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Cingulotomy is therapeutic in OCD, but what are the possible mechanisms?

Computer models that formalize cortical OCD abnormalities and anterior

cingulate cortex (ACC) function can help answer this. At the neural dynamics

level, cortical dynamics in OCD have been modeled using attractor networks,

where activity patterns resistant to change denote the inability to switch

to new patterns, which can reflect inflexible thinking patterns or behaviors.

From that perspective, cingulotomy might reduce the influence of difficult-

to-escape ACC attractor dynamics on other cortical areas. At the functional

level, computer formulations based on model-free reinforcement learning

(RL) have been used to describe the multitude of phenomena ACC is involved

in, such as tracking the timing of expected outcomes and estimating the

cost of exerting cognitive control and effort. Different elements of model-

free RL models of ACC could be affected by the inflexible cortical dynamics,

making it challenging to update their values. An agent can also use a world

model, a representation of how the states of the world change, to plan its

actions, through model-based RL. OCD has been hypothesized to be driven

by reduced certainty of how the brain’s world model describes changes.

Cingulotomy might improve such uncertainties about the world and one’s

actions, making it possible to trust the outcomes of these actions more and

thus reduce the urge to collect more sensory information in the form of

compulsions. Connecting the neural dynamics models with the functional

formulations can provide new ways of understanding the role of ACC in OCD,

with potential therapeutic insights.
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ACC lesion is therapeutic in OCD

The therapeutic effect of anterior cingulotomy in intractable
OCD patients supports the involvement of the anterior cingulate
cortex (ACC) in OCD pathophysiology. Anterior cingulotomy
encompasses bilateral lesioning of Brodmann areas 24 and
32 and the underlying cingulum bundle. The first reports of
cingulotomy go back to the 1940s when it was performed on
patients with anxiety and chronic pain (Patel et al., 2013). In the
mid-1960s, bilateral stereotactic cingulotomy was performed in
patients with manic depressive symptoms. The study reported a
significant improvement in 77% of patients with no significant
complications (Ballantine et al., 1987). About 20 years later, the
same authors reported a 56% improvement of OCD symptoms
after anterior cingulotomy (Ballantine et al., 1987). Reanalysis
of the treatment outcome with more rigid criteria suggested
that the same data’s response rate is 33% (Cosgrove, 2000; Patel
et al., 2013). Studies of anterior cingulotomy published in the
following years reporting long-term follow-up of patients with
OCD indicated a 32–48% response rate based on Y-BOCS scores
(Dougherty et al., 2002; Jung et al., 2006).

Overall, anterior cingulotomy for OCD is recognized as a
low-risk procedure. Dougherty et al. (2002) from Massachusetts
General Hospital in Boston, USA, reported that one patient
out of 44 experienced seizures that were controlled with anti-
epileptics. Two patients described memory problems that were
back to baseline within 6–12 months, and one patient described
apathy with reduced energy that resolved after 6 months.
Kim et al. (2003) reported no cognitive or physical side
effects such as seizures after 3 months in 14 patients who
underwent cingulotomies for OCD at Kwandong University
in Kangnung, South Korea. This is unlike cingulotomy for
intractable pain (usually due to malignancy) to reduce the
distressing affective component of pain, where there have been
reports of impaired self-initiated action (Cohen et al., 1999b)
and sustained attention (Cohen et al., 1999a). Though there may
be overlap in targeting, cingulotomy lesions for chronic pain
are typically more caudal than those for OCD (Viswanathan
et al., 2013). In OCD, studies did not show such impairments
at 12 months follow up (Kim et al., 2003) or at a mean follow
up duration of 32 months (Dougherty et al., 2002). Though no
long-term side effects have been documented after cingulotomy
for intractable OCD (Patel et al., 2013), more specific and
sensitive (e.g., experimental cognitive) tasks might elucidate
such changes.

Cingulotomy affects both gray and white matters. A simple
extrapolation is that cingulotomy is therapeutic because it
reduces the impact of functions and computations performed
within the ACC on other cortical regions. ACC has been
hypothesized to be involved in a multitude of functions,
including monitoring task execution and errors, cognitive
control, mapping stimuli and actions to outcomes of these
actions, monitoring environment volatility, and decision

making (Holroyd and Yeung, 2011). Understanding the
computations of these functions can shed light on how
cingulotomy might be helpful.

Why computer models?

Computer models of a brain phenomenon fall along
a spectrum. On one end are the models describing the
neuronal dynamics in a particular brain region. On
the other end are models of the different functions a
region performs, reflected in behavioral patterns of the
subjects. Between these two ends are models that perform
computational functions implemented by elements constrained
by neurobiology. This spectrum is analogous to the three
levels of computations for analyzing cognitive processes
proposed by Marr and Poggio (1976) and Marr (1982).
Marr’s (1982) first level is the computations that need to take
place in a brain region to solve a problem (computational
level) (Barack and Krakauer, 2021). The second level is the
steps needed to solve these computations (algorithmic level).
These two levels correspond to models that describe the
cognitive/psychological processes underlying a brain function
and how they interact. The third level is the implementation
of these steps (implementation or hardware level). This
level corresponds to the neuronal models constrained
by the neurobiology of the region(s) of interest and
their dynamics.

Computational and mathematical modeling explicitly
describe the mechanisms we hypothesize underlie a
particular phenomenon, making these models falsifiable.
Mathematically formulating the assumptions underlying our
understanding makes computer models powerful tools in
systematically navigating different hypotheses and mechanistic
understandings of psychopathology (Volkow et al., 2013;
Maia and Frank, 2017). We will discuss computer models of
OCD neuronal dynamics and ACC functioning and speculate
on possible bridges between them through cingulotomy.
Such connections would be paramount in understanding
the therapeutic effect as well as OCD psychopathology
(Rolls, 2011).

Neuronal models: Attractor
dynamics

Attractor neural models simulate different dynamical
states as neuronal firing patterns that are stable over time,
called attractors. Brain states “jump” between these attractors,
spending more time within an attractor rather than between
attractors (Durstewitz et al., 2020). Attractor models have been
used to represent the stability of information representation
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over time, e.g., in working memory (Verduzco-Flores et al.,
2012).

Attractor models have also been used to represent how
OCD patients appear behaviorally inflexible, stuck in specific
thoughts (obsessions) or actions (compulsions). Rolls et al.
(2008) hypothesized that cortical dynamics attractors in OCD
have deep basins, making it difficult for the cortical dynamical
states to “escape” from these attractors. For prefrontal regions
involved in attention and planning, it will be difficult to switch
attention when these regions are stuck in deep attractors. In
the cingulate cortex, deep attractors will leave the patients
at the mercy of fixated versions of ACC computations, as
discussed in the next section. Rolls et al. (2008) model
consisted of three interconnected populations of excitatory
integrate-and-fire neurons: S1, S2, and NS (non-specific). The
excitatory populations had AMPA and NMDA glutamatergic
receptors, with strong recurrent connections within each
neuronal population that supported persistent firing activity.
The persistent firing was considered an attractor state. The
excitatory neurons also received GABAergic input from a
population of inhibitory interneurons. In response to input to
either S1 or S2, excitatory neurons would go into persistent
firing dynamics in the corresponding population, with a
probability of 88%. Increasing conductance of NMDAR in the
system by 3% raised the system’s probability of being in a
persistent firing state to almost 100%. The probability also
increased when the conductance of AMPAR was increased by
10%. The probability of staying in the persistent firing state was
restored (the model became more flexible) by increasing GABA
conductance by 10%. They also examined the model’s flexibility
by introducing an input to one specific excitatory population
while the other was firing. Increasing NMDAR conductance
by 5% or AMPAR conductance by 10% made it more difficult
for the model to respond to the second input (i.e., it became
less distractible). The distractibility dynamics were rescued with
GABAR augmentation.

As we will discuss later, the ACC is involved in high-
level management of sequences of events or firing dynamics
(Holroyd and Verguts, 2021), however, Rolls et al. (2008)
model was of individual attractors. Maia and McClelland (2012)
suggested using Verduzco-Flores et al. (2012) working memory
model of sequences of attractors to reflect neuronal dynamics
during varying excitation/inhibition balance in OCD (Maia
and McClelland, 2012). Verduzco-Flores et al. (2012) model
consisted of 80 excitatory units and 16 inhibitory units. When
a sequence of activation of specific units was introduced, the
model maintained its firing along the same sequence. When
a new sequence was later introduced, the activation pattern
switched to the new sequence. So, the model updated its activity
after a new input. The model also had the feature of maintaining
multiple inputs at the same time. But the model could not
update the firing patterns after reducing the inhibitory influence
to half the “control” value. The model either continued firing

in the old pattern, or both patterns merged. Merging both
patterns might reflect the elaboration and sophistication of
compulsions. But such a reduction in inhibition is not reported
in OCD microcircuit abnormalities. Maia and McClelland
(2012) suggested that similar dynamics might arise with
increased activation reported with hyperglutamatergic states
(Pittenger et al., 2006).

To study the effect of glutamatergic and serotonergic
changes, Maia and Cano-Colino (2015) developed an attractor
model for orbitofrontal’s cortical dynamics. Similar cortical
dynamics might apply to ACC, which also receives serotonergic
input from the dorsal raphe nucleus (Chandler et al., 2013).
The model investigated the role of tonic changes in serotonin
levels, similar to what might happen with serotonin-reuptake
inhibitors. In their model, serotonin had a predominantly
inhibitory effect. This effect was mediated by the inhibitory
influence of 5-HT1A receptors on pyramidal neurons. The
inhibitory effect was also mediated by the excitatory effect
of 5-HT2A receptors on PFC interneurons. Of note, 5-
HT2A receptors have a stimulatory effect on PFC pyramidal
neurons mediated through increased intracellular calcium levels
(Raymond et al., 2006). The model consisted of 1024 excitatory
neurons and 256 inhibitory neurons recurrently connected. The
neurons were arranged in a circle, and they were less connected
to each other the further they were from one another. They
modeled the effect of serotonin on pyramidal neurons as the
summation of current from three mechanisms:

I5−HT = IK1A + IKCa + ICan

IK1A was a potassium current mediated by 5-HT1A activity. IKCa
was a calcium-gated potassium channel, and ICan was a calcium-
modulated cation channel. 5-HT2A receptors mediated the
activity of both IKCa and ICan. Serotonin’s effect on interneurons
was modeled as an inhibitory effect of 5-HT2A receptors
on the leak hyperpolarizing current, increasing interneuronal
excitability. The model manifested two stable dynamics, low-
rate and high-rate states. Increased 5-HT activity increased the
probability of transition of the model from the high-rate to the
low-rate stable state. Following an input that activated specific
excitatory neurons, these neurons continued to fire. In response
to a second input, the model either switched the activity to the
second input, maintained firing corresponding to the first input
(perseverance), or lost memory of both inputs. They found that
perseverance increased with a reduction in 5-HT activity. To
examine the effect of learning, they then implemented Hebbian
plasticity. The network learned specific activity patterns and
tended to return to them, developing attractors. The reduction
of 5-HT sped up the formation of even more robust attractors,
characterized by higher firing rates. Increased glutamatergic
synaptic strength made the development of these attractors even
more pronounced. In a separate set of simulations, increased
glutamatergic synaptic strength (both AMPA and NMDA
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receptors) resulted in similarly robust attractors. Increasing 5-
HT activity normalized the formation of these attractors (made
the model less likely to develop them). There was even less
formation of obsession-like attractors with 5-HT2A antagonists
or 5-HT1A agonism. In these simulations, there was no baseline
abnormality in serotonin levels. The model illustrated how
tonic serotonin counteracted increased glutamatergic effects,
making it easier to transition between attractors and not
get stuck in them.

The attractor models we discussed highlighted that
increasing glutamatergic transmission deepened the attractor
basin, reducing the system’s flexibility. This was reversed by
increasing GABAR currents (Rolls et al., 2008). The models’
findings hint at the involvement of the glutamatergic (Pittenger
et al., 2011) and GABAergic systems in OCD pathology. Of note,
these changes are opposite to what has been reported in the
OFC in OCD from post-mortem examination (Piantadosi et al.,
2019), where there was a reduction in mRNA copies of proteins
involved in excitatory transmission. A possible explanation
is that OCD psychopathology starts as reduced inhibition,
as suggested by the attractor models. Then, to maintain the
regional excitation/inhibition ratio (D’Souza and Burkhalter,
2017), there is compensatory reduction in expression of proteins
involved in excitatory transmission, reflected in the reduction
of mRNA copies encoding for these proteins.

What do the effects of
cingulotomy mean for attractor
dynamics models?

The attractor models of OCD described cortical dynamics
in PFC regions like the orbitofrontal and anterior cingulate
cortex as states with deep basins. The deep basins make it
difficult for the models to update their firing following new
inputs. Thus, they can model the difficulty patients experience
distracting themselves from the obsessions or stopping the
compulsions. Dynamics within the ACC might spread to other
regions through synchronization of oscillations in the theta
range, which are prominent in the ACC. Regions with theta
oscillations in the same phase as ACC theta have higher
probability of responding to spikes in the ACC (Narayanan et al.,
2013; Verguts, 2017). The spread of these dynamics to other
cortical regions would make it difficult for the other regions
to escape from such deep basins of persistent activity as well.
Studies on either structural or functional connectivity post-
cingulotomy for OCD are limited. However, Banks et al. (2015)
evaluated presurgical structural connectivity using diffusion
tensor imaging to identify predictors of response in 8 responders
out of 15 patients. They found that pre-surgical increased right-
sided structural connectivity between the lesion region and basal
ganglia, hippocampus, and thalamus, predicted improvement in
OCD symptoms, supporting the idea that cingulotomy might

help reduce the influence of such abnormal dynamics on other
cortical regions. Turning to functional models of the ACC, we
will explore the implications of such limited flexibility.

Functional models: Reinforcement
learning (RL)

Neuronal firing dynamics in OCD have been modeled as
attractors with deep basins, making it difficult to change the
firing patterns, reflecting being stuck in behavior patterns.
However, such firing dynamics can also reflect erroneous
computations that control cognitive or motor behavior. To
investigate this, we will look at ACC computations that
affect behavior.

The ACC is involved in reward-guided learning and
decision-making. ACC connections to the motor system
suggest its ability to influence and be influenced by action
selection. Lesion studies in monkeys show that ACC is more
involved in action-reward associations rather than stimulus-
reward associations like the lateral OFC (Rushworth et al.,
2011). Reinforcement learning (RL) is a general computational
framework that models behavior guided by action and reward.
RL describes how an agent interacts with the environment and
gets rewards. The goal of the agent is to maximize the amount
of reward it gets. Predicting the rewards following an action
and then comparing the prediction to the actual rewards it
collected generates a reward prediction error. The agent then
uses the prediction error to update its predictions. This is usually
formalized as the “delta-rule” (Rescorla and Wagner, 1972;
Collins and Shenhav, 2021):

V(t + 1) = V(t) + alpha × predictionError

where V(t + 1) is the predicted reward value at time step t + 1,
V(t) is the actual reward value obtained at the previous time step
t, and alpha is a learning rate.

Reinforcement learning consists of four elements (Sutton
and Barto, 2018). After an agent acts on the environment, it
gets information about the state of the environment after the
action. The first element is the reward signal the agent gets from
the environment at every time step. But agents are interested in
the long-term rewards they can collect over many time steps,
formulated as the value function (second element). The value
function is calculated as the prediction of rewards given the
environment’s state if the agent chooses its actions following
a particular policy (third element). The agent might have a
model of the environment (fourth element, which is optional),
formalized as the probabilities of how the different states of the
environment evolve to each other. When an agent is using such
a model of the world to plan its actions, it is called model-based
RL. When an agent uses the reward signal, value function, and
policy, without using a model of the world, it is called model-free
RL (Figure 1A).
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FIGURE 1

(A) Schematic of RL decision cycle. Following an action At chosen by the agent, the agent receives a reward Rt+1 and the updated state of the
environment St+1. Model-free RL is when the agent is making decisions without a model of the world, while model-based RL is when the agent
is using a model of the environment to plan its actions. (B) Schematic of model-free RL ACC models and where deep attractor dynamics might
underline OCD pathology (dotted circles). P.E.: prediction error. (C) In model-based RL, the model of the environment is formalized as transition
probabilities between states S1 to S4. In OCD, there is less confidence about the transition probabilities (dotted distributions).

Anterior cingulate cortex has been thought to represent
an actor in an actor-critic RL, a formulation of model-free
RL (Holroyd and Yeung, 2011). An actor-critic RL separates
the estimation of the value function and prediction error
(critic) from selecting the action (actor). An ACC lesion study
highlighted this role (Modirrousta and Fellows, 2008). In an
Eriksen flanker task, healthy subjects were allowed to respond
after making a mistake by another button click. Their response
time for the second click was around 200 ms, much faster
than the reaction time for performing the task itself (about
400 ms). The shorter response time to the second click implied
they were preparing for the second button press even before
realizing they made a mistake. In five patients with lesions
converging onto dorsal ACC, patients took around 700 ms to
press the second button, even longer than the first button. This
suggested the involvement of the ACC in action preparation
for the second button press. Sheth et al. (2012) also found that
cingulotomy abolished how reaction times are modulated by
recent experience, supporting the predictive role of dorsal ACC
(dACC). This predictive capacity shortens the reaction time

when cognitive demand is constant, but prolongs the reaction
time when there is more interference in a task, allowing for
slower response and thus, more opportunity to consider the
decision being made, reducing errors.

Insights into OCD from applying
attractor models to model-free RL

Multiple computer models described ACC functions based
on the model-free RL framework, where the model is learning
mappings of stimulus and action to outcome while monitoring
deviations from expectations (prediction errors) (Vassena et al.,
2017). Abnormal attractor dynamics might affect different
computational elements. We will describe a number of these
models and highlight how deep attractor dynamics can result
in OCD symptomology (Figure 1B).

The Predictions of Response and Outcomes (PRO) model
(Alexander and Brown, 2011) proposed how the ACC monitors
errors and switches between tasks. The PRO model calculates
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the probability of different predicted outcomes following
an action and their timing based on current context and
stimuli (e.g., walking into a room, flicking a light switch,
and light flooding the room). When cues were pointing
to multiple possibilities, more predictions were made—for
example, walking into a room and seeing both a light switch
and a window that can be opened to allow air in. Another
example is the Stroop task, where the ink color and the word
predict different actions. Because multiple cues triggered more
predictions, there was more activity in the model. Once a
prediction was met (no prediction error), the activity decreased.
One conclusion from the model was that the ACC was not
necessarily encoding conflict. It instead encoded the multiple
action possibilities when presented with cues that triggered
more than one possible plan for action.

In the PRO model, the time course of the generated
prediction error encoded the expected time of the predicted
outcomes. The model separated the prediction error into
positive signal (unexpected occurrence) and negative signal
(unexpected non-occurrence) components that modulated
learning. When a stimulus was presented and a prediction
made, the negative component anticipated the predicted event’s
occurrence. The amplitude of the negative component increased
gradually as the timing of such an expected occurrence
approached. When the anticipated event happened, the positive
component of the prediction error signal increased, and the
negative component was suppressed. When the anticipated
event did not occur (negative surprise or unexpected non-
occurrence), the negative component reached its peak around
the expected time of occurrence, then gradually decreased
without an increase in the positive component amplitude.

The validity of models is strengthened when they replicate
experimental findings. The negative component of the PRO
model explained the relationship between an EEG feature called
the N2 event-related potential (ERP) component, and the speed-
accuracy tradeoff in flanker tasks. In these tasks, a stimulus is
shown consisting of elements of a particular kind, e.g., letters
or digits. The central element can either be the same (e.g.,
three letters) or different (e.g., a central digit flanked by two
letters), denoting congruent or incongruent trial, respectively.
Subjects have to respond by pressing different buttons for
congruent and incongruent trials. The N2 ERP component is
recorded when these stimuli are presented, and usually has a
larger amplitude in incongruent trials. The N2 ERP amplitude is
also usually bigger in trials where subjects are spending longer
time, possibly reflecting increased cognitive demand (Yeung
and Nieuwenhuis, 2009). In PRO, when the response on a
particular trial is delayed, the negative component will have a
longer anticipation time and reach a higher amplitude. Using
the negative component, the PRO model accurately calculated
the N2 ERP amplitude dynamics.

The PRO model’s prediction error differs from the
traditional prediction error implementation in the nigrostriatal

pathway, which signals a discrepancy between an expected
reward and the actual reward. The PRO model prediction
error is generated when there is a discrepancy in predicting
action-response pairs. The PRO model also makes multiple
future predictions and assigns a probability to each, predicting
rewarding and aversive outcomes.

The attractor dynamics in OCD could be mapped to
different components of the PRO model. For example, the deep
basins of attraction can reflect predicted times of occurrence that
do not get updated. To illustrate, after turning the key to lock a
door, I expect to hear the lock. The negative prediction error
component should decrease after I hear the lock, signaling the
end of the task (door is locked). However, suppose the neuronal
dynamics representing the time of occurrence are stuck and not
updated. In that case, there will still be the sense that it has not
been locked, requiring rechecking or unlocking and relocking
the door, seeking a reduction in prediction error. Cingulotomy
might decrease such an error signal.

Anterior cingulate cortex is involved in multiple aspects of
cognitive control, including exercising it, calculating its cost,
and conscious awareness of mental effort during cognitive
control. Naccache et al. (2005) described a patient with an ACC
lesion who could not report which trials of the Stroop task
were more difficult than others, while healthy subjects could.
Multiple models captured these different aspects of cognitive
control. For example, Shenhav et al. (2013) developed a dACC
model that framed its prediction function in a control theory
framework. In this context, control is an optimization problem.
It means the ability to predict the rewards gained when selecting
actions through different policies that govern reward over longer
durations, then selecting the policy that maximizes the amount
of reward gained (thus, optimizing the policy). Their model
took into account the evidence that ACC is involved in both
action selection and allocation of cognitive control resources
and that cognitive control is costly. They proposed that the
dACC predicts the reward and cost of each task choice, as well
as the intrinsic cost of exerting control, generating the Expected
Value of Control (EVC). EVC is a control signal with two
components: identity and intensity. The control signal identity
corresponds to the task choices, while its intensity modulates
the magnitude of cognitive control needed. A change in the
task rules would require updating the identity of the signal.
In contrast, within a task with the same rules, a conflict of
the correct response with a more automatic response, would
require modulating the intensity of the signal. For example, in
the Stroop task, when a subject has to name the ink color instead
of reading the written color, the signal intensity would increase
to allocate more resources for cognitive control.

Shenhav et al. (2013) model proposed that the dACC tries to
maximize EVC. EVC was calculated by summing the probability
of all future states based on the control signal needed and the
current state, multiplied by the future states’ value. The cost of
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the control signal was then subtracted:

EVC =
∑ (

Probability (futureStates|signal, currentStates ) ·

value (futureStates)
)
− signalCost

The value of a future state was calculated from the immediate
reward of the future state and the estimated EVC of the
predicted future state.

Again, different elements of the EVC algorithm could be
formulated as deep basins of attractions in OCD, making it
difficult to update the EVC. McGovern and Sheth (McGovern
and Sheth, 2017) suggested that in OCD, the ACC sends “mis-
specified” signals of cognitive control, where the incorrect
identity of the EVC, or inability to update it, can result in
an inability to switch away from behaviors that are deemed
unhelpful, as in compulsions. Increased intensity of EVC can
result in feelings that patients had to do something about a
situation, even if they cannot, increasing personal responsibility.
They also suggested that impaired fear extinction in OCD could
be linked to miscalculated EVC. In healthy people, repeated
presentation of a conditioned stimulus without an aversive
outcome reduces the fear of the aversive outcome. However, fear
could be maintained by an inability to reduce the intensity of
EVC because of persistent dynamics.

Cingulotomy will reduce the interaction between the ACC
and other brain regions. Alexander and Brown, 2015 expanded
the PRO model to study interactions of medial PFC (ACC) with
the dorsolateral PFC (DLPFC) in a model called the Hierarchical
Error Representation (HER) model. In HER, the hierarchies
of representations reflect the gradient of abstraction reported
in the PFC [e.g., (Koechlin et al., 2003)]. Each level has a
medial component [representing the ACC/medial PFC (mPFC)]
that consists of a PRO module, and a lateral component
(representing DLPFC) consists of a working memory module.
The idea behind the model is that within each level, the medial
component makes predictions about response and outcome
and calculates prediction errors that are passed to the lateral
component. The lateral component (working memory module)
would maintain these prediction errors and modulate how the
medial component makes the next prediction based on the
sensory stimuli features maintained in the working memory
module. So, prediction errors generated in the ACC are passed
onto DLPFC to aid in its training, while prediction errors
generated within the DLPFC module are passed to ACC to
update its predictions of responses based on actions taken by
the agent. The prediction error is used to update the predictions
of the modules within a level. The prediction error is also
passed to the next level of the hierarchy. So the higher (more
abstract) levels generate predictions related to the errors they
receive from the lower levels (thus, the name hierarchical error
representation).

If the error calculating component of the mPFC/ACC in the
HER model is stuck in an attractor, the DLPFC component will

keep getting an error signal and updating its predictions. The
predictions are sent back to the mPFC/ACC, which in turn keeps
sending an error signal to the DLPFC component. This will be
similar to turning a key to lock the door. Instead of receiving no
error since the door has been locked, the DLPFC module will
get an error from the mPFC signaling something is wrong with
the prediction made by the DLPFC that the door is locked—so
the door still needs to be locked! Cingulotomy in OCD might
reduce such a constant error signal, allowing the DLFPC to leave
the predictions it made unaltered.

The hierarchical nature of representation behind the HER
model could be applied in a different way to RL (hierarchical
RL). In their formulation, Holroyd and Verguts suggested that
the ACC is not interacting with the environment by choosing
single actions, but rather by choosing sequences of actions,
called strategies or options, that are encapsulated in hierarchies
(Holroyd and Verguts, 2021). For example, get gas and buy
groceries instead of individual actions like pushing the gas
pedal and turning the steering wheel to the right. Making
decisions in a hierarchical manner, where low-level sequences
are encapsulated together, allows focusing on choosing the
needed high-level action without being distracted by the
sequences at the lower level. The sophistication of compulsions
and the urge to do them in specific ways suggest that the ACC
sends information of hierarchical nature to stay on a particular
goal. Such “fixed” goal representation could be mediated by a
deep attractor basin, reducing the likelihood of escaping it, and
thus making it difficult for the ACC to move onto other high-
level goals. Cingulotomy might reduce the influence of such
dynamics on regions involved in the execution of lower-level
steps. An interesting finding in lesions of ACC is that it does
not affect learning from feedback on a trial-by-trial basis, but
rather higher-level changes like reduced spontaneity, supporting
the hierarchical nature of RL implemented in the ACC (Holroyd
and Yeung, 2012).

Model-based RL, OCD, and
attractor models

The above models were formulated through model-free
RL, where an agent selects actions given the reward values
predicted for each action, learned through interacting with the
world. But an agent can also learn a model of the world while
the agent is interacting with it, then uses the model to plan
its future actions. Having a model of the environment is the
optimal way to exert control (Conant and Ross Ashby, 1970),
and animals seem to build world models when uncertainty
about the environment is high (Monosov, 2020). In RL, this is
called model-based RL. According to the Bayesian-brain theory
(Knill and Pouget, 2004; Friston, 2010), the experienced world
consists of time-evolving states hidden from the brain. To build
a model of the world, the brain tries to infer such hidden states.
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The brain makes a current inference, which is then compared
with the incoming perception. When there is a discrepancy, the
brain generates a prediction error that is used to update the
predicted future state, i.e., to update the model of the world.
Note that the prediction error here is about the model of the
world [called state prediction error (Gläscher et al., 2010)]
rather than about the value of predicted reward as in model-
free RL. Inferring the hidden states depends on (1) what is
observed from perceptions and exploratory behavior and (2)
assumptions about how the states evolve over time based on
past experience (state transitions). The world model consists of
the state transitions, as well as the confidence about them. For
example, if I locked the door, what is the probability of the door
staying locked, and how confident am I about this probability.
State transitions either depend on actions taken by a person
(action-dependent transitions) or are action-independent.

An OCD formulation based on learning a world model
hypothesized that OCD results from uncertainty about the
state transitions (Fradkin et al., 2020a). Fradkin et al. (2020a)
suggested that reduced confidence in how the states will
change underlies OCD. Patients will continue seeking ways to
reduce the uncertainty, which can manifest as compulsions,
as biological agents are biased toward seeking information to
reduce uncertainty (Monosov, 2020). For example, if I turn
the stove knob to OFF, and I can see that it is pointing to
OFF, my prediction will be that it will stay in the OFF state,
i.e., the transition to a not-OFF state will be pretty low, and
I am confident about that. However, if my confidence in this
transition probability (action-independent transition) is low, I
would doubt whether it stayed off, and I will have an urge
to look at it again to make sure. And if this is not enough, I
would touch it to make sure it is in the off position. But then,
if my confidence in how my actions can change objects (action-
dependent transition) is low as well, I will keep touching it to
ensure it stayed OFF. The lower transition certainty resulted in
the increased weighting of prediction errors, urging me to collect
more sensory information by checking.

Fradkin et al. (2020b) distinguish between state prediction
errors related to the current state and future states. Prediction
errors associated with the current state would manifest
as internally generated obsessions or obsessions related to
incompleteness. Compulsions will be directed at getting
to the just-right experience (Rasmussen and Eisen, 1992;
Summerfeldt, 2004), aiming to reduce the current prediction
error by collecting more perceptual input, as in checking.
Harm-avoidance obsessions and their compulsions are aimed
at reducing prediction errors related to future states, thus
minimizing the risk of future harm (Salkovskis, 1999). In
both cases, reduced transition certainty would drive patients to
perform the compulsions repeatedly. But because of reduced
certainty in action-dependent transitions as well, performing
the compulsions will increase uncertainty, driving more
compulsions. To increase their confidence in action-dependent

transitions, patients rely on habitual actions that they have
learned by repetition. In a later study, Fradkin et al. found that
subjects with high OC symptoms seem to rely less on the past
(Fradkin et al., 2020b), supporting reduced confidence in how
past states will evolve.

Cortical dynamics representing uncertainty [e.g., (Monosov,
2020)], stuck in attractors with deep basins can reflect a
persistent transition uncertainty, i.e., difficulty in becoming
more confident about transitions (Figure 1C). Reduced
transition certainty would drive the prediction that the task
outcome was undone, e.g., a locked door might not have
stayed locked. ACC plays a role in selecting sequences of
actions and in goal-directed behavior, monitoring the state of
a task and its subgoals, and thus informing about switching a
subgoal to the next subgoal. This can be through a sequence of
attractors. In OCD, with deep attractors, patients get stuck in
a subgoal, repeating it over and over again, and ACC signals
that the subgoal is not complete yet. With cingulotomy, tissue
removal might mean removing parts of the neuronal ensembles
participating in the attractors, thus making them less resistant
to change, reducing their depth and making it easier not to be
stuck in them. This might reduce such a signal delivered to
other brain regions involved in completing the task, reducing
the persistence of obsessions or the urge of compulsions.

Discussion

In this short review, we discussed potential mechanisms
of the therapeutic effects of cingulotomy in OCD guided
by computer models along a spectrum encompassing Marr’s
three levels of analysis. On the neurobiological end are
attractor models focused on neurobiologically plausible ways of
conceptualizing obsessions and compulsions. On the functional
end, models formalized how the ACC executes its multitude of
functions without necessarily discussing their neurobiological
implementation.

The brain, however, occupies both ends of the spectrum.
It performs complex functions using biological elements. Thus,
our discussion tried to bridge models across the spectrum. For
example, assuming that hyperactive ACC might reflect deep
attractors, these attractors might represent persistent incorrect
predictions difficult for patients to escape. The attractors might
also represent neuronal states constantly generating prediction
errors. Another possibility is that the persistent cortical
dynamics underlie transition uncertainty, driving patients to
seek more perceptual input as they have low confidence in
their predictions. In general, cingulotomy might reduce the size
and amount of pathological neuronal ensembles stuck in deep
attractors in the dACC that is constantly sending signals of such
persistent dynamics on other brain regions. This would result
in less influence of these ensembles that might be reflected in
the lower amplitude of such signals or lower entrainment of
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other regions to these signals. When we seek to understand
interventions done on the “brain hardware,” constraining the
functional level models by biology will be an essential research
direction (Niv and Langdon, 2016).

We focused on computations happening locally within the
ACC. Because of the wide connectivity of ACC, the implications
of these local computations could be widespread. Although
early neurocircuitry diagrams of OCD have delineated frontal-
subcortical pathways as implicated in symptom presentation,
newer models [e.g., (Shephard et al., 2021)], have detailed
the likely complexity of the connectivity patterns. The
ACC is likely a “hub” in several of the circuits (e.g.,
fronto-subcortical, sensorimotor circuits) involved in variable
presentations of OCD. These differing circuits may have
relevance to individualizing neurocircuitry-based treatments,
as OCD subtypes may relate to disparate circuitry. Though
not entirely clear, there are early suggestions that there may
be neurocircuitry differences between various OCD symptom
presentations. For example, given that the incompleteness (“just
right”) subtype of OCD is dominated by the feeling of lack of
completion, or the continued presence of an error signal, the
ACC may be especially relevant for those with these symptoms.
Though research is not clear thus far, it is possible that different
ablative targets (e.g., cingulotomy vs. capsulotomy) are more
effective for particular symptom presentation. In addition, given
that these constructs discussed above are relevant for the
functioning of the anterior cingulate in general, targeting the
ACC may be effective not only for targeting OCD but also for
other disorders.

To test the predictions we presented here, we need
electrophysiological recordings from the ACC and its target
regions while patients perform tasks, both before and after
cingulotomy. There is a growing interest in understanding
neuronal firing as population dynamics, including attractors
(Ebitz and Hayden, 2021). Some work has been done on
neuronal dynamics of the subthalamic nucleus, e.g., (Burbaud
et al., 2013), but little on neocortical dynamics in OCD.
Connecting neuronal dynamics of ACC in OCD to behavior will
allow us to delineate which of the functional models agree more
with electrophysiology. For example, we can study prediction
error computation and how it correlates with spikes, local
field potentials, or both. Connecting ACC dynamics to aspects

like flawed prediction errors would then make it possible to
identify patients with a higher chance of improvement following
cingulotomy.
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