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1. Introduction

Neuroscience is ready to transcend the reductionist approach (Joyce and Shergill, 2018;

Pessoa, 2022). The revolutionary integrative approach to synthesizing information from single

neurons, circuits, and whole brain imaging and manipulations using methods derived from

multiple disciplines: chemistry, genetics, molecular and cellular biology, systems biology, and

behavioral sciences, is producing “big data” sets. Here we explore several “big questions” posed

by the integrative approach: How to integrate heterogeneous neuroscience information? How to

train the workforce for this approach?What resources are needed for this integrative revolution?

And also: Who stands to benefit?

Take studying the neural bases of memory: Memories of past experiences are the essence of

who we are, and are key to our awareness of time in our everyday lives. When no new memories

are formed, people are condemned to an eternal present. Retrograde amnesia prevents recalling

memories before the event that caused it. Occasionally, some experience falsememories of events

that never happened. To distinguishmemory from expectation and perception, Plato andAristotle

proposed that events that have already happened leave in our mind “memory traces” (De Brigard,

2014). To describe the physical representation of putative memory traces, Semon introduced

the term “engram” (Semon, 1904). Several key events in disparate fields permitted the study of

engrams: Watson and Crick’s discovery of DNA, Donald Hebb’s theory that “neurons that fire

together wire together,” Milner’s studies of amnesic patient H.M., and Lømo’s discovery of long-

term potentiation (Asok et al., 2019). Progress culminated in recent years with the development

of integrative engram technologies capable of identifying, visualizing, and manipulating engram

formation, storage and recall.

2. An integrative approach to memory

2.1. Engram technologies

Engram technologies integrate methods from multiple fields: transgenic/genetic

manipulation, permitting expression of neuronal markers to label engrams (Navabpour

et al., 2020); optogenetics, allowing activation (or silencing) of engram cells using light (Kim

et al., 2017); chemogenetics, allowing designer drug activation / inhibition of neurons (Roth,

2016); electrophysiology, allowing recording of neuronal electrical activity in behaving animals

in real time (Chorev et al., 2009); modern microscopy, allowing the visualization of engram cells

in real time, e.g., using miniaturized microscopes (Carrillo-Reid et al., 2017; Yang and Yuste,

2017); and behavioral techniques, allowing the dissection of engram formation, consolidation,

recall, and update (reviewed in Ortega-de San Luis and Ryan, 2022).
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FIGURE 1

Integrative neuroscience encompasses multiple levels of analyses (A), and integrates “big data” (B) collected using diverse methods (C) to uncover

relationships and phenomena that transcend levels. (D) Several solutions to the integration problem.

Using this integrative approach, scientists were recently able to

create and manipulate (false) memories (Lau et al., 2020). Mice were

exposed to a conditioned stimulus (CS) terminating in footshock

under drugs that allowed labeling the neurons recruited to the

engram of this experience. Visualization of the “CS-footshock”

engram indicated that engram cells remain highly excitable for

several hours after conditioning. While the engram was still excitable,

a second, neutral stimulus was presented: A new engram, partially

overlapping with the “CS-footshock” engram, developed. Next day,

mice froze to the neutral stimulus, showing that they (falsely)

recalled being shocked in the presence of the neutral stimulus.

False memories were prevented by optogenetically silencing the

“CS-footshock” engram, or by presenting the neutral stimulus 24 h

after conditioning, suggesting a temporal window during which

engrams can be associated (Lau et al., 2020). Such groundbreaking

manipulations could not have been possible without integration of

multiple methods from varied sciences in the same study.

2.2. Why “integrative” neuroscience?

Neuroscience is currently investigating multiple levels of

analysis—from single neuron, to circuits, to whole brain explorations

(Figure 1A)—and a multitude of mechanisms—genes, receptors,

electrical activity, circuit activation and inhibition, and behavior in

animals and people with or without specific diseased conditions

(Figure 1B)—using a multitude of methods derived from varied

sciences—chemistry, physics, genetics, molecular and cellular

biology, behavior, and computer science (Figure 1C). Two issues are

paramount: First, the quantity of data collected is staggering. Second,

scientists are sequestered in their “local field,” bound by methods

used, language, and interest. Thus, the need for a paradigm shift

toward an “Integrative Neuroscience” (INS) approach that transcends

the levels of analysis and allows the discovery of new properties or

natural laws that apply at the integrative level (Grillner et al., 2005)

(Figure 1D). Several “big questions” are outstanding:

3. The big questions

3.1. How to integrate heterogeneous
neuroscience information?

Several answers are provided in Figure 1D; they all have strengths

and weaknesses. First, integration can occur at theoretical level, using

Cybernetics, a mathematical theory of how systems work (Figure 1D

top). Cybernetics’ strength is its formalism and its well-studied

notions, immediately applicable to neuroscience: communication,

transformation of information, feedback, and stability. Such theories

are under development (e.g., Chauvet, 2005), with the hope that soon

they will integrate real data.

A more practical approach is to store raw data into databases,

either local or “in the cloud” (Gordon, 2003) (Figure 1D second from

top). One drawback is the level of detail optimal for integration,

similar to seeing the forest for the trees: Less detail helps integration

but decreases accuracy; too much detail provides accuracy but

prevents integration. Moreover, storing data in databases helps

identifying correlations between phenomena at different levels, but

new theories or new levels of understanding are not expected to

simply emerge. To search, understand, and integrate “big data” one

may need to use artificial intelligence, a combination of artificial

neural networks (ANNs), fuzzy systems, and decision algorithms, to

develop new representations.

ANNs have been used for more than half a century to understand

INS data (McCulloch and Pitts, 1943) (Figure 1D second from

bottom). As scientists that have used ANNs and fuzzy systems

to model neuroscience phenomena the authors can attest to their
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power (Buhusi et al., 1998; Buhusi, 2000), as to their occasional

ineffectiveness (e.g., Buhusi et al., 2016, 2018): ANNs develop new

representational spaces in their “deep layers” where the solution

is “hidden”; decoding it—let alone understanding it—in human

terms is often very difficult if not impossible (Lamoureux et al.,

1998). To put it simply, should ANNs be large enough—using many

nodes—and “deep” enough—using many layers—they are likely to

provide representations / solutions as complex as the brain itself,

requiring the same level of effort for its understanding as the original

data set. To use ANNs solutions, a person (or team) is needed to

extract and interpret it. Which brings one to the simplest—yet the

most difficult—solution to the integration problem: Training an INS

workforce (Figure 1D bottom).

3.2. Who will make the integration?

The current system of scientific inquiry is based on ever

higher levels of specialization. This results in the sub-fields of

neuroscience being rather “self-sufficient” and “isolated” from

other levels. Only in the last decades have truly multi-disciplinary

approaches emerged from isolated laboratories. Training in these

laboratories provides “integrative” development for a limited

number of select scientists, too few to determine a change of

the entire field. New “experts in one method” are constantly

produced while the number of faculty positions lags well behind,

thus providing little incentive for poly-specialization (Akil et al.,

2016).

Yet, recognizing the need for INS training, a handful of PhD

programs around the world have started adding “integrative”

to their designation, aiming at training future neuroscientists

in multiple methods, and more importantly, in the skills that

would allow them to work efficiently in a team analyzing the

same problem at multiple levels. University of Chicago, Duke

University, Massachusetts Institute of Technology, University of

Nevada, Stony Brook University, and University of Cardiff are

among the universities offering INS training. The neuroscience

curriculum of these institutions has been restructured to include

courses on “Integrative Neuroscience” and on data analysis and

computational modeling (e.g., “Bioinformatics,” and “Artificial

Neural Networks”), and to also include student rotations through

labs using various methods.

This is an excellent first step. Yet, not only more programs are

needed to provide INS training to future PhDs, but “integrative

training” should start before—possibly way before—PhD training. A

bold example is provided by the new Integrative Science Department

at Claremont Mckenna College (2022), dedicated to training future

integrative scientists. Moreover, developing computer skills and a

keen eye for looking at a situation from both a close- and far distance,

are skills that can be taught earlier than college or PhD (Dube et al.,

2017).

3.3. Who stands to benefit from the
integrative revolution in neuroscience?

Given that neuroscience has already entered its era of

technological applications (Altimus et al., 2020), not only academia,

but industry, government—e.g., governmental funding agencies—

as well as foundations, and ultimately, patients and the general

population stand to benefit from the INS revolution. The National

Institutes of Health are already funding neuroscience technology

development through its BRAIN initiative (Jorgenson et al.,

2015), and together with the National Science Foundation,

are offering funding for multidisciplinary collaborative research

(Plimpton, 2020) that brings innovations into the marketplace

(Bates and Garbarini, 2014). Yet, considerably more funding is

needed to transform out-of-date “one-method” labs into modern

“integrative” labs.

While traditionally new methods are brought about by new

generations of scientists, one should recognize that major changes

(read “discoveries”) are now happening faster than within one

generation, such that the workforce needs periodic re-training to

take advantage of the explosion in new methods and technologies.

As usual, academia trails behind industry, which is already used

to transformative changes happening faster than ever, and manages

to profit from the use of these new discoveries (Hyman, 2016).

The general population already benefits from translating the INS

revolution into the marketplace: self-driving vehicles, intelligent

voice-interactive devices, and artificial intelligence software for

various functions.

3.4. Will integrative engram technologies
provide new treatments?

Patients—e.g., Alzheimer’s patients—stand to benefit from seeing

molecular and cellular targets rapidly evaluated at multiple levels

of analysis, hopefully with better and faster treatment development.

For example, integrative engram technologies recently revealed the

molecular control of the temporal window at which engrams can be

linked. CCR5, a C–C chemokine receptor expressed in hippocampal

neurons and glia (Shen et al., 2022), is affected in conditions in

which memory linking is either reduced (e.g., aging and Alzheimer’s

Disease) or enhanced (e.g., PTSD), and may also contribute to

neuroinflammation (Necula et al., 2021). Age-relatedmemory deficits

are reversed by a CCR5 antagonist already approved by the FDA,

a possible game-changer in cognitive decline therapy. Further

integrative research regarding neuronal-, astrocytic- and microglial-

interactions will pave the way for new therapeutic approaches in

cognitive aging and neurodegenerative disorders.

4. Into the future

Due to the vast number of inter-connections between data and

mechanisms at different levels of neuroscience analysis, integration

is expected to create synergies: Pending a major restructuring of

neuroscience training, future INS scientists will learn to think

and work “integrative,” using multiple methods to investigate the

same problem at multiple levels, to bring new problems, new

applications, and new treatments within reach. This will benefit the

general population and patients alike, such as those with memory

impairments. Indeed, visualizing engrams is already possible in

humans (Willems and Henke, 2021). In the future, engrams could

be investigated in naturalistic situations—such as participants having

dinner—by simultaneously recording their brain activity, location,
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gaze, body function indices like heart rate and blood pressure, what

is said, and each participant’s reaction (Kanter et al., 2022). Also, one

will be able to trace the timing of molecular activity during memory

development, storage, retrieval and updating in the whole brain.

Integration will allow the identification of biomarkers to illuminate

disease-related changes at multiple levels, from molecules, to cells, to

whole brain, allowing for rapid steps toward understanding a disease

and designing a treatment or prevention strategy. Finally, people

with cognitive decline will be able to use soon-to-be ubiquitous

non-invasive brain stimulation devices in their own homes, to

support or enhance their memory function (Antal et al., 2022). One

thing is sure: Neuroscience is an exciting field in the midst of an

“integrative” revolution, with implications extending beyond basic,

reductionist experiments, in directions that are stretching the limits

of our imagination.
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