AUTHOR=Guo Wei , Imai Satoshi , Yang Jia-Le , Zou Shiping , Li Huijuan , Xu Huakun , Moudgil Kamal D. , Dubner Ronald , Wei Feng , Ren Ke TITLE=NF-KappaB Pathway Is Involved in Bone Marrow Stromal Cell-Produced Pain Relief JOURNAL=Frontiers in Integrative Neuroscience VOLUME=12 YEAR=2018 URL=https://www.frontiersin.org/journals/integrative-neuroscience/articles/10.3389/fnint.2018.00049 DOI=10.3389/fnint.2018.00049 ISSN=1662-5145 ABSTRACT=
Bone marrow stromal cells (BMSCs) produce long-lasting attenuation of pain hypersensitivity. This effect involves BMSC’s ability to interact with the immune system and activation of the endogenous opioid receptors in the pain modulatory circuitry. The nuclear factor kappa B (NF-κB) protein complex is a key transcription factor that regulates gene expression involved in immunity. We tested the hypothesis that the NF-κB signaling plays a role in BMSC-induced pain relief. We focused on the rostral ventromedial medulla (RVM), a key structure in the descending pain modulatory pathway, that has been shown to play an important role in BMSC-produced antihyperalgesia. In Sprague-Dawley rats with a ligation injury of the masseter muscle tendon (TL), BMSCs (1.5 M/rat) from donor rats were infused i.v. at 1 week post-TL. P65 exhibited predominant neuronal localization in the RVM with scattered distribution in glial cells. At 1 week, but not 8 weeks after BMSC infusion, western blot and immunostaining showed that p65 of NF-κB was significantly increased in the RVM. Given that chemokine signaling is critical to BMSCs’ pain-relieving effect, we further evaluated a role of chemokine signaling in p65 upregulation. Prior to infusion of BMSCs, we transduced BMSCs with