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Background: Neurobiological models to explain the vulnerability of autism

spectrum disorders (ASDs) are scarce, and previous resting-state functional

magnetic resonance imaging (rs-fMRI) studies mostly examined ŞstaticŤ functional

connectivity (FC). Given that FC constantly evolves, it is critical to probe FC dynamic

differences in ASD patients.

Methods: We characterized recurring phase-locking (PL) states during rest in 45

ASD patients and 47 age- and sex-matched healthy controls (HCs) using Leading

Eigenvector Dynamics Analysis (LEiDA) and probed the organization of PL states

across different fine grain sizes.

Results: Our results identified five different groups of discrete resting-state functional

networks, which can be defined as recurrent PL state overtimes. Specifically, ASD

patients showed an increased probability of three PL states, consisting of the visual

network (VIS), frontoparietal control network (FPN), default mode network (DMN),

and ventral attention network (VAN). Correspondingly, ASD patients also showed a

decreased probability of two PL states, consisting of the subcortical network (SUB),

somatomotor network (SMN), FPN, and VAN.

Conclusion: Our findings suggested that the temporal reorganization of brain

discrete networks was closely linked to sensory to cognitive systems of the brain.

Our study provides new insights into the dynamics of brain networks and contributes

to a deeper understanding of the neurological mechanisms of ASD.

KEYWORDS

autism spectrum disorder (ASD), leading eigenvector dynamics analysis (LEiDA), phase-
locking (PL) states, frontoparietal control network, occurring probability

1. Introduction

Autism spectrum disorder (ASD) is a collection of neurodevelopmental disorders marked
by a lack of social communication, repetitive behaviors, or interests (American Psychiatric
Association, 2013; Saqr et al., 2017; Li et al., 2020). In recent decades, the global prevalence of
ASD in children and adolescents has climbed to 0.7–1.5% (Morales-Hidalgo et al., 2018). As a
result, a better understanding of the biological origins of many illnesses is a top research focus.
Studies of brain network connectivity in ASDs have received much attention in the last decade
due to a growing recognition that symptomatology cannot be described just by isolated brain
defects (Dinstein et al., 2011; Di Martino et al., 2013, 2017; Müller and Fishman, 2018). Benefiting
from the advancement of neuroimaging, extensive evidence has suggested that ASD is linked to
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abnormal responses in specific brain areas, significant alterations in
functional brain networks, and disruptions in neural synchronization
among brain areas (Belmonte, 2004; Zhan et al., 2014; Cerliani
et al., 2015; Guo et al., 2020). In particular, the underconnectivity
hypothesis based on many studies of resting-state functional
magnetic resonance imaging (rs-fMRI) proposed that intraregional
functional connectivities (FCs) are reduced between the default
mode network (DMN) and sensory processing network (Just, 2004;
Damarla et al., 2010; Chen et al., 2017; Duan et al., 2017). For
example, FCs between the DMN [including the medial prefrontal
cortex (mPFC), posterior cingulate cortex (PCC), and precuneus]
and the temporal lobe or pallidum gyrus were significantly reduced
(Yerys et al., 2015). Other studies of rs-fMRI also showed similar
results of reduced FCs between the mPFC and primary motor and
sensory cortices (Jung et al., 2019), even the insula temporoparietal
junction, and amygdala (von dem Hagen et al., 2012). However,
other studies found overconnectivity between brain regions and
even a mixture of underconnectivity and overconnectivity in ASD
(Keown et al., 2013, 2017; Supekar et al., 2013; Cerliani et al.,
2015). Although the underconnectivity or overconnectivity patterns
are debatable, FC provides potential new insights to explore the
underlying neurological mechanisms for ASD.

The majority of earlier research relied on static functional
connectivity (FC) approaches, which assume that FC patterns are
consistent across time (Allen et al., 2012; Wang et al., 2020).
Theoretical models and empirical evidence, however, show that
the dynamic changes in the human brain connectome are linked
to continuing rhythmic activity. Recently, researchers have shown
more interest in dynamic FC studies and have developed many
methods to obtain the profound indicators of dynamic FC (Preti
et al., 2017; Du et al., 2018; Wang et al., 2020). Dynamic FC is
defined as the time-dependent correlation among brain regions,
which has been applied to explore the dynamics of the brain network.
Compared to static FC, dynamical FC achieved a better prediction of
behavior for the typically developing population (Chen et al., 2017;
Li et al., 2020). A recent study also showed that classification based
on dynamic connectivity features has significantly higher predictive
accuracy in schizophrenia and bipolar disorder (Rashid et al., 2016).
Therefore, dynamic FC can capture the underlying dynamic nature
of FC alterations and has become a frontier for the exploration
of neurological mechanisms in psychiatric disorders. A previous
study of dynamic FC found that the mean dwell time of states
was significantly different between ASD and developing population
groups (Yao et al., 2016). A previous study on the diagnosis
prediction of ASD also confirmed that dynamic features, as well
as spatiotemporal coherence, can provide more useful information
for ASD diagnosis (Wee et al., 2016). In addition, the latest study
found that increased variance in dynamic FC was related to ASD
symptom severity and suggested that the use of traditional static FC
may contribute to the inconsistency of ASD reports (Chen et al.,
2017). Nevertheless, it is unclear how dynamics help explain these
inconsistent findings.

Although analysis based on the sliding-window approach is
most commonly used to probe the alteration of dynamical FC
in psychiatric disorders (Sakoğlu et al., 2010), the window size
challenges its validity and determines the temporal resolution of
dynamic FC patterns (Shine et al., 2015; Hindriks et al., 2016;
Deco et al., 2017). Recently, many methodological approaches
have been developed to analyze blood oxygenation level-dependent
(BOLD) connectivity dynamics of brain activity at a high temporal

resolution, such as coactivation patterns (Tagliazucchi et al., 2012;
Liu and Duyn, 2013; Karahanoğlu and van de Ville, 2015) or phase
coherence patterns (Glerean et al., 2012; Hellyer et al., 2015; Cabral
et al., 2017). In particular, the coactivation approaches or their
variant forms are only sensitive to simultaneity in the data. Phase
coherence techniques can capture temporally delayed relationships
and are more sensitive to capturing the ultraslow oscillatory processes
governing the formation of resting-state networks (RSNs), which has
been confirmed in recent experimental and computational studies
(Deco et al., 2009; Ponce-Alvarez et al., 2015; Deco and Kringelbach,
2016; Roberts et al., 2019). Therefore, the best way to characterize
dynamic FC remains under debate (Lord et al., 2019). In our
study, we used a recently developed data-driven approach named
Leading Eigenvector Dynamics Analysis (LEiDA). LEiDA can reduce
dimensionality by considering only the relative phase of BOLD
signals and capturing the instantaneous phase-locking (PL) patterns
(Cabral et al., 2017; Figueroa et al., 2019). The recurrent FC states,
also called PL states, can be identified from resting-state time series
by operating the LEiDA approach in the temporal domain. The
PL states can be characterized by global dynamical statistics (i.e.,
probabilities of occurrence and duration) and transition profiles
on a subject-by-subject level. A previous study indicated that the
dynamic properties of recurrent FC states are related to cognitive
performance in healthy participants (Cabral et al., 2017). Meanwhile,
the PL patterns obtained from the LEiDA approach have shown
particular sensitivity to alterations in psychiatric symptoms, such as
schizophrenia (Farinha et al., 2022) and major depressive disorders
(Figueroa et al., 2019; Alonso Martínez et al., 2020; Wang et al., 2022).
However, the recurrent PL patterns identified by LEiDA in ASD have
not yet been qualitatively probed. In the current work, we used the
LEiDA method to identify recurrent BOLD PL states and even to
investigate whether there are specific configurations of PL states that
differentiate between ASD and controls.

2. Materials and methods

2.1. Participants

Resting-state fMRI data in our study were obtained from the
NYU Langone Medical Center, which was included in the Autism
Brain Imaging Data Exchange (ABIDE) database.1 NYU is the largest
sample size of individuals who fulfilled the following inclusion
criteria: (1) age up to 18 years; (2) predominantly right-handed
(Edinburgh Handedness Inventory score >0); (3) estimated full-scale
intelligence quotient (IQ) score >80 per the four-subtest Wechsler
Abbreviated Scale of Intelligence (WASI), and (4) mean framewise
displacement (FD) <0.2 mm. Therefore, a total of 45 individuals
with high-functioning ASD and 47 healthy controls (HCs) met the
inclusion criteria. The demographic and clinical characteristics of all
subjects are shown in Table 1.

2.2. Image acquisition and pre-processing

Magnetic resonance imaging data of all subjects were acquired
using a 3 Tesla Siemens Allegra scanner. Details regarding acquisition

1 http://fcon_1000.projects.nitrc.org/indi/abide/
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TABLE 1 Demographics of participants.

ASD (n = 47) HC (n = 45) Group comparisons (p-value)

Sex (M/F) 40/7 36/9 0.300a

Age 11.02± 2.28 11.02± 2.27 0.987b

Full scale IQ 107.17± 17.34 113.32± 14.11 0.072b

ADI-R

Social score 18± 7.25 − −

Communication score 15.09± 5.16 − −

RRB score 5.74± 3.10 − −

ADOS

Total score 11.25± 4.22 − −

Social score 9.25± 4.13 − −

Communication score 3.54± 1.54 − −

RRB score 3.25± 1.54 − −

ADI-R, autism diagnostic interview-revised; ADOS, autism diagnostic observation schedule; RRB, restricted and repetitive behaviors.
aChi-square test.
bTwo-sample t-test.

parameters are provided on the ABIDE website.2 In brief, rs-fMRI
data were acquired using an echo planner imaging (EPI) sequence
sensitive to BOLD contrast with the scan parameters repetition time
(TR) = 2000 ms, echo time (TE) = 33 ms, flip angle (FA) = 90◦,
matrix = 30 × 80 × 80, and voxel size = 3 mm × 3 mm × 4 mm,
and each scanning session lasted for 6 min. In addition, a high-
resolution three-dimensional T1-weighted image was also scanned
for anatomic reference.

We adopted the standard pipeline for pre-processing of fMRI
data using the Data Processing and Analysis for Brain Imaging
toolbox (DPABI)3 (Yan et al., 2016). The pre-processing steps were
performed as described in a previous study (Chen et al., 2017).
In brief, the main steps included the following: (1) removing the
first 10 time points; (2) slice timing correction; (3) head motion
correction, importantly, subjects with high levels of head motion
were excluded (maximum motion >2 mm or 2◦ rotation or mean
FD >0.2 mm) (Power et al., 2012; Yang et al., 2014); (4) regressing
out nuisance covariates, which included signals from white matter
(WM) and cerebrospinal fluid (CSF), as well as 24 rigid body
motion parameters; (5) normalization to Montreal Neurological
Institute (MNI) standard space at 3-mm isotropic voxel resolution
by diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra (DARTEL); (6) spatial smoothing with a Gaussian kernel
(full width at half maximum (FWHM) = 6 mm); (7) bandpass
filtering (0.01–0.08 Hz); and (8) extracting the averaged rs-fMRI
time courses in 90 brain regions based on the automated anatomical
labeling (AAL) template.

2.3. Leading eigenvector dynamics
analysis (LEiDA)

In our study, a novel framework called LEiDA was adopted to
identify the BOLD PL states as a stochastic subdivision of regular

2 http://fcon_1000.projects.nitrc.org/indi/abide/scan_params/NYU/

3 http://rfmri.org/dpabi

and persistent brain states (Cabral et al., 2017). LEiDA could calculate
the leading eigenvector of the BOLD phase-coherence matrices over
time to capture the connectivity patterns, which is a data-driven
method. Previous evidence has suggested that the LEiDA framework
is highly flexible, robust, and precise (Glerean et al., 2012; Ponce-
Alvarez et al., 2015; Cabral et al., 2017), allowing for recurrent
states that were detected and characterized in resting state and task
conditions in the healthy brain. It can also distinguish the abnormal
brain states in psychiatric diseases, such as schizophrenia (Farinha
et al., 2022), major depressive disorders (Figueroa et al., 2019; Alonso
Martínez et al., 2020; Wang et al., 2022), and trait self-reflectiveness
(Larabi et al., 2020), and the alteration of brain states in psilocybin
(Lord et al., 2019) and sleep (Deco et al., 2019). The fundamental
framework of LEiDA is shown in Figure 1, and the detailed steps are
mentioned later.

First, the PL matrix at each time point was calculated to capture
the amount of interregional BOLD signal synchrony at any given time
point for each subject (including 45 ASD and 47 HCs). Specifically,
the BOLD time series of each brain region was subsequently Hilbert-
transformed to yield the phase evolution of the BOLD time course
of this brain region. The phase coherence between each pair of brain
regions at a given time was then estimated through the cosine of the
phase difference using Equation (1):

dPL(i, j, t) = cos(θ(i, t)− θ(j, t)) (1)

where θ(i, t) and θ(j, t) are the time-varying phases of the BOLD
signal in the i region and jregion at a given time tand are computed
using the Hibert transform of the BOLD regional timecourse. Based
on the cosine of the phase difference, two brain regions with
temporarily aligned BOLD signals (i.e., with a similar phase) at a
given time point will have a PL value close to 1, two regions with
orthogonally developing BOLD signals will have zero PL values,
and two regions with 180◦ phase differences will have PL values
equal to −1. The PL matrix at each time point is undirected
and symmetric, with values ranging between −1 and 1. Then,
the leading eigenvector of the PL matrix at each time point was
calculated to reduce the dimensionality of the PL matrix. The leading
eigenvector captures the main orientation of BOLD phases over all
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FIGURE 1

Schematic illustration of LEiDA. (A) BOLD signals based on the AAL template. (B) The phase coherence of BOLD signals and the corresponding leading
eigenvector at t = 40 and 120 (TR). (C) A network in cortical space for each PL state.

brain regions, and each value of the leading eigenvector represents
the projection of the BOLD phase in each brain region into the
leading eigenvector. The sign of elements can be used to divide the
brain area into two communities, and the magnitude of elements
indicates the contribution of their communities. Upon computing
the leading eigenvector of the PL matrix for each time point of
each subject, we used the k-means clustering algorithm to identify
the recurrent PL patterns for ASD and HCs. Notably, we aimed to
explore whether there are specific and robust PL states with abnormal
dynamical characteristics for ASD. The number of clusters (k) is a
free parameter, and a higher k reveals a rare and more fine-grained
network configuration. The optimal number of PL states is not a
consensus. Therefore, to verify the robustness of the abnormal PL
state configuration in our study, the number of clusters varies over
a wide range from 3 to 20. For each k, how each PL state was
significantly altered between ASDs and HCs was examined.

2.4. Statistical analysis

Based on the PL states identified by LEiDA, the probability of
occurrence of each PL state for each subject and each k was assessed.

In particular, the probability of occurrence, also called fractional
occupancy, is the ratio of the number of epochs assigned to a given
PL state divided by the total number of epochs (TRs). Then, the
occurrence probability of each PL state was compared between the
subjects with ASD and HCs using non-parametric permutation-
based t-tests with 5000 permutations and Bonferroni’s correction.
Finally, to evaluate the consistency of PL states with significantly
alternated fractional occupancy, we calculated Pearson’s correlation
between centroid vectors of PL states.

3. Results

3.1. Significant alteration of PL states
identified in ASD

The repertoire of the PL state identified from the BOLD that
time series depends on the number of clusters. In general, a higher
number of clusters can result in more fine-grained and less frequent
brain networks. Importantly, the main purpose of our study was
not to determine the optimal number of FC states but instead to
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probe the robust FC configurations that significantly and consistently
differentiate ASD from HCs. Therefore, we calculated and compared
the occurrence probability of each FC state for each clustering model
in patients with ASD and HCs. As shown in Figure 2, we found that
of the 18-partition model considered (with k ranging from 3 to 20),
16 solutions revealed the identified PL states that occurred during the
temporal organization in subjects with ASD (Figure 2). Specifically,
compared to controls, the occurrence probabilities of the PL state Sk
(k = 3 to 18) were significantly decreased in subjects with ASD from
k = 3 (S2: p = 0.007), 5 (S4: p = 0.001), 11 (S8: p = 4.27 × 10−3), 14
(S1: p = 3.57× 10−3; S2: p = 3.35× 10−3), 19 (S17: p = 2.63× 10−4),
and 20 (S18: p = 5.51 × 10−4). Correspondingly, our study also
identified PL states with increased occurrence probabilities for k = 6
(S5: p = 3.3× 10−3), 7 (S7: p = 4.57× 10−3), 8 (S5: p = 6.25× 10−3),
10 (S2: p = 1.5× 10−3; S4: p = 6.01× 10−4), 11 (S3: p = 8.18× 10−4;
S4: p = 1.45× 10−3), 12 (S1: p = 3.25× 10−3; S2: p = 3.92× 10−3; S1:
p = 1.92× 10−3), 13 (S2: p = 3.08× 10−4), 14 (S4: p = 5.11× 10−4),
15 (S5: p = 8.64× 10−4, 16 (S6: p = 3.13× 10−3; S6: p = 6.25× 10−4),
17 (S9: p = 5.71 × 10−3), 18 (S12: p = 4.44 × 10−3), 19 (S1:
p = 2.11 × 10−4; S1: p = 1.26 × 10−3), and 20 (S4: p = 1.23 × 10−3;
S4: p = 2.15). All between-group comparisons were performed using
a non-parametric permutation t-test and Bonferroni’s correction.

3.2. Spatial activation map of the
alteration states

To further probe the spatial activation map of the significantly
altered PL states in ASD, we calculated the Pearson’s correlation
coefficient between each pair of characterizations (vector of clustering
centers) of the significantly altered PL states across k = 3–20. In our
study, we found that the PL states could be divided into five groups
of states and that PL states in the same group had higher similarity
(Pearson’s r > 0.9 for all paired FC states in one group). In particular,
as shown in Figure 3, the PL states whose occurrence probabilities
were significantly increased in ASD were organized into three groups.
The PL states in group I were identified from k ranging from 10 to
20, which indicated that these states referred to variant forms of the
same underlying PL states in more detailed partitions (K > 10). The
spatial activation map of the PL state in group I was characterized
by the insula, caudate, angular gyrus, frontal gyrus, anterior and
middle cingulate cortex (ACC and MCC), and inferior parietal gyrus
(Figure 3A). The PL states from k = 8 (S5), 12 (S2), and 16 (S6)
were divided into group II and from K = 10 (S2), 19 (S1), and 20
(S4) into group III. The PL states from group II were characterized
by the angular, precuneus, cuneus, occipital gyrus, superior parietal
gyrus, and fusiform gyrus (Figure 3B), and those from group III
were characterized by the middle frontal gyrus, the middle and post
cingulate cortex (MCC and PCC), the occipital gyrus, the central lobe,
the angular, inferior, and superior parietal gyrus, and the precuneus
and cuneus (Figure 3C). Correspondingly, as shown in Figure 4, the
PL states with significantly decreased occurrence probabilities in ASD
were organized into two groups of states. One (group IV) consisted of
the PL states identified from K = 3 (S2), 5 (S4), 11 (S8), and 14 (S1),
and another (group V) consisted of the PL states from 14 (S2), 19
(S17), and 20 (S18). PL states in the former group were characterized
by the subcortical cortex (including insula, caudate, putamen, and
thalamus), the middle inferior frontal gyrus and orbitofrontal, the
central gyrus, the supplementary motor area, the paracentral lobule,

FIGURE 2

The probabilities of PL states across k = 3–20. *Represented the
significant difference between ASD and HC.

the parietal gyrus, the superior temporal gyrus, the temporal pole, and
the MCC (Figure 4A). PL states in the latter group were characterized
by the subcortical cortex (insula, amygdala, putamen, hippocampus
and parahippocampus, and pallidum gyrus), the middle and superior
temporal gyrus, the temporal pole, and the central gyrus (Figure 4B).

3.3. Comparison between PL states and
resting-state networks

Finally, we computed the spatial Pearson correlation between
the canonical resting-state networks (RSNs) and each PL state. In
particular, consistent with previous studies (Thomas Yeo et al.,
2011; Lord et al., 2019), we first obtained the contribution of each
AAL brain area to 7 RSNs by calculating the number of voxels of
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FIGURE 3

Three groups of PL states with significantly increasing probabilities in ASD. (A) The PL states in group I at k = 10–20. (B) The PL states in group II at k = 8,
12, and 16; and (C) the PL states in group III at k = 10, 19, and 20.

each brain area in each RSN. The contribution of each AAL brain
area to 7 RSNs was show in Supplementary Table 1. Then, we
computed the bivariate correlation between centroid vectors of each
PL state and the contribution of each AAL brain area to 7 RSNs.
Our results showed striking spatial similarities between 7 RSNs with
PL states with a significantly altered occurrence probability in ASD.
Specifically, as shown in Figure 5, PL states from group I were
called the “VAN-FPN-DMN state,” including the ventral attention

network (VAN: insula, MCC, and supramarginal gyrus, r = 0.37,
p = 1.08 × 10−4), frontoparietal control network (FPN: the middle
and orbital frontal gyrus, the opercular and triangular part of the
inferior frontal gyrus and the inferior parietal gyrus, r = 0.643,
p = 8.21 × 10−12), and (DMN: superior frontal gyrus, the orbital
and inferior frontal gyrus, the superior and medial frontal gyrus,
ACC, and angular gyrus, r = 0.36, p = 5.09 × 10−4). PL states from
group II were called “VIS states,” including the visual network (VIS:
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FIGURE 4

Two groups of PL states with significantly increasing probabilities in ASD. (A) The PL states in group IV at k = 3, 5, 11, and 14; and (B) the PL states in group
V at k = 2, 17, and 18.

occipital gyrus, fusiform gyrus, lingual gyrus, calcarine area, and
cuneus, r = 0.72, p = 2.05 × 10−15). PL states from group III were
indicated as the “VIS-SMN-DMN state,” including VIS (the superior
and middle occipital gyrus, calcarine area, and cuneus, r = 0.50,
p = 4.95× 10−7), somatomotor network (SMN: postcentral gyrus and
paracentral lobule, r = 0.38, p = 8.45× 10−6), and DMN (precuneus,
angular, superior frontal gyrus, and PCC, r = 0.38, p = 8.45 × 10−6).
PL states from group IV consisted of an extensive network and were
called the “SUB-SMN-FPN state,” including the subcortical network
(SUB: caudate, putamen, and pallidum), SMN (precentral gyrus,
postcentral gyrus, Rolandic operculum, paracentral lobule, Heschl’s
gyrus, and superior temporal gyrus r = 0.55, p = 1.16 × 10−18),
and FPN (inferior and middle frontal gyrus and inferior parietal
gyrus, r = 0.58, p = 1.73 × 10−9). PL states from group V were
indicated as the “SUB-SMN-VAN state,” which consists of SUB
(hippocampus, amygdala, putamen, thalamus, and pallidum), SMN
(precentral gyrus, postcentral gyrus, Rolandic operculum, paracentral
lobule, Heschl’s gyrus, and superior temporal gyrus, r = 0.36,
p = 4.71 × 10−4), and VAN (VAN: insula and supramarginal gyrus,
r = 0.58, p = 2.96× 10−9).

4. Discussion

Our study probed the dynamics of brain networks reoccurring
over time during the resting state for ASD. Specifically, we
identified five different groups of discrete resting-state functional
networks, which can be defined as recurrent BOLD PL patterns
over time (PL states). Meanwhile, we also found that these PL
states were characterized by significantly increased or decreased
occurrence probability for ASD and were closely linked to sensory-
to-cognitive systems of the brain. Our study provides new insights
into the dynamics of brain networks and contributes to a deeper
understanding of the neurological mechanisms of ASD.

Most previous studies of FC in ASD relied on the assumption
that connectivity patterns remain constant over time (Cerliani et al.,
2015; Chen et al., 2017; Di Martino et al., 2017). However, the
whole-brain functional network changes dynamically with ongoing
rhythmic activity (Allen et al., 2012; Cavanna et al., 2018; Harlalka
et al., 2019). This variability in the whole-brain functional network
can be tracked in different brain states by using dynamic FC.
Knowledge of the dynamic patterns across brain regions may allow
for a better understanding of resting-state functional organization
and processing. Numerous studies have indicated that dynamic FC
analytical techniques are a promising avenue of research in ASD
and can broaden our understanding of changes in functional brain
organization among individuals with the disorder (He et al., 2018;
Rashid et al., 2018; Harlalka et al., 2019; Mash et al., 2019; Li
et al., 2020). However, the best way to characterize dynamic FC
remains under debate. In our study, we adopted the LEiDA method
to characterize FC at the instantaneous level and found a special
and robust PL state configuration. Examining partition modes from
k = 3 to 20 clusters, our results found special and robust PL states,
whose occurrence probabilities were significantly altered in patients
with ASD compared to HCs. Specifically, there are three types of
PL states that occurred more in ASD, and the other two types of
PL states that occurred less in ASD across models with k ranging
from 3 to 20. Our results are consistent with previous findings that
patients with ASD have special patterns of brain PL state organization
that are significantly different from those of HCs. Previous studies
found that there were significantly different occurrences in multiple
functional states between patients with ASD and HCs. For example,
subjects with ASD spent more time in a state characterized by weak
dynamic FC patterns and less negative dynamic FC between the
DMN and other sensory networks, while healthy individuals spent
more time in a state with both positive and negative dynamic FC
patterns (Rabany et al., 2019). In addition, recent work based on the
hidden Markov Model (HMM) found that of the 19 HMM states, four
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FIGURE 5

The corresponding RSNs of the PL states. The red nodes represent that the corresponding elements of centroid vectors are positive and the blue nodes
represent that the corresponding elements are negative. The details are shown in Supplementary Table 2.

HMM states have significantly higher fractional occupancies and the
other four states have fewer fractional occupancies in ASD (Lin et al.,
2022). Therefore, our results indicated the altered pattern of brain
connectivity recurrently and consistently in ASD, which is robust
across a range of partition models.

In our study, the identified PL states across k ranging from 3 to 20
could be divided into five groups of states, and PL states in the same
group had higher similarity (Pearson’s r > 0.9 for all paired FC states
in one group). Five types of PL states were closely linked to sensory-
to-cognitive systems in the brain. The occurrence probabilities of
three of five groups of PL states were significantly increased in ASD.
Three PL states were defined as the “VAN-FPN-DMN state,” “VIS
state,” and “VIS-SMN-DMN state.” In particular, abnormal dynamics
of the “VAN-FPN-DMN state” were robustly identified across a
large range of k-means solutions. This state consists of an extensive
network connecting frontal areas—important for cognitive control—
with the DMN (superior and medial frontal gyrus, ACC, and angular)
and VAN (including insula and MCC). Our results are consistent with
previous studies reporting overconnectivity between these RSNs.

For example, a recent study used sliding window analysis to
probe the alteration in transient connectivity in ASD and found
that an overall trend toward overconnectivity is largely driven by
the network-level trend toward overconnectivity among DMN, FPN,
and VAN. The significantly altered overconnectivity between the
DMN and FPN regions was robust across the different numbers of
clusters (Mash et al., 2019). Moreover, other PL states found to be
more idiosyncratic in ASD were the “VIS state” and “VIS-SMN-
DMN state,” which are mainly characterized by the VIS (including
occipital gyrus, fusiform gyrus, lingual gyrus, calcarine area, and
cuneus) with DMN (including the precuneus, angular, superior
frontal gyrus, and PCC). A recent study found that aberrant FC
between DMN and primary visual cortex (PVC) as well as visual
association circuitry in occipitotemporal cortex social is closely

related to visual engagement difficulties, which are central early
developmental features of ASD (Lombardo et al., 2019). Together
with our results, these findings consistently highlight the potential
role of the neural circuits associated with the sensory and cognitive
networks (including VIS, DMN, FPN, and VAN) in the pathological
mechanisms of ASD.

Furthermore, we also found that the occurrence probabilities
of the other two PL states were significantly decreased in
ASD. These two states were mainly characterized by SUBs
(including the hippocampus, amygdala, caudate, thalamus, putamen,
and pallidum), SMN (including the pre- and postcentral gyrus,
paracentral lobule, and superior temporal gyrus), FPN, and
VAN. The common features of ASD are abnormal sensory and
motor behaviors, such as clumsiness, hyper and hypo-sensitivities,
and motor coordination impairments (Whyatt and Craig, 2013).
Previous static FC studies in ASD have demonstrated impaired
functional synchronization between visual networks and sensory-
motor networks (Nebel et al., 2016; Oldehinkel et al., 2019).
Interhemispheric FC was significantly decreased in the sensorimotor
cortex in individuals with ASD (Anderson et al., 2011). In addition,
a recent study based on static functional hub distribution showed
significantly reduced FC in the pre- and postcentral gyrus in ASD
(Lee et al., 2016). Meanwhile, an increasing number of clinical
and experimental studies have reported atypical sensory processing
in ASD, which is qualified as hypo-reactivity or hyperreactivity to
sensory stimuli and could enhance sensory-perceptual processing
and discrimination (Baron-Cohen et al., 2009; Marco et al.,
2011; Cerliani et al., 2015). Consistent with these findings, the
configuration reduction of brain states with SMN and SUBs over
time observed in the current study further emphasized abnormal
dynamic functional coordination of the sensorimotor network in the
autistic brain and may contribute to the aberrant sensory and motor
processing in ASD.
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In summary, the present study used a novel and data-driven
LEiDA approach to examine the instantaneous dynamics of brain
activities and found five different and robust groups of discrete
resting-state functional networks, and their occurrence probabilities
were significantly altered in ASD. Our findings provide new insights
into aberrations in dynamic brain network connectivity in ASD
and contribute to a deeper understanding of the neurological
mechanisms of ASD.
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