights in the Timer

populations converge to a relatively stable value after about 70

trials (see Figure 2B, bottom panel, and Figure 3S2 in Cone

and Shouval, 2021), the feedforward weights display a larger

variability throughout training (top panel). For the recurrent

connections, convergence to a fixed point in learning can be

formally demonstrated (see proof in Cone and Shouval, 2021). As

a Hebbian learning rule (see Section 4), the two competing LTP

and LTD eligibility traces are activated upon recurrent activity in

the Timer population. Assuming that both traces saturate quickly,

with a slightly higher LTD peak, and given a larger time constant

for the LTP trace, the LTD trace will decay sooner, resulting in

the facilitation of recurrent synapses during the reward period

(Figure 2C, top panel). Learning converges when the net difference

between the two traces is zero at the time of reward.

For the feedforward weights, an analytical solution is more

difficult to derive. Due to Hebbian co-activation of Messenger

cells and Timer cells in the subsequent module, the traces are

activated (non-zero) shortly before the reward period, temporarily

reset following reward, and reactivated during the next trial

(Figure 2C, bottom panel). The net weight change is thus the sum of

trace differences over two subsequent reward periods. Empirically,

learning nevertheless tends to converge to some relatively stable

value if feedforward projections only exist between columns coding

for subsequent input elements. However, because the reward

signal is globally available at each synapse, all projections from a

Messenger population to any other module could, in theory, be

facilitated, as long as there is some temporal co-activation. We

elaborate on this aspect in Section 2.5.

2.3. Model robustness

Although formally learning convergence is only guaranteed

for the recurrent Timer connections, Cone and Shouval (2021)

report that in practice the model behaves robustly to variation of

some connectivity and learning parameters. However, the range

of parameter values and sequence lengths analyzed in Cone and

Shouval (2021) (see their Figure 5 and Supplements) does not

give a complete account of the parameters’ influence and the

model’s limits. To test model robustness more thoroughly, we

varied a number of the synaptic weights and learning parameters

beyond those considered in the original work, and measured the

consistency in the recall times of a sequence composed of four

700ms intervals.

First, we varied the excitatory and inhibitory projections onto

Messenger cells within a column, in an interval of ±20% of their

baseline value. This is the range explored in Cone and Shouval
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FIGURE 2

Accuracy of recall and evolution of learning. Results shown for a sequence of four intervals of 700ms. (A) Fluctuations in learning and sequence

recall. We define recall time as the time at which the rate of the Timer population drops below 10 spks/sec. Left: recall times for 30 trials after learning,

for one network instance. Right: distribution of the median recall times over 10 network instances, with the median in each network calculated over

30 replay trials. (B) Mean synaptic weights for feedforward (Messenger to Timer in subsequent columns, top) and recurrent (Timer to Timer in the

same column, bottom) connections for one network instance. (C) Mean LTP and LTD traces for the recurrent (top) and feedforward (bottom)

connections, for learning trials T= 3, T = 15, and T = 35 and one network instance.

(2021) (see their Figure 5), but only qualitative results of the

population activities were reported and only for a subset of all

possible combinations. In the baseline network, on average 17

out of 50 reported recall times were off by ±140 ms (or 20% of

correct interval) when measured relative to their expected onset

time, whereas these values varied between 15 and 22 for the tested

parameter configurations (see Figure 3A, top left). Averaged across

all four columns, the outliers decreased to a range between 11 and

15 (Figure 3A, bottom left). Next, we used a modified z-score based

on the median absolute deviation (Iglewicz and Hoaglin, 1993) to

evaluate the distribution of the absolute recall times (not relative to

their expected onset). These were centered closely around the mean

recall time in each column, with the number of outliers decreasing

significantly to below 1.5 (3% of recall trials, Figure 3A, right).

These results suggest that the recall times are relatively consistent

for each column (narrowly distributed), but the absolute deviations

from the expected values increase with the element’s position in

the sequence.

In other words, the errors and variability accumulate with

sequence length, with the network being particularly sensitive to

the weaker excitatory connections fromTimer ontoMessenger cells

(see 1w = −20% for T → M). In fact, these errors manifest in

recalling increasingly shorter intervals (Figure 3B, left), with the

last column reporting on average close to 600 ms instead of 700

ms. Averaged across all columns, the median recall time is more

accurate. Similar results are obtained for variations in the inhibitory

projections between columns (Figure 3B, right).

The model displays similar robustness to variations in the

eligibility trace time constants (τ p, τ d, τ
p

ff
, τ d

ff
) and the variables

scaling the Hebbian contribution to the trace dynamics (ηp, ηd,

η
p

ff
, ηd

ff
, see Section 4). Whereas, in the original work this analysis

was performed with a sequence of two elements of 500 ms each
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FIGURE 3

Robustness to variation in synaptic weights and learning parameters. The system was trained on a sequence of four elements, each with a duration of

700ms. For the Timer cells, we define relative recall time as the recall time relative to stimulation onset, i.e., the time from the expected onset time (0;

7,00; 1,400; 2,100) in the sequence until the rate drops below a threshold of 10spks/sec. Conversely, absolute recall time is simply the time when the

rate drops below threshold (relative to 0). (A) Number of outlier intervals reported during 50 recall trials, as a function of the percentage change of

two synaptic weights within a column: excitatory Timer to Messenger, and inhibitory IT to Messenger. Top row shows the number of outliers, defined

as a deviation of ±140 ms from the correct interval relative to expected onset (left), and the number of outliers detected using a modified z-score

(threshold > 3, right panel) based on the median absolute deviation in column C4 (see main text). Bottom row shows the respective outliers averaged

over all four columns. (B) Deviation of the median recall time from the expected 700ms, as a function of the excitatory and inhibitory synaptic

weights onto the Messenger cells in a column (left), and as a function of the cross-columnar (Ci 6= Cj) inhibitory synaptic weights within the same

layers (right). Top and bottom row as in (A). All data in (A, B) is averaged over 20 network instances. (C) Mean recall time of a four-element sequence

of 700ms intervals, over 50 recall trials of a single network instance. Left: baseline network. Center: during each training trial, the learning parameters

(see main text) are drawn randomly and independently from a distribution of ±20% around their baseline value. Error bars represent the standard

deviation. Right: the set of learning parameters is drawn randomly once for each network instance, with data shown averaged over 10 instances.

(see Figure 5—Supplement 1 in Cone and Shouval, 2021), here

we use a sequence of four 700 ms elements. Compared to the

baseline network (Figure 3C, left), where the median recall time

decays only slightly with sequence length, randomizing the learning

parameters in each learning trial not only increases the median

recall time across all columns, but it also leads to a greater variability

in the replayed sequences (Figure 3C, center). Randomizing the

learning parameters once per network instance does, on average,

lead to results closer to the baseline case, but further increases the

recall variability in the last column (Figure 3C, right —analysis not

performed in Cone and Shouval, 2021).

These results demonstrate that the system copes well with

intermediate perturbations to the baseline parameters with respect

to the afferent weights for the Messenger population, the cross-

columnar inhibition and the learning rule variables.

While the Timer and Messenger cells are responsible for

maintaining a sequence element in the activity and signaling

the onset of subsequent ones, the dynamics of the inhibitory

populations orchestrates the timing of the individual components.

For example, through their characteristic activity curve, the

inhibitory cells in L5 simultaneously control the activity of the

Messenger cells in their own column and the onset of the Timer

populations in the next column. By modifying the synaptic weight

from the Timer cells to the inhibitory population in their column

(wT→IT ), and thus controlling direct excitation, we sought to

understand how these inhibitory cells impact learning.
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FIGURE 4

Activity of L5 inhibitory population is critical for accurate learning. (A) Deviation of the median recall time of three intervals of 700ms, as a function of

the change in synaptic weights T → IT relative to baseline (1w = 0). Gray area (< −25%) marks region where learning is unstable (not all elements

can be recalled robustly). Data is averaged over five network instances. (B–D) Characteristic firing rates during recall for values deviations of −25, 0,

and 40% relative to baseline. Solid curves represent the excitatory populations as in Figure 1, while dashed curves indicate the respective inhibitory

populations IT in Ci.

For values significantly lower than baseline (< −25%, gray area

in Figure 4A), the network fails to recall sequences in a reliable

manner (Figure 4B), in particular sequences containing more than

two elements. In addition, the recall times vary significantly across

the columns in the case of reduced weights. As the weights increase,

the stronger net excitation causes longer-lasting inhibition by

IL5 , delaying the activation of the Messenger cells (Figure 4C).

This leads to an over-estimation of the elements’ duration, which

increases with the element’s position in the sequence (up to+200ms

for 1wT→IT = 40%, Figure 4D).

Although these observations suggest a robust learning

mechanism, they also indicate an intrinsic and consistent bias of

the model for reporting increasingly shorter intervals and larger

variability in the recall times of longer sequences.

2.4. Model scaling

In the previous section we investigated the sensitivity of the

model to the choice of synaptic weights, but a broader definition

of robustness also encompasses invariance to the size of the

different populations. Ideally, themodel should retain its dynamical

and learning properties also for larger network sizes, without

the need for manual recalibration of the system parameters. In

balanced random networks, increasing the network size by a factor

of m and decreasing the synaptic weights by a factor of
√
m

should maintain the activity characteristics (van Vreeswijk and

Sompolinsky, 1998; Litwin-Kumar and Doiron, 2012; van Albada

et al., 2015). The model studied here differs significantly from

these systems with respect to features such as the ratio of excitation

and inhibition (1:1, not 4:1), or strong recurrent connectivity

in the small N regime, which results in significant fluctuations

driven by noise. Furthermore, the stereotypical activation patterns

underlying sequence learning and replay are significantly more

complex. These considerations suggest that successful scaling may

require additional modifications of the connectivity.

In the original formulation of the model, each population

(Messenger, Timer, inhibitory) consists of 100 neurons. To study

how well the model scales for N′ = 400, we kept all parameters

unchanged and scaled all non-plastic weights by 1/
√

N′/N (see

Supplementary Table 4). Under such standard scaling, the system

fails to learn and recall sequences (Figure 5A), primarily due to

the high firing rates of IT cells. These decay slower than the

corresponding Timer cells, inhibiting the Timer population in

the subsequent column and thus prohibiting a correct sequential

activation during training.

Nevertheless, it is possible to find a set of parameters (see

Section 4 and Supplementary Table 4) for which learning unfolds

as expected; this is illustrated in Figure 5B. The critical component

here is the activity of IT (see also Figure 4). This must fulfill three

criteria: first, it must decay slightly faster than the rate of the

Timer population in the same column; second, it must sufficiently

inhibit the Timer populations in all other columns to enable aWTA

dynamics; third, theWTA inhibition of the Timer populationsmust

be weak enough that they can still be activated upon stimulation.

One way to achieve this is by further decreasing the local weights

wT→ITwithin a column and the cross-columnar inhibition wIiT→Tj .

This indicates that, given the right set of parameters, the dynamics

underlying the learning process are independent of the network

size. Although it is outside the scope of this work, scaling can be

likely achieved for a wider range of model sizes, as long as the core

properties described above are retained.
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FIGURE 5

Scaling the model requires manual retuning of parameters. (A) Characteristic firing rates during training (top) and recall (bottom) of a sequence

composed of three 700ms intervals, in a larger network where each population is composed of N′ = 400 cells. All static weights have been scaled

down by 1/
√

N′/N (see Methods). Solid curves show Timer (light) and Messenger (dark) cells, dashed curves ITcells. (B) As in (A), with further manual

tuning of specific weights. For details, see Section 4 and Supplementary material.

2.5. Projections between all columns

In the original implementation of Cone and Shouval (2021),

and in contrast to the description in the paper, excitatory

projections between columns were only allowed in a feedforward

manner, thus hard-wiring the order of the sequence elements. Since

such a predetermined and stimulus-dependent connection pattern

weakens the model’s claims of biological plausibility, we probed the

model’s ability to learn when this constraint was relaxed.

To this end, we extended the baseline network with

additional projections from Messenger cells in column Ci to

Timer cells in all other columns Cj, (i 6= j) as depicted in

Figure 6A. As the weights of these projections are initialized

close to 0, no further measures were necessary to maintain

the same activity level as the baseline network. Although

learning initially proceeded as before, the activity soon lost

its stereotypical temporal structure and the learning process is

corrupted (Figure 6B). After only a few dozen trials, the activation

order of the columns did not match the stimulation, with

multiple populations responding simultaneously. Such random,

competitive population responses also continued throughout the

recall trials.

This behavior arises because projections from the Messenger

cells to all columns are incorrectly strengthened, not just between

subsequent ones reflecting the order of the input sequence.

Figure 6C illustrates such an example, with synaptic weights from

Messenger cells in C2 to all other columns Cj being equally

strengthened, instead of only to C3. Naturally, this effect is

detrimental because Messenger cells can activate multiple Timer

populations at once, introducing a stochasticity in the network that

abolishes the unique sequential activation required for accurate

learning and recall. In other words, the physical pathway encoding

the transitions between sequence elements can not be uniquely

traced out as in the baseline network.

According to the Hebbian-based plasticity rule (see Section 4),

synaptic weights are modified during the reward period only if

there is a co-activation of the pre- and postsynaptic neurons. This

means that connections from M cells in a column Ci to T cells in

any Cj may be strengthened if there is temporal co-activation of the

two populations.While this is the intended behavior for subsequent

columns Ci and Ci+1, Timer cells in other columns may also spike

due to the background noise, thereby enhancing the corresponding

connections. Obviously, in the pre-wired (baseline) network this is

not an issue, as only subsequent columns are connected.

One straightforward solution to overcome this problem is

to reduce the background noise below the spiking threshold,

thereby ensuring that only the stimulated populations are active

and no “cross-talk” occurs through spurious spiking. Doing so

allows the network to regain its functional properties (Figure 6D),

pending some minor additional parameter tuning (see Section 4).

However, from the point of view of biological plausibility, this

has the disadvantage that neurons spike exclusively during their

preferred stimulus.

Alternatively, it is possible to compensate for the low-rate

spontaneous spiking by raising the activation threshold for the

Hebbian term, rff
th
(see Section 4). For instance, increasing from the

baseline value of 20 to 30 spks/sec is sufficient to ensure that only

the stimulated populations reach these rates. Thus, only synapses

between stimulated populations are modified, and the learning

process is not affected (Figure 6E). The role and plausibility of such

thresholds is detailed in the Section 3.

2.6. Alternative wiring with local inhibition

Unlike cortical circuits, where inhibition is assumed to be

local (Douglas and Martin, 2004; Fino and Yuste, 2011; Tremblay
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FIGURE 6

All-to-all cross-columnar excitation prohibits learning. (A) Extending the original architecture described in Figure 1B, M → T connections exist

between all columns Ci → Cj (i 6= j) and are subject to the same plasticity. (B) Firing rates of the excitatory populations during learning and recall of

four time intervals (each 700 ms). Initially, learning evolves as in Figure 1C, but the activity becomes degenerated and the sequence can not be

recalled correctly (lower panels). (C) Evolution of the cross-columnar (from C2, top panel) and recurrent Timer synaptic weights (bottom panel). The

transition to the next sequence cannot be uniquely encoded as the weights to all columns are strengthened. (D) Sequence recall after 100 training

trials in a network with a low background noise (50% of the baseline value, 1/2σξ ). (E) Sequence recall after 100 training trials in a network with a

higher Hebbian activation threshold for the cross-columnar projections rff
th = 30 spks/sec (instead of the baseline 20 spks/sec).

et al., 2016), the original architecture described in Figure 1B

relies on (long-range) inhibitory projections between columns to

ensure a soft WTA mechanism in the presence of background

activity. This aspect is briefly discussed in Cone and Shouval

(2021), and the authors also propose an alternative, biologically

more plausible and functionally equivalent network architecture

(see their Figure 9). As schematically illustrated in Figure 7A,

cross-columnar inhibition can be replaced by local inhibition

and corresponding excitatory projections onto these circuits. In

contrast to the baseline network, where both Timer and inhibitory

cells in L5 were stimulated, here only Timer cells received input.

Otherwise, excitation onto IT would soon silence the Timer

cells, prohibiting the longer timescales required for encoding the

input duration.

As a proof-of-concept, we empirically derived a set of

parameters (see Supplementary Table 5) for such a circuit and

found that the core network dynamics and learning process

can, in principle, be retained (Figure 7B). However, a significant

discrepancy from the baseline behavior concerns the initial

transient of the Messenger cells in the first column C1 (solid,

dark blue curve in Figure 7B, bottom panel). This occurs because

inhibition onto the Messenger cells from IM (dotted, dark blue

curves) is slower (due to higher firing threshold) than the excitation

from the Timer cells. This results in a brief period of higher
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FIGURE 7

Alternative wiring with local inhibition and only excitatory cross-columnar projections. (A) Architecture with local inhibition functionally equivalent to

Figure 1B. Inhibitory projections are now local to the column, and feedforward inhibition is achieved via cross-columnar excitatory projections onto

the I populations. (B) Recall of a sequence composed of two 700ms intervals. Inset (bottom panel) zooms in on the activity at lower rates. As before,

color codes for columns. Color shade represents populations in L5 (light) and L2/3 (dark), with solid curves denoting excitatory populations. Dashed

(dotted) curves represent the inhibitory cells IT (IM).

Messenger activity before inhibition takes over and silences it.

Although this behavior is different from the baseline model, it does

not appear to impact learning, and it is in fact consistent with the

experimental data from the primary visual cortex (Liu et al., 2015).

3. Discussion

Given that the ability to learn and recall temporal sequences

may be a universal functional building block of cortical circuits, it is

paramount that we understand how such computational capacities

can be implemented in the neural substrate. While there have been

numerous approaches to model sequence processing in spiking

networks, many of these are either unable to capture important

functional aspects (e.g., order and duration of sequences), or rely on

biophysically unrealistic assumptions in their structure or learning

rules. In this work we investigated a recentmodel proposed by Cone

and Shouval (2021), which attempts to overcome these weaknesses.

Since here we focused particularly on the reproducibility and

replicability aspects, our work provides only limited improvements

over the original model. Thus, major modifications such as changes

to the learning rule or the evaluation of more complex sequence

learning tasks are beyond the scope of our study. However, by re-

implementing the model in the NEST simulator, we were able to

qualitatively replicate the main findings of the original work, find

some of the critical components and assumptions of the model,

and highlight its strengths and limitations. More importantly,

we provide a complete set of parameters and implementation

details for a full replication of the model. As computational

studies are becoming increasingly significant across many scientific

disciplines, ease of reproduction and replication becomes an ever

more important factor, not just to allow efficient scientific progress,

but also to ensure a high quality of the work. These points are

well illustrated by a notable outcome of this study: as a result of

our findings (also available as a preprint, Zajzon et al., 2023a), the

authors of the original study have corrected their article (Cone and

Shouval, 2023) and modified their published code to enable full

replication and correct the inconsistencies and errors discovered in

their work (see updated repository on ModelDB1), as listed below.

3.1. Reproducibility

The original model is described in Cone and Shouval (2021),

with most parameters provided as Supplementary material, along

with a publicly available MATLAB implementation on ModelDB.

However, while the results are reproducible using the provided

implementation in the R3 sense described by Benureau and Rougier

(2018), a successful replication in the R5 sense would not have been

possible based solely on the information in the manuscript and

Supplementary Tables, given that a number of parameters are either

under-specified or omitted entirely. Tables 1, 2 give an overview

of the more important discrepancies between the description and

original implementation, categorized by the their relevance and

type of mismatch.

Table 1 lists omitted (or inaccurately stated) critical parameters,

i.e., those that are necessary for the model to carry out the

computational tasks that are central to the original study. Such

oversights are particularly problematic, as they not only make

replication more challenging, but also make implicit model

assumptions opaque. An illustrative example of an omitted critical

1 http://modeldb.yale.edu/266774
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TABLE 1 Critical parameters necessary for accurate learning.

Name Value Description

Critical parameters

V I
th −50 mV Spiking threshold for inhibitory neurons⊘

rth 10 Hz Hebbian activation threshold (recurrent connections)⊘

rffth 20 Hz Hebbian activation threshold (feedforward connections)⊘

T
p
max 0.0033 Saturation level of LTP trace (recurrent connections)⊛

Td
max 0.00345 Saturation level of LTD trace (recurrent connections)⊛

T
p,ff
max 0.0034 Saturation level of LTP trace (feedforward connections)⊛

Td,ff
max 0.00345 Saturation level of LTD trace (feedforward connections)⊛

ηp 45× 3, 500 ms−1 Activation rate of LTP trace (recurrent connections)⊛

ηd 25× 3, 500 ms−1 Activation rate of LTD trace (recurrent connections)⊛

η
p

ff 20× 3, 500 ms−1 Activation rate of LTP trace (feedforward connections)⊛

ηd
ff 15× 3, 500 ms−1 Activation rate of LTD trace (feedforward connections)⊛

τ
exc, inp
syn 10 ms Excitatory synaptic time constant of the input connections⊘

Symbols denote different discrepancy types:⊘ represents parameters not mentioned in the study, and⊛ parameters with only relative but no exact values given.

TABLE 2 Parameter values needed for obtaining numerically similar results to those reported in Cone and Shouval (2021).

Parameter values required for numerical reproducibility

win 100 nS Weights of input connections⊙

σξ N(0, 100) Gaussian white noise in the neuron model⊙

dreward 25 ms Delay of reward signal relative to the onset of the next sequence element⊘

τ exc
syn 80 ms Excitatory synaptic time constant (EE and IE) within the network ⋄

τ inh
syn 10 ms Inhibitory synaptic time constant (EI) ⋄

τref 3 ms Refractory period ⋄

ϕ 0.26 Connection density for all connections (including recurrent) ⋄

νin 30 Hz Rate of the Poisson input ⋄

η 0.16 Learning rate for recurrent connections ⋄

ηff 20 Learning rate for feedforward connections ⋄

Symbols⊘ and⊛ as in Table 1. Additionally,⊙ denotes parameters with no specific values given, while ⋄ denotes a mismatch between the values reported in the paper and the ones used in the

reference implementation.

parameter is the spiking threshold for the inhibitory neurons,

Vth, which is 5 mV higher than the threshold for the excitatory

neurons. This is important, as it results in the inhibitory rates

decaying slightly faster than the Timer cells, thus activating the

Messenger cells at the appropriate time. In the absence of this

dynamical feature, learning fails (see for example Figure 5A).While

there is some experimental evidence for such a difference in the

spiking threshold, it varies significantly across different cell types

and recording locations (Tripathy et al., 2015). Similarly, the

activation thresholds for the Hebbian learning, rth, are necessary

to ensure that spontaneous spiking resulting from the neuronal

noise does not lead to potentiation of unwanted synapses, in

particular if connections between all columns are allowed (see

Figure 6). Without such thresholds, learning still converges in the

baseline network, but the fixed point of the feedforward weights

is shifted, stabilizing at a lower value than in the baseline system

(see Supplementary Figure 2). Therefore, the role and optimal value

for the thresholds likely depends on the amount of noise and

spontaneous activity in the network.

A further example is the parameterization of the eligibility

traces. Whereas the time constants of the eligibility traces

determine their rise and decay behavior, the saturation levels Tα
max

can profoundly impact learning. For the Timer cells, although their

exact values (not provided in the original work) is not essential, the

order of magnitude is still critical; they must be carefully chosen to

ensure that the traces saturate soon after stimulus onset, and the

falling phase begins before the next reward period (see also Huertas

et al., 2015). In other words, even though the parameter space is

underconstrained and multiple values can lead to accurate learning

(Huertas et al., 2016), these nevertheless lie within a restricted

interval which is difficult to determine given only the relative values

as in the original work: for instance, a value of Td
max = 1 and

Td
max = 0.95 will lead to an abrupt increase in the recurrent Timer

weights and learning fails. If the traces do not saturate, learning
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becomes more sensitive to the trace time constants and the range of

time intervals that can be learned with one set of parameters shrinks

significantly. Moreover, the excitatory input synapses have a shorter

time constant of 10 ms than in the rest of the network, which is

required for the fast initial ramp-up phase of the Timer cell activity.

Table 2 summarizes other, less critical parameters, which are

nonetheless necessary to achieve qualitatively similar activity levels

to those presented in the original work. These include input related

parameters (input weights, input rate), as well as the neuronal

noise. Whereas some of these discrepancies are due to omission

(e.g., noise) or mismatch between the reported and used values

(e.g., learning rate), others arise from tool- and implementation

particularities. For instance, for N = 100 the random number

generation in MATLAB results in an effective connectivity ϕ =∼
0.26 instead of the 0.3 reported in Cone and Shouval (2021),

while the effective refractory period is 3 instead of 2 ms, as

threshold crossings are registered with a delay of one simulation

step. Although these parameters influence the level of the activity in

the network, they do not directly impact the learning process; the

key computational features claimed for the model are maintained.

3.2. Learning cross-columnar projections

One of the key properties of the model is the ability to

learn the order of temporal sequences, achieved by learning the

transitions between stimulus-specific populations encoding the

sequence elements. However, Cone and Shouval (2021) state that

“Messenger cells can only learn to connect to (any) Timer cells

outside of their column,” which we interpret as an assertion

that Timer cells make connections to Messenger cells in all

other columns. In practice, the authors’ reference implementation

restricts these to subsequent columns only. This means that the

order of the sequence is hardwired into the connectivity, and

the system is only learning the duration of the elements. As we

demonstrated in Section 2.5, with the baseline parameters the

network fails to learn if this restriction is relaxed and feedforward

projections are indeed allowed between any columns.

A simple way to circumvent this problem is to ensure that

neurons outside the populations coding for the current stimulus

remain completely (or sufficiently) silent, so as to avoid the

co-activation necessary for Hebbian synaptic potentiation (see

Figure 6D). Although such an idealized behavior may be an

appropriate solution from a modeling perspective, neurons in the

cortex are rarely tuned exclusively to particular stimuli. Instead,

most cells spike irregularly (typically at a low rate) even in the

absence of input (ongoing activity, see e.g., Arieli et al., 1996), and

many respond to multiple different inputs (Walker et al., 2011;

Rigotti et al., 2013; de Vries et al., 2020).

A biologically more plausible alternative is to increase

the Hebbian activation threshold rth, such that noise-induced

spontaneous activity does not lead to a modification of the synaptic

strength. However, this introduces an additional, critical parameter

in the model. Furthermore, such hard thresholds are coupled to

the intensity of background activity and spontaneous spiking, with

occasional higher rates possibly destabilizing the learning process.

3.3. Functional and neurophysiological
considerations

From a functional perspective, a generic model of sequence

processing should be able to perform various related tasks

in addition to sequence replay, such as chunking, learning

compositional sequences, and handling non-adjacent dependencies

in the input (Fitch and Martins, 2014; Wilson et al., 2018; Hupkes

et al., 2019). Although, Cone and Shouval (2021) discuss and

provide an extension of the baseline network for higher-order

Markovian sequences, the computational capacity of the model is

fundamentally limited by the requirement of a unique stimulus-

column (or stimulus-population) mapping. This characteristic

means that for certain tasks, such as learning (hierarchical)

compositional sequences (i.e., sequences of sequences), the model

size would increase prohibitively with the number of sequences, as

one would require a dedicated column associated with each possible

sequence combination. In addition, it would be interesting to

evaluate the model’s ability to recognize and distinguish statistical

regularities in the input in tasks such as chunking, which involve

one or more sequences interleaved with random elements.

In their study, Cone and Shouval (2021) demonstrate that

the extended, rate-based network can learn multiple, higher-order

Markovian sequences when these are presented successively. For

first-order Markovian sequences, this should also hold for the

baseline spiking network model, contingent on preserving the

unique stimulus-to-columnmapping. However, it is also important

to understand how the model behaves when two sequences are

presented simultaneously. This depends on the interpretation and

expected behavior, and to the best of our knowledge there is

little experimental and modeling work on this (but see, e.g.,

Murray and Escola, 2017). Nevertheless, if the two sequences are

considered to be independent, we speculate that the networks will

not be able to learn and treat them as such for multiple reasons.

Assuming that projections between all columns are allowed (with

the appropriate measures, see Section 2.5), in the spiking model

the connections between the columns associated with the different

sequences would also be strengthened upon temporal co-activation:

for two simultaneously initiated sequences S1 and S2, the cross-

columnar projections between a column CS1
i associated with S1 and

another column CS2
i+1 coding for an element at position i + 1 in S2

would be (incorrectly) strengthened. In the case of the extended

rate network, the context representations may mix and interfere

in the external reservoir, and the issue of temporal co-activation

discussed above is also likely to occur.

Moreover, convergence of learning in the cross-columnar

synapses depends on the existence of two consecutive reward

periods. As described in Section 2.2 and illustrated in Figure 2C,

during the first reward (associated with the current sequence

element) the weights are potentiated, even after the weights have

reached a fixed point. However, a second reward, during which the

weights are depressed, is necessary to achieve a net zero difference

in the LTP and LTD traces at lower weight values. Although

learning would converge even without a second reward, the fixed

point will be different (higher), and thus convergence would occur

for larger weights (possibly too large for stable firing rates). Given

that the reward (novelty) signal is globally released both before
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and after each sequence element in the interpretation of Cone and

Shouval (2021), the existence of a reward after the final element is

guaranteed and therefore this is not an issue for the stimulation

protocol used in the original and our study. If, on the other hand,

we interpret the reward as a novelty signal indicating the next

stimulus, we would not expect it to be present in this form after

the last element of the sequence. In this case, the cross-columnar

projections marking the transition from the penultimate to the

ultimate element may not be learned accurately (weights would still

converge, but likely to larger values than appropriate).

While a solution to the above issues is beyond the scope of

this work, we speculate that a more granular architecture, in which

multiple stimulus-specific sub-populations could form different

cell assemblies within a single column, would be more in line

with experimental evidence from the neocortex. Some functional

specialization of single cortical columns has been hypothesized

(Mountcastle, 1997; Harris and Shepherd, 2015), but such columns

are typically composed of a number of cell groups responsive to

a wider range of stimuli. We assume that mapping the model to

such an extended columnar architecture would require a more

complex, spatially-dependent connectivity to ensure similar WTA

dynamics. The requirement of completely segregated populations

tuned to unique stimuli, however, is more difficult to overcome

and reconcile with experimental data. While the tuning curves of

many cells (but by far not all, see de Vries et al., 2020) in the early

sensory cortices are indeed strong and sharp (Hubel and Wiesel,

1959; Bitterman et al., 2008), these become weaker and broader in

the following stages of the cortical hierarchy, where cells typically

exhibit mixed selectivity (Rigotti et al., 2013; Fusi et al., 2016).

Thus, more complex tasks requiring a mixture of representations

can not be easily conceptualized in the context of the proposed

network architecture.

As we demonstrated in Section 2.6, the model is relatively

flexible with respect to the precise wiring patterns, as long as

certain core, inhibition-related properties are preserved. Given that

long-range projections in the neocortex are typically excitatory

(Douglas and Martin, 2004; Brown and Hestrin, 2009), the original

architecture (see Figure 1B) was implausible due to its reliance

on cross-columnar inhibition. The relative ease in adapting the

wiring to have only local inhibition is indicative of simple yet

powerful and modular computational mechanisms, suggesting that

these may be used as building blocks in more complex sequence

learning architectures.

Despite these limitations and sensitivity to some parameters,

the model presented by Cone and Shouval (2021) is an important

step toward a better understanding of how cortical circuits process

temporal information. While its modular structure enabling

spatially segregated representations may be more characteristic for

earlier sensory regions, the proposed local learning rule based on

rewards, partially solving the credit assignment problem, is a more

universal mechanism likely to occur across the cortex.

4. Materials and methods

The sequence learningmodel analyzed in this study is described

in full detail in the original work of Cone and Shouval (2021).

Nevertheless, given the numerous discrepancies between the model

description and implementation (see Section 3), we present all the

key properties and parameters that are necessary for a successful

replication of the results, including the extended architectures

investigated in Sections 2.5 and 2.6.

4.1. Network architecture

The central characteristic of the network architecture is the

modular columnar structure (see Figures 1A, B), where each of

the NC columns is associated with a unique sequence element

(stimulus). Each column contains two excitatory (Timer and

Messenger) and two associated inhibitory populations ITand IM,

roughly corresponding to L5 and L2/3 in the cortex. In the

following, we will refer to these cell populations as Ti, Mi, IiT, and

IiM, respectively, where the superscript i denotes the column Ci.

Each of the above populations is composed of N = 100

leaky integrate-and-fire neurons, with the exception of the network

simulated in Section 2.4, whereN = 400. The wiring diagram of the

baseline network used in Cone and Shouval (2021) is schematically

illustrated in Figure 1B. Within a column Ci, T
i cells connect to IiT

and Mi, in addition to recurrent connections to other Ti cells. Mi

neurons excite the local inhibitory population IiM, and are inhibited

by IiT. Inhibition onto the excitatory cells also exists between the

columns in a layer-specific manner, i.e., IiT → Tj and IiM → Mj,

with i 6= j. Lastly, Mi cells in Ci connect in a feedforward manner

to Ti+1 cells in the subsequent columnCi+1. All connections within

the same and between different populations have a density of ϕ =
0.26. Note that only the feedforward projections Mi → Ti+1 and

the recurrent Ti → Ti connections are subject to plasticity (see

below); all other connections are static. The plastic weights are

initialized close to 0 and the static weights are normally distributed

around their mean values with a standard deviation of 1.

The complete set of parameters for the architecture proposed in

Cone and Shouval (2021) as well as the variants described below are

specified in the Supplementary material.

4.1.1. Scaled model
For the scaled network model described in Section 2.4, the

number of neurons in each populations was increased to N′ = 400

fromN = 100. To keep the input variance constant, in the standard

scaling scenario (Figure 5A) we followed the common approach

for balanced random networks (van Vreeswijk and Sompolinsky,

1998; Litwin-Kumar and Doiron, 2012) and reduced all non-

plastic synaptic weights by multiplying them with 1/
√

N′/N. In

addition, we halved the standard deviation σξ of the background

noise such that the firing rates were in the same range as for the

baseline network. To restore the functional aspects of the network,

additional tuning was required for most of the projections (see

Supplementary Table 4).

4.1.2. All-to-all cross-columnar connectivity
In Section 2.5, the baseline network is modified by instantiating

plastic excitatory connections between all columnsMi → Tj, (i 6=
j) rather than solely between the columns representing consecutive

elements of the stimuli (see Figure 6A). For the comparison
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with the baseline network in Figures 6B, C, all other parameters

are unchanged.

In addition, for the low background noise scenario in Figure 6D

we set wT→IT = 0.23 nS, wT→M = 0.21 nS and win = 110 nS. For

Figure 6D, only wT→M = 0.21 nS was changed from 0.2 nS.

4.1.3. Alternative wiring with local inhibition
The functionally equivalent network analyzed in Section 2.6

required multiple modifications (see Figure 7A). Inhibitory

connections are local to the corresponding layer, with connections

IiT → Ti and IiM → Mi. Timer cells Ti project to both Mi and IiM,

as well as to I
j
T in other columns Cj. In layer L2/3, M

i cells project

to Ti+1 and I
j
M, i 6= j.

4.2. Neuron model

The networks are composed of leaky integrate-and-fire (LIF)

neurons, with fixed voltage threshold and conductance-based

synapses. The dynamics of the membrane potential Vi for neuron i

follows:

Cm
dVi

dt
= gL

(

Vrest − Vi(t)
)

+ IEi (t)+ IIi (t)+ ξ (t) (1)

where the leak-conductance is given by gL, I
E
i and IIi represent

the total excitatory and inhibitory synaptic input currents, and ξ

is a noise term modeled as Gaussian white noise with standard

deviation σξ = 100, unless otherwise stated. This noise term is

sufficient to cause a low baseline activity of around 1 − 2spks/sec.

Upon reaching a threshold Vth = −55mV (−50mV for inhibitory

neurons), the voltage is reset to Vreset for a refractory period of

tref = 3ms. Note that the higher threshold for inhibitory neurons is

critical for the faster decay of their activity compared to Timer cells.

The dynamics of the synaptic conductances are modeled as

exponential functions with an adaptation term, with fixed and equal

conduction delays for all synapse types. The equations of the model

dynamics, along with the numerical values for all parameters are

summarized in Supplementary Tables 1–3.

In all figures depicting firing rates, these are estimated from the

spike trains using an exponential filter with time constant τr =
40 ms.

4.3. Eligibility-based learning rule

The main assumption of the learning rule is the availability

of two synaptic eligibility traces at every synapse T
p
ij and Td

ij ,

representing long-term potentiation (LTP) and depression (LTD),

which can be simultaneously activated through the Hebbian

firing patterns.

For a ∈ {p, d}, the dynamics of the traces follows:

τ a
dTa

ij(t)

dt
= −Ta

ij(t)+ ηaHij(t)
(

Ta
max − Ta

ij(t)
)

, (2)

where τ a is the time constant, ηa is a scaling factor, and Ta
max is the

saturation level of the trace. Hij(t) is the Hebbian term defined as

the product of firing rates of the pre- and postsynaptic neurons:

Hij(t) =

{

ri(t)rj(t) if ri(t)rj(t) > rth

0 otherwise
, (3)

with rth (rff
th
) representing different threshold values for recurrent

T to T (feedforward M to T) connections. Note that while this

equation is used in both the original MATLAB implementation

and in our re-implementation in NEST, the Hebbian terms in the

equations in Cone and Shouval (2021) are further normalized by

Ta
max. For a detailed analysis of the learning convergence, see the

original study.

These activity-generated eligibility traces are silent and

transient synaptic tags that can be converted into long-term

changes in synaptic strength by a third factor, R(t) which is modeled

here as a global signal using a delta function, R(t) = δ(t− treward −
dreward), and is assumed to be released at each stimulus onset/offset.

Although typically signals of this sort are used to encode a reward,

they can also, as is the case here, be framed as a novelty signal

indicating a new stimulus. Hence, the synaptic weights wij are

updated through

dwij

dt
= ηR(t)

(

T
p
ij − Td

ij

)

(4)

where η (ηff for feedforward) is the learning rate. Following the

reward signal, which has a duration of 25ms, the eligibility traces are

“consumed” and reset to zero, and their activation is set into a short

refractory period of 25ms. In practice, although the weight updates

are tracked and evolve during each reward period according to

Equation (4), they are only updated at the end of the trial. However,

this does not affect the results in any significant manner (data

not shown).

4.4. Stimulation protocol

Stimulus input is modeled as a 50 ms step signal, encoded as

Poisson spike trains with a rate νin = 30 spks/sec. In the baseline

and the extended network discussed in Section 2.5, this input is

injected into both Ti and IiT cells, with synaptic weights win. In the

network discussed in Section 2.6, the input is restricted to Ti.

The training process of a network instance consists of 100

trials (unless otherwise stated), and in each trial the corresponding

columns are stimulated at certain time points according to the

input sequence, with the interval between elements representing

the duration of the stimulus. At the beginning of each trial, the

state of the neurons (membrane potential) and the eligibility traces

are reset to their initial values. The test phase consists of multiple

trials (usually 50), where the sequence is replayed upon a cued

stimulation of the first column.

4.5. Numerical simulations and analysis

All numerical simulations were conducted using a modified

version of the Functional Neural Architectures (FNA) toolkit
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v0.2.1 (Duarte et al., 2021), a high-level Python framework

for creating, simulating and evaluating complex, spiking neural

microcircuits in a modular fashion. It builds on the PyNEST

interface for NEST (Gewaltig and Diesmann, 2007), which provides

the core simulation engine. To ensure the reproduction of all the

numerical experiments and figures presented in this study, and

abide by the recommendations proposed in Pauli et al. (2018),

we provide a complete code package that implements project-

specific functionality within FNA (see Supplementary material)

using NEST 2.20.0 (Fardet et al., 2020). For consistency

checks with the reference implementation, we used MATLAB

version R2020b.
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