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Glioblastoma multiforme (GBM) is the most malignant and multiple tumors of the central
nervous system. The survival rate for GBM patients is less than 15 months. We aimed
to uncover the potential mechanism of GBM in tumor microenvironment and provide
several candidate biomarkers for GBM prognosis. In this study, ESTIMATE analysis was
used to divide the GBM patients into high and low immune or stromal score groups.
Microenvironment associated genes were filtered through differential analysis. Weighted
gene co-expression network analysis (WGCNA) was performed to correlate the genes
and clinical traits. The candidate genes’ functions were annotated by enrichment
analyses. The potential prognostic biomarkers were assessed by survival analysis. We
obtained 81 immune associated differentially expressed genes (DEGs) for subsequent
WGCNA analysis. Ten out of these DEGs were significantly associated with targeted
molecular therapy of GBM patients. Three genes (S100A4, FCGR2B, and BIRC3) out of
these genes were associated with overall survival and the independent test set testified
the result. Here, we obtained three crucial genes that had good prognostic efficacy of
GBM and may help to improve the prognostic prediction of GBM.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most malignant and multiple tumors of the central nervous
system (CNS), which is classified as grade IV glioma by the World Health Organization (WHO)
(Ostrom et al., 2013; Louis et al., 2016; Hanif et al., 2017). GBM is a heterogeneous disease involving
multiple subtypes with different clinical and molecular characteristics (Friedmann-Morvinski,
2014; Lee et al., 2018). The diagnosis of GBM is based on grading and histomorphology. However,
the classification does not predict clinical outcomes after GBM development (Sasmita et al., 2018).
To date, there was almost no biomarker that could translate into a significant survival benefit to
GBM patients and the median survival of patients was only 15 months (Zhao et al., 2019).

In GBM, tumor cells interact with resident cells (neurons, glial cells, etc.) entangled in the
extracellular matrix (ECM) and vascular system (De Luca et al., 2018). Glial cells play an
important role in cancer progression (Friedmann-Morvinski et al., 2012). The peritumor tissue
microenvironment is key to current and future research on tumor-sensitive therapies. GBM
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can affect the cellular morphology and function of the CNS
through intercellular interactions (Martinez-Outschoorn et al.,
2014). Glial cells are inextricably linked to the GBM, and
their immune role has been well documented. Microglia
and macrophages can rapidly respond to alterations in
CNS homeostasis, including brain tumors. Microglia and
macrophages have also been found to induce GBM cell cycle
arrest and differentiation (Sarkar et al., 2014). Therefore,
an in-depth study of the tumor microenvironment of GBM
could help to reveal its tumorigenic mechanisms. The tumor
microenvironment (TME) has attracted more and more attention
recently (Yang et al., 2018). TME is composed of a variety of cell
types and plays a vital role in tumors (Hanahan and Weinberg,
2000). TME and its function is crucial for understanding the
mechanism of tumor development (Duchnowska et al., 2016;
Velaei et al., 2016). Estimation of stromal and immune cells in
malignant tumor tissues using expression data (ESTIMATE) is
an algorithm to help researchers to estimate the proportion of
immune cells and stromal cells in tumors based on the gene
expression profile (Yoshihara et al., 2013; Li et al., 2016).

Recently, the advances of bioinformatics and high-throughput
data have identified potential tumor biomarkers, which could
help to develop better prognostic predictions of GBM (Mehta
et al., 2010). Weighted gene co-expression network analysis
(WGCNA) is a bioinformatics method that could explore the
correlation between genes and clinical characteristics and screen
crucial genes for further verification (Langfelder and Horvath,
2008; Yuan et al., 2020). In the study, we applied the ESTIMATE
algorithm and differential analysis to identify immune-associated
genes in GBM for prognosis prediction. We also used the
WGCNA to construct a co-expression network and to filter
potential gene modules and crucial genes. Our study could
provide new opinion to help to find some essential prognostic
biomarkers in GBM.

MATERIALS AND METHODS

Description of the Cohort and Sources of
Data
The high-throughput RNA-seq data and clinical information of
539 GBM patients were downloaded from the TCGA database.
The genes’ expression level of raw count data was quantified as
fragments per kilobase million (FPKM) and normalized by log2-
based transformation. The samples that lacked overall survival
traits were eliminated, and only 412 patients were selected to
subsequent analysis. Then, we used the ESTIMATE algorithm to
calculate the immune and stromal scores of the samples. A test
data contains 237 GBM patients’ expression levels and clinical
data was downloaded from the CGGA database (Bao et al., 2014).

Differential Expression Analysis
We classified the 412 patients into high immune associated and
low immune associated groups or high stromal associated and
low stromal associated groups by immune score or stromal score
based on ESTIMATE analysis. Then, the “limma” R package was
used to perform the differential expression analyses between high

and low score groups. The DEGs were selected with an absolute
log2 fold change ≥0.263 and an adjusted P-value <0.05.

Co-expression Network Construction
and Module Identification
The immune associated DEGs were input into the WGCNA
to construct co-expression network by WGCNA package. With
the help of the function pickSoftThreshold, a signed adjacency
matrix was calculated to reach approximate scale-free topology
of the network (R2 >0.8). Then, the weighted adjacency matrix
was transformed into a topological overlap matrix (TOM)
to minimize effects of spurious associations. A dynamic cut-
tree algorithm was used to identify stable modules. Next, the
correlation between module eigengene (ME) and clinical data was
defined as module significance (MS). The correlation between
ME and genes was expressed as module membership (MM). In
detail, ME means the first principal component of a given model
and represents the gene expression profile of the entire model.
MS means the average gene significance of all the genes involved
in the module. MM means the correlation between a given gene
expression profile and a given model eigengene. Genes with both
high gene significance (GS >0.1) and high module membership
(MM >0.6) were defined as hub genes.

Enrichment Analysis and Survival
Analysis
KEGG, GO, and Hallmark analysis were performed to explore the
potential functions and involved pathways of DEGs. We used the
“clusterProfile” R package (Yu et al., 2012) and Metascape web
tool (Zhou et al., 2019) to do the analysis.

A Kaplan–Meier curve was used for survival analysis and
the curves were used to display the impact on the patients’
survival of candidate genes. Multivariate cox regression analysis
was performed to assess whether the genes were independent
prognostic factors for patient survival. The “survival” R package
was used to perform the above analysis. Furthermore, the OSgbm
tool was used to verify the prognostic biomarkers though a
combined dataset contains 684 GBM patients (Dong et al., 2019).

RESULTS

Identification of Differentially Expressed
Genes Related to Tumor
Microenvironments
A total of 412 eligible patients’ expression levels and paired
clinical data were obtained from the TCGA database. After
the ESTIMATE analysis, we distinguished these patients into
two groups based on the median value of immune or
stromal score. Then, we performed differential expression
analysis to identify differentially expressed genes associated
with microenvironments. In the immune group, there were 81
DEGs, 79 DEGs were up-regulated, and 2 DEGs were down-
regulated (Figures 1A,B). Similarly, 58 genes were differentially
expressed according to stromal score, 57 DEGs were up-
regulated, and 1 DEG was down-regulated (Figures 1C,D). As
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FIGURE 1 | Differential analysis of 412 GBM samples. (A,C) Volcano plot shows DEGs between GBM and normal samples. Red represents upregulated DEGs while
blue shows the downregulated one (P < 0.05). (B,D) Heatmap showing the expression level of these differentially expressed genes.

shown in Supplementary Figure 2, the immune associated DEGs
were mainly enriched in the IL-17 signaling pathway, Toll-like
receptor signaling pathway, and phagosome (KEGG pathway)
(Supplementary Figure 2A), and humoral immune response,
neutrophil activation, and neutrophil mediated immunity
(GO terms) (Supplementary Figure 2B). Also, the stromal
DEGs were mainly enriched in cytokine-cytokine receptor
interaction, chemokine signaling pathway, IL-17 signaling

pathway (KEGG pathway) (Supplementary Figure 2C), and
acute inflammatory response, leukocyte migration, and response
to lipopolysaccharide (GO terms) (Supplementary Figure 2D).
Interestingly, the clustering analysis showed that immune-related
differential genes could classify GBM patients into two categories,
whereas stroma-related differential genes did not have such
classification efficacy (Figures 1B,D). In this study, we selected
the immune associated DEGs for further analysis.
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FIGURE 2 | The WGCNA analysis of immune-related DEGs. (A) Network topology analysis to select suitable soft-threshold powers. The x-axis and y-axis reflect the
soft-thresholding power and the scale-free topology model fit index, respectively. (B) Clustering dendrogram of genes, with dissimilarity based on topological
overlap, together with assigned module colors. (C) Heatmap showing the expression pattern correlation between these modules.

Frontiers in Integrative Neuroscience | www.frontiersin.org 4 January 2022 | Volume 15 | Article 717629

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-15-717629 December 28, 2021 Time: 16:50 # 5

Chen et al. Integrated Analysis in GBM

WGANA to Obtain the Candidate Genes
With Co-expression Pattern
Based on the differential analyses, the 81 DEGs that are related
to the immune system were selected to construct a co-expression
network. To prove that the network we constructed is a scale-free
network (a network in which a few nodes have many connections,
most nodes have a few connections, and the distribution of node
degrees in the network conforms to a power-law distribution)
and not a random network, we first performed a topology
analysis. After a topology analysis of the network, the soft power
was set at 10 which the scale independence could reach to
0.81 to perform the subsequent analysis (Figure 2A). Then, we
obtained three co-expression modules (MEbrown, MEblue, and

MEturquoise) (Figure 2B). It indicated that the immune-related
DEGs played three different functions in GBM. Subsequently,
we calculated the relationships between the identified modules.
It showed that the expression pattern was independent between
these modules (Figure 2C).

A Co-expression Module Was
Associated With Targeted Molecular
Therapy in Glioblastoma Multiforme
We further explored the three different co-expression modules’
function. We correlated the three modules with GBM patients’
clinical traits to search for potential key modules (Figure 3A).
The results illustrated that the gray module was significantly

FIGURE 3 | Module-trait associations. (A) Module-trait relationships. Each row represents a module when each column indicates a clinical trait. Every cell shows the
correlation coefficient and P-value. (B) Dot plot showing the gray module’s genes significance and module membership in targeted molecular therapy.
(C) Enrichment analysis of differentially expressed genes in the gray module.
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related to targeted molecular therapy in GBM patients. There
are 20 candidate genes in this module, 10 out of these genes in
the gray module were identified as the hub genes which related

to targeted molecular therapy (Figure 3B). We used enrichment
analysis to explore the potential function of the hub genes. The
result showed that the hub genes were significantly enriched

FIGURE 4 | Survival analysis of targeted molecular therapy associated key genes. (A) Four genes are potential prognostic biomarkers in TCGA GBM dataset.
(B) Three out of the four genes are stable survival associated in test data.
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FIGURE 5 | Selection of independent prognostic genes in GBM. (A–C) Forest plot showed the hazard ratio of three hub genes (S100A4, FCGR2B, and BIRC3) and
suggested that these genes are independent prognostic factors. (D) The Kaplan–Meier curve showed that the survival model played an excellent prognostic ability in
GBM. (E) ROC analysis showed the AUC of the model. It reflected that it is a good prognostic model in GBM.

in Apoptosis, NF-kappa B signaling pathway, and tryptophan
metabolism. This indicated that the hub genes may regulate GBM
progression through these pathways (Figure 3C).

Three Crucial Hub Genes Associated
With Targeted Molecular Therapy Were
Potential Prognostic Biomarkers
To further determine these hub genes’ ability and find out the
potential prognostic genes, all the 10 targeted molecular therapy
associated crucial genes were tested by Kaplan–Meier analysis.
The result showed that 4 genes (TREM1, S100A4, FCGR2B, and
BIRC3) out of these hub genes were significantly associated with
OS in 412 GBM patients (Figure 4A). Then, we selected a dataset
that contains 237 GBM samples for the validation. It showed that
three crucial genes (S100A4, FCGR2B, and BIRC3) were survival
associated (Figure 4B). The multivariate cox regression analysis
also found the three genes were independent prognostic factors
(Figures 5A–C). A survival model constructed by the three genes
also performed a good prognostic efficacy (Figure 5D) and the
AUC of the model reached to 0.739 (Figure 5E). Finally, another
test set which contained 684 GBM patients’ survival information
was also used to testify as to the crucial genes’ prognostic efficacy
(Supplementary Figure 2). The result showed that all the three
genes are stable prognostic biomarkers and may be the prognostic
biomarkers of GBM.

DISCUSSION

Glioblastoma multiforme is the most malignant brain tumor
and requires powerful biomarkers to perform effective
treatment (Szopa et al., 2017). High-throughput sequencing
provides insights into understanding the pathogenesis and
the development of therapeutic biomarkers (Tsimberidou,
2015). Multiple molecular analysis has been used for tumor
biology prediction or risk stratification (Chen et al., 2020).
To date, the microenvironment has been investigated in
numerous cancer studies (Bi et al., 2020; Du et al., 2020; Mao
et al., 2020). However, the comprehensive prognostic value of
crucial microenvironment-associated biomarkers has not been
exploited in GBM.

Here, we applied bioinformatics analysis to integrate
high-throughput data from GBM and obtained three
microenvironment-associated biomarkers (Supplementary
Figure 1). Three potential prognostic biomarkers of GBM
were obtained in our study. S100A4 encodes a member of the
S100 protein family. This protein family is mainly involved in
cell cycle progression and plays a role in microtubule protein
polymerization. Aberrant expression of this protein family is
associated with tumor metastasis (Sadigh et al., 2019). S100A4
has been reported to be associated with cancer cell migration
and metastasis and is important in tumor onset and progression
(Atlasi et al., 2016; Liu et al., 2018). In GBM, S100A4 was

Frontiers in Integrative Neuroscience | www.frontiersin.org 7 January 2022 | Volume 15 | Article 717629

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-15-717629 December 28, 2021 Time: 16:50 # 8

Chen et al. Integrated Analysis in GBM

reported to be associated with the migration and invasion of
cancer cells (Zhou et al., 2020). FCGR2B encodes a receptor
for the immunoglobulin gamma complex and is involved in
the regulation of immune responses and antibody production
by B cells (Danzer et al., 2020). FCGR2B has been reported to
be associated with anti-GBM disease in Chinese (Zhou et al.,
2010). The gene variants of FCGR2B can influence intravenous
immunoglobulin response (Shrestha et al., 2011). BIRC3 encodes
an IAP family protein. It could inhibit apoptosis by binding
to TRAF1 and TRAF2 (Zheng et al., 2010). BIRC3 is a novel
prognostic indicator and a potential therapeutic target for cancer
(Fu et al., 2019). The expression of BIRC3 could enhance NF-
kB translocation and then influence the sensitivity of treatment
(Asslaber et al., 2019). Here, we found the three genes played
a novel role in the prognosis of GBM. They may be used for
further clinical study.

CONCLUSION

In this study, we use WGCNA to analyze the high-throughput
sequencing data of GBM and identified DEGs associated with
the immune microenvironment. Then, the key gene modules
associated with GBM patients’ clinical characteristics were
obtained. In addition, we identified a gray module consisting
of 20 genes which was significantly relevant to the targeted
molecular therapy. Ten genes were identified as hub genes and
three of them were survival associated. The independent test set
of CGGA verified our result. Our results filtered a module and
three crucial genes that acted as crucial roles in the prognostic of
GBM. The result may provide novel information to improve the
prognosis of the tumor.
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