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Activity of sorghum aphid
and its natural enemies in the
context of agroecological and
weather conditions
Tomasz E. Koralewski1,2*, Michael J. Brewer1, Leonel L. Deleon1,
Norman C. Elliott3, Kristopher Giles4, Adrianna Szczepaniec5

and Ashleigh M. Faris1,4

1Department of Entomology, Texas A&M AgriLife Research, Corpus Christi, TX, United States,
2Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United
States, 3Peanut and Small Grains Research Unit, Agricultural Research Service, United States
Department of Agriculture, Stillwater, OK, United States, 4Department of Entomology and Plant
Pathology, Oklahoma State University, Stillwater, OK, United States, 5Department of Agricultural
Biology, Colorado State University, Fort Collins, CO, United States
Agroecological-oriented areawide pest management leverages the innate ability

of agroecosystem to suppress pests, and thus to utilize ecosystem services, a key

component of sustainable agriculture. A growing body of knowledge on

interactions between pests and their natural enemies allows us to recognize

the complexity of these interactions that often depend on environmental

circumstances. Sorghum aphid, Melanaphis sorghi (Theobald) (Hemiptera:

Aphididae), is a recent but established pest of sorghum in the Great Plains of

North America. Both predators and parasitoids prey on sorghum aphid but their

activity and impact change throughout the area and throughout the year. Both

landscape and weather factors have been shown to affect the abundance and

numerical responses of these insects, consistent with observations in other aphid

species. In this study we used data on counts of sorghum aphids, lady beetles

(Coleoptera: Coccinellidae), and parasitoid wasps Aphelinus nigritus Howard

(Hymenoptera: Aphelinidae) and Lysiphlebus testaceipes (Cresson)

(Hymenoptera: Braconidae) collected in Kansas, Oklahoma and Texas states of

the United States. We analyzed insect dynamics in the context of landscape and

weather factors. We built multiple regression models using data from the years

2017–2019 for metrics such as maximum number of insects per leaf, response

time of natural enemies to pest presence, and speed of increase in insect

abundance. Our results indicate that various aspects of landscape composition,

landscape configuration, and weather affect various insect groups and various

aspects of insect dynamics in the field. Moreover, characteristics of specific

landscape categories seemed to be more informative than overall measure of

landscape diversity. Our study provides insights on interactions along both spatial

and temporal scales, with the latter considered understudied.
KEYWORDS

biological control, ecosystem services, invasive species management, Melanaphis
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Introduction

The foundation of agroecological-oriented areawide pest

management (AWPM) applied to crop protection is the

recognition that pest suppression is innate to the agroecosystem.

This innate ability to suppress pests is supported by specific pest

management tactics that are regionally applied (1). An operational

distinction between classical pest management tactics and AWPM

is that the classical tactics tend to focus on individual fields (2),

whereas AWPM highlights spatial variability of agricultural and

environmental conditions that influence pests (1). The underlying

premise of AWPM is that many economic pests of agriculture are

more effectively managed using pest management tactics applied in

a coordinated strategy over a large area than by using a more

traditional approach where tactics are applied to individual fields

without considering pest management synergies areawide (3).

Natural enemies are an important pillar of the agroecosystem

response (4) but their effectiveness in controlling pests may be

impacted by agricultural processes and weather conditions. For

example, extensive monocultures in agroecological landscape could

be expected to negatively impact populations of natural enemies,

although the relationship is not straightforward due to complex

processes and interactions in the field and indirect effects of other

factors, such as timing (5). Habitat manipulation in direct

neighborhoods of crop fields is thought to have the potential to

counteract these negative processes but in-depth knowledge of the

system as a whole and of its components individually is often

insufficient (6). Populations of natural enemies and the biological

control services they provide are often affected by grain size of the

landscape, with fine grained landscapes generally providing greater

biological control of crop pests than coarse grained landscapes (7).

In addition to effects of grain size, connectivity of the landscape for

natural enemies can be increased by the presence of corridors of

acceptable habitat and by field edges both of which can serve as

habitat and conduits for dispersal of natural enemies across the

landscape (7, 8). A robust general rule may not be feasible as various

aspects of landscape structure may have different effects on various

components of natural pest control (9), and these effects can vary

both spatially and temporally (7, 10).

Invasive aphid, Melanaphis sorghi (Theobald) [sorghum aphid;

previously published as sugarcane aphid, Melanaphis sacchari

(Zehntner) (Hemiptera: Aphididae) (11)] was recognized as a

major pest of sorghum [Sorghum bicolor (L.) Moench (Poales:

Poaceae)] in the Great Plains of North America in 2013 (12). It

has since become a persistent pest of sorghum in nearly all sorghum

producing regions of the United States, with invasions recurring

annually. The aphid may cause substantial economic loss through

negative impact on sorghum plants and through negative impact on

harvesting efficiency due to sticky honeydew excretion buildup on

leaves (12, 13) but the impact can vary regionally with climate and

types of sorghum grown (14). Multiple aspects of the aphid have

been studied, including its biology (15, 16), distribution (17),

dispersal (18), economic impact (13, 19), and forecasting (20, 21).

Areawide pest management has been proposed as a proper strategy

to manage the pest (14). A promising, intensely explored, research

avenue in the management of sorghum aphid focuses on the natural
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enemies of sorghum aphid (10, 22–25), consistent with

agroecological-oriented AWPM (1).

In the context of the most recent invasions, studies on natural

enemies of sorghum aphid have focused on two important functional

groups, predators and parasitoids. These species were studied in the

context of environmental factors, such as climate, weather and

landscape. Faris et al. (23) identified 19 predatory and parasitoid

species preying on sorghum aphid and showed that these natural

enemies may reside in Johnson grass [Sorghum halepense (L.) Pers.]

and in riparian areas during off-season. Additionally, Faris et al. (24)

showed that suppression of the aphid by natural enemies is effective

on both resistant and susceptible sorghum hybrids. Elkins et al. (10)

found that both landscape composition and configuration were

associated with the level of sorghum aphid and natural enemy

abundance, and higher landscape complexity had negative impact

on the numerical response of parasitoids, but not on the numerical

response of predators. Despite annual variability of their results, they

showed that various aspects of aphid and natural enemy dynamics

may need to be considered more holistically. On a larger spatial scale,

on which agro-landscape and weather metrics show greater

differentiation, the relationships between these metrics and natural

enemy dispersal, density, and population growth may vary by region,

with landscape composition likely impacting some natural enemy

dynamics (11). These studies are important in-depth contributions to

the growing body of knowledge on natural pest control, and more

broadly, on leveraging ecosystem services in the agroecological

context (9, 26–28). Nevertheless, longitudinal data is needed to

better understand the dynamics of top-down control of the

population of pests (29).

In this study we focus on sorghum aphid and its natural

enemies, predatory lady beetles (Coleoptera: Coccinellidae) and

parasitoid wasps Aphelinus nigritus Howard (Hymenoptera:

Aphe l in idae ) and Lys iph l ebus t e s tace ipe s (Cres son)

(Hymenoptera: Braconidae) due to their widespread presence and

importance to sorghum aphid population dynamics (25). Building

on a major data collection effort over 5 years and three US states, we

use statistical methods to investigate several spatiotemporal aspects

of insect population dynamics. We relate those aspects to

environmental characteristics of sorghum fields, the primary

habitat of sorghum aphid, the surrounding landscapes, and local

weather conditions. The findings will define spatiotemporal

attributes with significant implications to sorghum aphid AWPM

on the Great Plains.
Materials and methods

Study area and insect sampling

Data on counts of sorghum aphid and its natural enemies were

collected from sites in Kansas (years 2017–2018), Oklahoma (years

2017–2019), and Texas (years 2015–2019) (Figure 1, Supplementary

Table S1). The five-year study spatially overlapped with and

temporally followed sorghum aphid’s rapid geographic expansion

from 2013 to 2015 (12). Insect sampling included six family-level taxa

with species that were confirmed natural enemies of sorghum aphid
frontiersin.org
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(30). The focus of this study was on the most abundant members of

the Aphelinidae, Braconidae, and Coccinellidae (11). Considering

variability in agroecological and climate conditions, three regions

were previously delineated in the study area – two overlapping a large

part of the North American Great Plains, termed North Great Plains

(N GP) and South Great Plains (S GP), and one overlapping its

southern extension, termed South (S) (11). Cereal grain production in

the area, including sorghum, is intense but variable. Climate in the

area varies from subtropical temperate climate of the Rio Grande

Valley of southern Texas, through a warm temperate climate of

central Texas and central Oklahoma, to a temperate climate of Texas

and Oklahoma Panhandles and northern Oklahoma and

southern Kansas.

Sorghum fields sampled were randomly selected from a list of

fields with probable sorghum aphid infestations within these three

regions provided by local collaborators. Data were taken from

multiple fields per county and region to capture both within- and

between-region variability of sorghum aphid and natural enemy

populations. Sampling began when sorghum aphid was first

detected. In some cases, average densities exceeded the threshold

of 40 aphids per leaf that were indicators of probable sorghum

injury and risk to grain production (19). Individual fields were

sampled between 1 and 14 times (median 5), with a typical interval

of 7 days (median 7). Dates of sampling and approximate GPS

coordinates of sampling sites were recorded. For each sampling

event, sorghum aphids and natural enemies from each taxon were

counted on two leaves of each plant: the first green leaf toward the

base of the plant and the uppermost unfurled leaf below the flag leaf.

Plants were selected randomly. The length of inspection time per

sampling event was variable, with a minimum of ca. 20 min and

with additional time spent when aphid and natural enemies were

common (11). Between 48 and 1920 leaves were examined on a

given sampling event per field (median 108).

Both alate and apterous sorghum aphids were counted and their

counts were combined for further analysis. Counts of lady beetle

larvae and adults were recorded and the counts were also combined

for further analysis. The parasitized aphids (mummies) were

periodically reared to adults and identified as A. nigritus (blue-

black mummies) based on comparison to voucher specimens (30)

or as L. testaceipes (light-brown mummies) based on taxonomic
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keys (31). The counts of A. nigritus and L. testaceipes mummies

were combined for further analysis. Throughout the manuscript we

refer to these combined specific groups simply as sorghum aphids,

lady beetles, and mummies, respectively. Per-leaf insect counts were

used in the downstream analysis. Details on sampling procedures

and specimen identification are available (11, 25, 30).
Insect metrics

The spatiotemporal data on counts of sorghum aphids and their

natural enemies allowed us to describe various aspects of insect

population dynamics in the field. We defined ten metrics to reflect

these dynamics as follows: (1) nSAmax – maximum number of

sorghum aphids (both alate and apterae) per leaf, (2) nLBmax –

maximum number of lady beetles (both juvenile and adult) per leaf,

(3) nMMmax –maximum number of mummies (combined counts of

putative A. nigritus and putative L. testaceipes) per leaf, (4)

rLBMMmax – ratio of nLBmax and nMMmax, (5) dtSAmax – time

(number of days) during which aphid count per leaf increases from

zero to maximum (time to maximum aphid count per leaf), (6)

dtRespLB – presumed lady beetle response time to sorghum aphid

presence, calculated as the number of days from the first day when

sorghum aphids were observed after previously not being observed to

the first day when lady beetles were observed after previously not

being observed, (7) dtRespMM – presumed parasitoid response time

to sorghum aphid presence, calculated as the number of days from the

first day when sorghum aphids were observed after previously not

being observed to the first day when putative A. nigritus or L.

testaceipes mummies were observed after previously not being

observed, (8) vSA – increase of the number of sorghum aphids per

leaf per day, from the last day when sorghum aphids were not

observed to the day when their number reached maximum (speed

of increase in sorghum aphid abundance), (9) vLB – increase of the

number of lady beetles per leaf per day, from the last day when lady

beetles were not observed to the day when their number reached

maximum (speed of increase in lady beetle abundance), (10) vMM –

increase of the number of putative A. nigritus and L. testaceipes

mummies per leaf per day, from the last day when the mummies

were not observed to the day when their number reached maximum
FIGURE 1

Locations of sampling sites during the years 2015–2019. Markers indicate the locations of sampling sites within the two areas of North American
Great Plains and in its southern extension following Brewer et al. (11): red triangles – North Great Plains (N GP), orange circles – South Great Plains
(S GP), and green squares – South (S).
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(speed of increase in parasitoid abundance). Each value of each metric

was estimated based on one time series of sampling events at a given

field within a given year. One such value was considered one data

point for the purpose of our analysis. For nSAmax, nLBmax,

nMMmax, dtRespLB, and dtRespMM, values greater than 0 were

included in downstream analysis. Compared to the years 2015–2016,

data collected during 2017–2019 were more abundant and more

representative of the breadth of the weather and agroecological

conditions in the region (Figure 1, Supplementary Table S2), and

therefore in our analysis we focused on the data from 2017–2019.
Landscape data

Land cover data for Kansas, Oklahoma, and Texas were extracted

from the Cropland Data Layer (CDL) provided by the United States

Department of Agriculture (USDA) National Agricultural Statistics

Service (NASS) (32). Using geographic information system (GIS)

software ArcMap v. 10.8.1 (33), circular areas (buffers) were

delineated around each site in each year. We used the radius of 5

km to account for both the preference of smaller area of activity of

parasitoids and a larger area of activity of predators (26, 34, 35). The

original land cover classes defined in the Cropland Data Layer, and

present within the buffers, were reclassified into seventeen composite

categories, including one background category (Supplementary Table

S3). Reclassification accounted for agroecological features significant

for sorghum aphid and for its natural enemies, and for the

management of sorghum aphid. This step allowed us to reduce the

number of landscape metrics considered in our analysis, and thus to

focus on meaningful functional relationships across a vast range of

agroecological conditions.
Landscape metrics

To characterize the specificity of the landscape in each buffer,

we considered several metrics that describe diverse aspects of

composition and configuration of landscape. The metrics were

computed in Fragstats v. 4.2 (36) for the reclassified land cover

data (Supplementary Table S3), and we follow the terminology used

in Fragstats. The considered composition metrics included

percentage of landscape (PLAND), Simpson’s diversity index

(SIDI), and Simpson’s evenness index (SIEI). The considered

configuration metrics included patch density (PD), edge density

(ED), median shape index (SHAPE_MD), clumpiness index

(CLUMPY), and median proximity index (PROX_MD). SIDI and

SIEI are landscape-level metrics, whereas all the remaining metrics

were computed at the class level. We computed PLAND for each of

the 16 landscape categories, and PD, ED, SHAPE_MD, CLUMPY

and PROX_MD for sorghum. SHAPE_MD was dropped from

further analysis due to the lack of variability in parameter estimates.

Briefly, PLAND describes the percentage of landscape class area

within the buffer and is calculated as a ratio of the sum of the areas

of all patches of a given class and the total area of the buffer. PD is a

configuration/aggregation metric that equals the number of patches

of a given class in the buffer per 100 ha. ED is a configuration/edge
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metric that describes the length of edges of all patches of a given

class within the buffer per hectare. SHAPE_MD is a configuration/

shape metric that measures shape complexity. CLUMPY is a

configuration/aggregation metric that measures class-specific

aggregation. PROX_MD is a configuration/aggregation metric

that describes the spatial context of a patch relative to its

neighbors of the same class with respect to their size and

proximity. SIDI measures landscape diversity and represents the

probability that any two pixels selected from the buffer at random

would be of different categories. SIEI measures how evenly the

landscape area is distributed among all classes.

To focus on the most impactful landscape categories in

downstream analysis, we jointly considered their ecological

relevance to the studied system and the percentage of the area

they cover in buffers PLAND (unit: %; 0 < PLAND ≤ 100). We

selected five landscape categories: (1) sorghum (the focal crop), (2)

wheat, (3) grassland, pasture, and herbaceous, (4) cotton, and (5)

woodland. Various crops and grasslands can serve as potential

alternative hosts for sorghum aphid and as primary hosts for other

aphid species, and thus may support populations of natural enemies

(15, 23), whereas the presence of woodland was shown to have an

association with the abundance of natural enemies (10, 26). These

were also the five most abundant landscape categories in buffers

(highest PLAND values) during the years 2017–2019 (Table 1). We

refer to these respective PLAND metrics as: PLANDs for sorghum,

PLANDwh for wheat, PLANDg for grassland, pasture, and

herbaceous, PLANDc for cotton, and PLANDwo for woodland.

Moreover, we evaluated all remaining landscape metrics for
TABLE 1 Land cover categories and median PLAND value [%] for all
buffers during the years 2017–2019.

Category 2017 2018 2019

Asteraceae 0.0 0.0 0.0

Brassicaceae 0.0 0.0 0.0

Corn 0.1 0.6 2.1

* Cotton 1.6 4.9 2.7

Fallow 3.0 0.6 1.4

Fruit trees 0.0 0.0 0.0

* Grassland, pasture, and herbaceous 27.4 23.3 13.6

Other crop grasses 0.0 0.0 0.1

Other herbaceous, vegetables, fruits, and
field crops

0.0 0.0 0.0

Other Leguminosae 0.1 0.2 0.2

Solanaceae 0.0 0.0 0.0

* Sorghum 3.5 3.9 4.8

Soybean 0.0 0.0 0.0

Wetland 0.1 0.3 0.5

* Wheat 21.2 26.3 19.6

* Woodland 3.1 4.4 6.9
frontie
* Categories selected for downstream analysis.
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sorghum using Spearman correlation, as implemented in the

function cor from the R package stats v. 4.3.2 (37), R v. 4.3.2 (37).

Metrics describing sorghum were highly correlated in pairwise

comparisons (Supplementary Table S4), and therefore, in addition

to PLANDs, we retained PD [unit: (100 ha)–1; PD > 0, where the

maximum value is constrained by spatial resolution and indicates

that every other pixel is of the focal class] as a measure of landscape

configuration. The landscape-level metrics SIDI and SIEI were also

highly correlated, and we retained SIDI (unitless; 0 ≤ SIDI < 1; the

value of 0 indicates that the buffer contains only one patch/class,

and the value approaches 1 when the number of distinct classes

increases, and the area of the buffer is more equally distributed

among the classes) for further analysis.
Weather data and metrics

To evaluate the impact of the weather conditions on the local

insect population dynamics, we downloaded daily maximum

temperature (TMAX; °C) and precipitation (PPT; mm) records at 4

km resolution for the years 2017–2019 from the PRISM database

(38). Daily weather records were retrieved from the PRISM datasets

for each site, for the period during which the field data were collected

at the site, using the function extract from the R package raster v.

3.6.26 (39). We used four nearest raster cells to interpolate the value

at the site location (the parameter method set to “bilinear”). To

account for the effects of extreme temperature at each site, we found

the maximum value of maximum temperature (maxTMAX; °C) and

calculated the standard deviation of maximum temperature

(sdTMAX; °C). To account for the effects of precipitation at each

site, we calculated mean precipitation (meanPPT; mm) and the

coefficient of variation of precipitation (cvPPT).
Statistical analysis

We evaluated correlation between insect population dynamics

metrics using Spearman correlation, as implemented in the function

cor from the R package stats v. 4.3.2 (37). We used multiple

regression analysis to describe the relationships between each of

the ten insect metrics (dependent variables) and the landscape and

weather metrics (independent variables) during the years 2017–

2019 (Supplementary Table S5), with the assumption that the effects

of independent variables are additive. Annual variability was high

for some of the insect metrics (Figure 2). We used ANOVA to

determine if the annual differences for each of the ten metrics were

statistically significant. The assumptions of ANOVA include

random sampling, independence of errors, homogeneity of

variance, normality, and additivity of the main effects. In the case

of nSAmax, nLBmax, and nMMmax, the anticipated set of

independent variables included cvPPT (see below), and the value

of cvPPT could not be calculated for some records. We removed

these records from the dataset prior to running ANOVA. We ran

one-way ANOVA on ranks using the function aov from the R

package stats v. 4.3.2 (37). ANOVA results were statistically

significant for three metrics, rLBMMmax, dtRespLB, and
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dtRespMM (Table 2), and therefore were followed with a post-hoc

analysis using Tukey Honest Significant Difference (HSD) test as

implemented in the function TukeyHSD from the R package stats v.

4.3.2 (37) that implements an unbalanced design correction.

Assumptions of the Tukey HSD test are aligned with those of

ANOVA. Based on the results of the Tukey HSD test (Table 3), we

combined the data from 2017 and 2018 for rLBMMax and

dtRespLB, and the data from 2018 and 2019 for dtRespMM. The

combined (larger) subsets were used for multiple regression

analysis. We combined the data from the years 2017–2019 for the

remaining seven metrics: nSAmax, nLBmax, nMMmax, dtSAmax,

vSA, vLB, and vMM.

The independent variables reflected a gradual change in

agroecological and weather conditions for the range of locations

from coastal to inland (Figures 3, 4). Due to the different number of

data points available for each dependent variable, the numbers of

independent variables considered for each model varied (Table 4).

We built multiple regression models for the ten dependent variables

using the function lm from the R package stats v. 4.3.2 (37).

After fitting a multiple regression model for each dependent

variable, we reviewed the four diagnostic plots to examine

assumptions of multiple regression: (1) Residuals vs Fitted plot

for linearity of residuals, (2) Normal Q-Q plot for normal

distr ibution of residuals , (3) Scale-Location plot for

homoscedasticity, and (4) Residuals vs Leverage plot for

influential data points. Analysis of the plots indicated nonlinearity

and heteroscedasticity in case of seven dependent variables

(nSAmax, nLBmax, nMMmax, rLBMMmax, vSA, vLB, and

vMM). We transformed these dependent variables using natural

logarithmic transformation (Table 4). To evaluate the degree of

collinearity among independent variables, we examined the

variance inflation factor (VIF) for each full model. We calculated

the VIF using the function vif from the R package car v.3.1.2 (40).

The VIF reflects the amount of variability of an independent

variable explained by other independent variables in the model

that can be attributed to correlation among these variables. VIF

values that exceed a threshold in the range from 5 to 10 are

commonly considered large (41). In the case of nSAmax,

nLBmax, and nMMmax, the VIF score for PLANDg was 13.8,

12.0, and 13.0, respectively, and thus PLANDg was not considered

further. The recalculated VIF score was less than 3 for each

remaining independent variable in each of the ten full models.

We then identified optimal (reduced) models for the dependent

variables (Table 5). We used the function dredge from the R

package MuMIn v 1.47.5 (42) to select optimal models based on

the Akaike information criterion with a correction for small sample

sizes (AICc). We identified the model with the lowest AICc score as

the optimal model. None of the candidate models for dtRespLB and

for dtRespMM were statistically significant (p ≥ 0.05). For the

remaining eight dependent variables, the R2 for the optimal models

based on AICc score ranged from 0.104 to 0.318, and the adjusted

R2 ranged from 0.069 to 0.297 (Table 5).

Additionally, we identified a set of top alternative models with

the AICc score higher by no more than 2 (DAICc < 2). This

approach allowed us to identify models with smallest information

loss, and thus with similar support as the optimal model. We used a
frontiersin.org

https://doi.org/10.3389/finsc.2025.1503044
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Koralewski et al. 10.3389/finsc.2025.1503044
FIGURE 2

Spatiotemporal distribution of the values of insect population dynamics metrics for the years 2015–2019 for North Great Plains (N GP), South Great
Plains (S GP), and South (S). Bars represent medians for the buffers within a given year-region, and vertical lines represent the associated interquartile
ranges. Insect population dynamics metrics: nSAmax, maximum number of sorghum aphids per leaf; nLBmax, maximum number of lady beetles per
leaf; nMMmax, maximum number of mummies per leaf; rLBMMmax, ratio of nLBmax and nMMmax; dtSAmax, time to maximum aphid count per
leaf; dtRespLB, presumed lady beetle response time to sorghum aphid presence; dtRespMM, presumed parasitoid response time to sorghum aphid
presence; vSA, speed of increase in sorghum aphid abundance; vLB, speed of increase in lady beetle abundance; vMM, speed of increase in
parasitoid abundance.
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conservative threshold of 2, although plausible alternative models

could be identified among the models with DAICc ≥ 2 (43),

particularly for systems for which prior knowledge is available.

S ignificance threshold a = 0.05 was used for al l

statistical analysis.
Results

Correlation for pairs of dependent variables was low (Spearman

correlation; rS < 0.6) and varied annually, with a few exceptions

(Figure 5). In particular, correlation through the years was

consistently high between nSAmax and nLBmax (but not between

nSAmax and nMMmax). Correlation was also consistently high for

nSAmax and rLBMMmax, and for dtSAmax and vSA. In general,

correlation was low for pairs of dependent and independent

variables, with a few year-specific exceptions (e.g., for dtSAmax

and sdTMAX, rS = 0.65 in 2017 and rS < 0.5 in 2018 and 2019).

Considering the sets of alternative models with DAICc < 2, we

computed the frequency with which a given independent variable was

included in the set of top alternative models for each dependent

variable (Figure 6). PLANDs was present in all the alternative models

for nMMmax, rLBMMmax, and vSA. The frequency of PLANDs in

the case of nSAmax was moderate, but PD was included in eight out

of nine nSAmax models. PD was a commonly included variable for

nLBmax, rLBMMmax, and vSA. The models for nLBmax and

nMMmax had opposite tendencies regarding the inclusion of

sorghum related variables PLANDs and PD. Inclusion of
Frontiers in Insect Science 07
PLANDwh and PLANDc seemed also complimentary. PLANDwh

was included in all top alternative models for nSAmax, whereas

PLANDc was frequently included in models for nLBmax, nMMmax,

and vLB. Except for nLBmax, the frequency of SIDI, an overall index

of landscape diversity within buffers, was rather low, perhaps due to

its low spatiotemporal variation (Figure 3). Among the weather

variables, meanPPT was more commonly included than

maxTMAX, especially in models for nSAmax, nMMmax, dtSAmax,

and vLB. Interestingly, the frequency of meanPPT was high for

nMMmax and vLB, but not for nLBmax and vMM, whereas the

opposite was true for maxTMAX. The frequencies of sdTMAX and

cvPPT were low to moderate. The frequencies of inclusion of

independent variables align well with the sets of independent

variables selected for optimal models (Table 5). In summary, a

PLAND of a specific crop was preferred as an independent

variable, and the overall diversity of the landscape (SIDI) was

typically less preferred. The landscape configuration metric PD was

frequently included in alternative models for most dependent

variables. Moreover, the main weather effects, and not their

respective variability metrics, were the preferred independent

variables among the weather metrics, although their effects seemed

to be either redundant or mutually exclusive rather than synergistic.

Multiple factors, and likely their interactions, have impact on

the phenomena described by the ten insect metrics. In particular, in

the case of metrics that describe activity of parasitoids, the number

of top alternative models (DAICc < 2), and thus alternative

combinations of landscape and weather metrics that fit data best,

was relatively high – 19 for nMMmax, 21 for rLBMMmax, and 26

for vMM (Figure 6). Specifically, R2 for the optimal nMMmax

model equaled 0.252 (adjusted R2 = 0.224; Table 5). To the contrary,

there were only four top alternative nLBmax models with low AICc

scores (Figure 6), but far less variability in nLBmax was explained

by the optimal model, with a much lower R2 of 0.104 and adjusted

R2 of 0.069 (Table 5). In the case of the far more host-specific

sorghum aphid, the R2 for the optimal model was 0.151, and the

adjusted R2 was 0.126 (Table 5). Despite the high correlation

between nSAmax and nLBmax (but not for nSAmax and
TABLE 3 Tukey Honest Significant Difference (HSD) test results (p-
values) for the pairs of data sets from the years 2017–2019.

Metric 2017–2018 2017–2019 2018–2019

rLBMMmax 0.632 0.079 0.018

dtRespLB 0.940 0.017 0.046

dtRespMM 0.003 < 0.001 0.561
TABLE 2 One-way ANOVA on ranks. Number of data points (n) for each year (2017–2019), combined number of data points for three years [n (all)],
and the ANOVA p-value (p).

Metric n (2017) n (2018) n (2019) n (all) p

nSAmax 55 47 39 141 0.610

nLBmax 46 34 27 107 0.216

nMMmax 49 34 31 114 0.205

rLBMMmax 43 26 27 96 0.018

dtSAmax 24 28 18 70 0.392

dtRespLB 10 8 7 25 0.016

dtRespMM 8 14 8 30 < 0.001

vSA 24 28 18 70 0.094

vLB 29 20 18 67 0.764

vMM 35 19 18 72 0.105
The nSAmax, nLBmax, and nMMmax records for which cvPPT could not be calculated were removed prior to the analysis.
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nMMmax), consistent through the years (Figure 5), pairwise

overlap in most frequently included independent variables was

surprisingly low, and PD was the only common frequently

included metric in both nSAmax models and nLBmax models

(Figure 6). For the pair nSAmax and nMMmax, meanPPT was a

common frequently included metric, and for nLBmax and

nMMmax the common metric was PLANDc (Figure 6). Pairwise

correlation was also consistently high for the pairs nSAmax and

rLBMMmax, and for dtSAmax and vSA. Despite the high

correlation, in both cases, the frequencies of inclusion of

independent variables were largely different. Judging by the

frequency of independent variable inclusion, the speed of increase

in sorghum aphid abundance vSA, unlike vLB and vMM, was

dependent on both presence of sorghum and configuration of

sorghum fields (PLANDs and PD, respectively), and to a lesser

degree on meanPPT and SIDI. The speed of increase in lady beetle
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abundance vLB was more dependent on the presence of cotton

(PLANDc) and meanPPT, although both PLANDc and PLANDwh

were included in the optimal model. The speed of increase in

parasitoid abundance could be explained by 26 top alternative

models (DAICc < 2), and the frequencies of independent variable

inclusion were rather moderate and more evenly distributed.

PLANDwh was more commonly included variable than PLANDc

in the top alternative models, although the optimal model included

PLANDc. For both vLB and vMM, the more common sorghum-

related variable was the landscape configuration metric PD rather

than the landscape composition metric PLANDs. In summary, for a

given insect category, the maximum numbers of insects and their

speed of increase in abundance tend to be explained by very

different sets of independent variables. In other words, different

environmental factors shape different aspects of insect population

dynamics in the field.
FIGURE 3

Spatiotemporal distribution of the values of landscape dynamics metrics for the years 2017–2019 for North Great Plains (N GP), South Great Plains
(S GP), and South (S). Bars represent medians for the buffers within a given year-region, and vertical lines represent the associated interquartile
ranges. Landscape metrics: PLANDs, percentage of landscape (sorghum); PLANDwh, percentage of landscape (wheat); PLANDc, percentage of
landscape (cotton); PLANDg, percentage of landscape (grassland, pasture, and herbaceous); PLANDwo, percentage of landscape (woodland); PD,
patch density (sorghum); SIDI, Simpson’s diversity index.
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FIGURE 4

Spatiotemporal distribution of the mean values of weather metrics for the years 2017–2019 for North Great Plains (N GP), South Great Plains (S GP),
and South (S). Weather metrics: maxTMAX, maximum value of maximum temperature; sdTMAX, standard deviation of maximum temperature;
meanPPT, mean precipitation; cvPPT, coefficient of variation of precipitation.
TABLE 4 Independent variables (landscape metrics and weather metrics) and dependent variables (insect population dynamics metrics) used in the
multiple regression analysis.
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Number of data points (n) available for each multiple regression model corresponds to the combined data for the years 2017–2019, except for rLBMMmax (years 2017–2018), dtRespLB (years
2017–2018), and dtRespMM (years 2018–2019). The status of a given candidate independent variable in each multiple regression model is indicated by letters: o – variable included in the optimal
(reduced) model with the lowest AICc score, x – variable considered but not included in the optimal model, v – variable removed due to high VIF score (PLANDg only).
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To examine changes in insect counts through time, the numbers

of sorghum aphids, lady beetles and mummies were plotted as a

function of time (Figures 7–9). The temporal field sampling

resolution allowed us to capture the emergence of patterns in

insect population dynamics. The patterns in three individual

examples from 2017 (Figure 7; IDs 81, 149 and 150) and all

individual examples from 2018 and 2019 (Figures 8, 9) resemble

the classic predator-prey population dynamics, with spikes in

numbers of predatory lady beetles and the parasitoid wasps

following in time the spikes in numbers of sorghum aphids.

Evident departure from this pattern can be observed in one of the

examples in 2017 (Figure 7; ID 130), where the rapid increase of the

counts of mummies seems to precede population growth of aphids.

Population declines of prey and delayed declines in population

count of predators and parasitoids can also be observed in some

cases (e.g., year 2017, ID130; Figure 7), although the fate of the
Frontiers in Insect Science 10
insects is unknown. The data does not prove causative relationships,

but the patterns are consistent through the years. In general, in N

GP the response of parasitoids was stronger than lady beetles during

all three years, but in S GP the responses varied annually. In 2018

the response of the predators appeared stronger overall, whereas in

2019 the response of parasitoids was stronger. The responses were

relatively weaker in 2017. Since each individual example reflects a

series of measurements from one field, the measurements, and the

resulting fluctuations, may be influenced by the stochastic nature of

data sampling.
Discussion

In this work we investigated important aspects of population

dynamics of sorghum aphid and its natural enemies in the context
TABLE 5 Optimal multiple linear regression models according to the AICc criterion.

Dependent
variable

Independent
variable

Coefficient
estimate

p (coefficient) R2 Adj R2 p (model)

ln(nSAmax) PLANDs
PLANDwh

PD
meanPPT
Intercept

–0.0268
0.0376
0.2220
0.4283
–0.7778

0.1408
0.0179
0.0373
0.0005
0.2743

0.151 0.126 0.0002

ln(nLBmax) PLANDc
PD
SIDI

maxTMAX
Intercept

–0.0192
0.1858
–3.6834
–0.1013
2.9166

0.0204
0.0159
0.0327
0.0980
0.2731

0.104 0.069 0.0229

ln(nMMmax) PLANDs
PLANDc
meanPPT
cvPPT

Intercept

0.0335
0.0175
0.1890
0.0041
–3.8780

0.0063
0.0670
0.0409
0.0916
5e-06

0.252 0.224 2e-06

ln(rLBMMmax) PLANDs
PD

Intecept

–0.0895
0.2588
–1.0424

4e-06
0.0790
0.0265

0.281 0.260 2e-05

dtSAmax PLANDwh
meanPPT
Intercept

0.2724
9.0870
7.0040

0.0916
4e-06
0.2662

0.318 0.297 3e-06

dtRespLB SIDI
Intercept

51.27
–17.25

0.0616
0.3397

0.202 0.152 0.0616

dtRespMM Intercept 22.409 2e-08 – – –

ln(vSA) PLANDs
PD

meanPPT
Intercept

–0.0865
1.0201
0.4651
–4.9927

0.0127
8e-06
0.0640
2e-06

0.306 0.274 2e-05

ln(vLB) PLANDwh
PLANDc
meanPPT
Intercept

–0.0159
–0.0188
–0.3876
–4.3914

0.1301
0.0434
0.0007
1e-12

0.192 0.153 0.0036

ln(vMM) PLANDc
PD

maxTMAX
Intercept

0.0160
0.2387
0.1493
–11.4952

0.1110
0.0311
0.0703
0.0006

0.138 0.100 0.0171
None of the candidate models for dtRespLB and for dtRespMM were statistically significant.
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of variable landscape and weather conditions. Our work highlights

the value of longitudinal data that represent both the breadth of

environmental conditions that typically change through space and

their temporal variability within and between seasons. In the case of

wind-borne insects, the spatial aspects of data collection should be

perceived through the lens of variability in the local environmental

conditions rather than the physical distances of sampling sites.

Physical distance may not directly correlate with the effects of

environmental conditions upon the studied system and may not be

the main factor that limits distribution (44). The choice of sampling

locations should account for these aspects.
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Spatiotemporal effects are particularly important in the case of

AWPM, in which timely and synchronized activities across distant

locations are a key consideration. Spatial effects are often considered

from the perspective of temporal variability (annual or seasonal

variability of a given factor at a given location), but temporal effects

are considered arguably less often in the context of space, both

physical (differences in temporal variability of a given factor at

different physical locations) and environmental (differences in

temporal variability of a given factor under different

environmental conditions). Clinal changes in environmental

characteristics can be expected across extensive landscapes such
FIGURE 5

Pairwise Spearman correlation for pairs of independent variables (landscape metrics and weather metrics) and dependent variables (insect population
dynamics metrics) for the years 2017–2019. Insect population dynamics metrics: nSAmax, maximum number of sorghum aphids per leaf; nLBmax,
maximum number of lady beetles per leaf; nMMmax, maximum number of mummies per leaf; rLBMMmax, ratio of nLBmax and nMMmax; dtSAmax,
time to maximum aphid count per leaf; dtRespLB, presumed lady beetle response time to sorghum aphid presence; dtRespMM, presumed parasitoid
response time to sorghum aphid presence; vSA, speed of increase in sorghum aphid abundance; vLB, speed of increase in lady beetle abundance;
vMM, speed of increase in parasitoid abundance. Landscape metrics; PLANDs, percentage of landscape (sorghum); PLANDwh, percentage of
landscape (wheat); PLANDc, percentage of landscape (cotton); PLANDg, percentage of landscape (grassland, pasture, and herbaceous); PLANDwo,
percentage of landscape (woodland); PD, patch density (sorghum); SIDI, Simpson’s diversity index. Weather metrics: maxTMAX, maximum value of
maximum temperature; sdTMAX, standard deviation of maximum temperature; meanPPT, mean precipitation; cvPPT, coefficient of variation of
precipitation. Cell shading corresponds to the level of correlation.
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FIGURE 6

Number of alternative models with DAICc < 2 (m) for each of eight dependent variables (insect population dynamics metrics) and the frequency with
which a given independent variable (landscape metric or weather metric) was included in the set of alternative models with DAICc < 2. Insect
population dynamics metrics: nSAmax, maximum number of sorghum aphids per leaf; nLBmax, maximum number of lady beetles per leaf; nMMmax,
maximum number of mummies per leaf; rLBMMmax, ratio of nLBmax and nMMmax; dtSAmax, time to maximum aphid count per leaf; vSA, speed of
increase in sorghum aphid abundance; vLB, speed of increase in lady beetle abundance; and vMM, speed of increase in parasitoid abundance.
Landscape metrics: PLANDs, percentage of landscape (sorghum); PLANDwh, percentage of landscape (wheat); PLANDc, percentage of landscape
(cotton); PLANDwo, percentage of landscape (woodland); PD, patch density (sorghum); and SIDI, Simpson’s diversity index. Weather metrics:
maxTMAX, maximum value of maximum temperature; sdTMAX, standard deviation of maximum temperature; meanPPT, mean precipitation; cvPPT,
coefficient of variation of precipitation. Cell shading corresponds to the frequency of variable inclusion.
FIGURE 7

Per-leaf counts of sorghum aphids (nSA; unit: #·leaf–1), lady beetles (nLB; unit: #·leaf–1), and mummies (nMM; unit: #·leaf–1) observed on a given day
from the day when sorghum aphids were first observed after previously not being observed until the last day when the data were collected at a
given field (left column) during the year 2017. Examples of sorghum aphid and natural enemy dynamics on selected fields with the longest time of
data collection (middle and right columns), with the solid, dotted, and dot-dashed lines corresponding to sorghum aphids (SA), lady beetles (LB), and
mummies (MM), respectively.
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as the Great Plains of North America, but our study shows that

various measures of species responses to changing environment

may show different patterns. For example, our data show that in the

case of sorghum aphid the time to maximum aphid count per leaf,

dtSAmax, is longer in N GP than in S and S GP, but differences in

nSAmax and vSA between S, S GP and N GP are not consistent

between seasons. It appears that changing local effects (and likely

their interactions) have varying impact on the three sorghum aphid

metrics (Figure 2). Similarly, maximum numbers of lady beetles and

parasitoids (nLBmax and nMMmax, respectively) and their

presumed response times (dtRespLB and dtRespMM,

respectively) also did not show consistent spatiotemporal trends

(Figure 2). Patterns that emerge from changes in observed insect

numbers through time support these observations (Figures 7-9). As

the environmental conditions change in space and time, observing

one of the population metrics in isolation may lead to biased

conclusions regarding species dynamics.

Considering landscape features, crop-related metrics and SIDI

were the most frequently selected metrics in our regression analysis.

The configuration metric PD was preferred over the related

composition metric PLANDs in models for some dependent

variables (e.g., for nLBmax), PLANDs was preferred over PD for
Frontiers in Insect Science 13
some others (e.g., for nMMmax), and in some cases both were

frequently used (e.g., vSA). Therefore, both descriptors of landscape

should be considered in future studies. Weather effects were

represented in top alternative models predominantly by

maximum values of maximum temperature (maxTMAX) and by

mean precipitation (meanPPT) (Figure 6), and the related

variability metrics were selected less frequently. Analysis of

longer-term data with alternative spatial resolutions may help

better understand the impact of weather variability metrics,

especially for those dependent variables for which these metrics

were not considered (Table 4). Nevertheless, the importance of

weather variability metrics may depend on the metric itself and on

specific study design.

Our analysis highlights the complexity of ecological interactions in

the field and indicates the need for a broad consideration of landscape

and weather features in AWPM studies. Alternative inclusion of

landscape composition and configuration metrics for various species-

specific regression models indicates complementary nature of the two,

but also indicates that these metrics should not be associated with a

species or with a specific aspect of insect activity. Instead, the category

of landscape metrics that best explains a given phenomenon likely

depends on a broader environmental context. For example, although
FIGURE 8

Per-leaf counts of sorghum aphids (nSA; unit: #·leaf–1), lady beetles (nLB; unit: #·leaf–1), and mummies (nMM; unit: #·leaf–1) observed on a given day
from the day when sorghum aphids were first observed after previously not being observed until the last day when the data were collected at a
given field (left column) during the year 2018. Examples of sorghum aphid and natural enemy dynamics on selected fields with the longest time of
data collection (middle and right columns), with the solid, dotted, and dot-dashed lines corresponding to sorghum aphids (SA), lady beetles (LB), and
mummies (MM), respectively.
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cotton and wheat habitats were more relevant for our analysis than

grassland, pasture, and herbaceous and woodland habitats, PLANDwh

was included in all top alternative models for maximum number of

sorghum aphids nSAmax and only rarely for nLBmax and nMMmax,

and PLANDc showed the opposite trends. Analysis focused on

sorghum aphid alone would likely miss the effects of PLANDc on

the predator-parasitoid-prey system. Moreover, the two groups of

natural enemies responded differently to landscape composition and

configuration features as well as to the weather conditions. Therefore,

there seems to be no single metric or a set of metrics that can

holistically describe the activity of sorghum aphid and of its specific

natural enemy in the field. Instead, various aspects of the insect

population dynamics need to be explained in light of different

environmental factors. Moreover, it may be important to retain the

hierarchy between the metrics as landscape components (landscape

composition) may need to be considered first before landscape features

(landscape configuration) can be analyzed or their effects interpreted.
FIGURE 9

Per-leaf counts of sorghum aphids (nSA; unit: #·leaf–1), lady beetles (nLB; unit: #·leaf–1), and mummies (nMM; unit: #·leaf–1) observed on a given day
from the day when sorghum aphids were first observed after previously not being observed until the last day when the data were collected at a
given field (left column) during the year 2019. Examples of sorghum aphid and natural enemy dynamics on selected fields with the longest time of
data collection (middle and right columns), with the solid, dotted, and dot-dashed lines corresponding to sorghum aphids (SA), lady beetles (LB), and
mummies (MM), respectively.
FIGURE 10

Day of first observation of sorghum aphid on sites in North Great
Plain (N GP), South Great Plains (S GP), and South (S) during the
years 2017–2019. Markers represent the median day of year when
sorghum aphid was first observed after previously not being
observed, and vertical lines represent related interquartile ranges.
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The complexity of intra- and inter-specific insect dynamics in

the field is also evident in the large portion of variation not

explained by regression models in our study. Impact of landscape

and climate and weather factors not considered here should be

investigated further in future studies. For example, landscape

configuration metrics for land cover categories other than

sorghum may provide more insight into the effects of those

categories. Deeper understanding of causative relationships

between the investigated metrics is also essential, and it can only

be done with thorough investigation of the studied system, and

complexity of such exploration in practice may be prohibitive.

Moreover, complex ecological relationships among species in the

local agroecosystem may result in intricate and implicit effects. All

these phenomena may extend beyond the spatial buffer in focus, a

boundary that facilitates analysis but narrows analytical perspective.

Our study complements previous analytical efforts to describe

sorghum aphid and its natural enemies. In a study that spanned

over a similar spatial range, Brewer et al. (11) noted that the

correlations between insect interactions (sorghum aphid and

natural enemies) and environmental characteristics (landscape

features and weather conditions) varied among the S, S GP and N

GP regions. In the S region, the relationships between insects were

strong but apparently independent from the environmental factors.

Influences of environmental factors became apparent in S GP,

where parasitoids negatively correlated with percentage of buffer

occupied by cropland and lady beetle adults negatively correlated

with percentages of buffer occupied by shrubland and by sorghum.

In the N GP the significant correlations between insects were

limited to predators but activity of parasitoids could be linked

with percentages of buffer occupied by sorghum and by shrubland.

Elliott et al. (26) found that percentage of buffer occupied by

wooded land was significantly correlated with parasitism by L.

testaceipes on aphids in winter wheat in Oklahoma, and that both

multiple landscape composition and multiple landscape

configuration metrics were significantly correlated with parasitism

by L. testaceipes. They also found that parasitisism increased with

increasing landscape diversity, indicating that L. testaceipes utilizes

multiple habitats throughout the year. To the contrary, Elkins et al.

(10) found that parasitism decreased with increase of landscape

complexity. Compared to the southerly Texas Gulf Coast, the more

challenging winter conditions in Oklahoma make availability of

suitable winter habitats more challenging, a likely reason for the

differences. Differences between these studies and our study likely

stem from differences in timing and sampling locations, but also

from differences in spatiotemporal scale and resolution.

Timing of field activities, such as data collection, is of high

importance. Simulation modeling is one approach that could help

mitigate such challenges by aiding management decisions,

potentially in near-real-time (20, 21). The regional aphid

infestation may be perceived as a northward movement of the

“aphid invasion front,” which is limited primarily by sorghum

planting dates (45). However, winters are mild in the south and

outbreaks may occur locally from remnant aphid populations
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overwintering on rudimentary plants. Nevertheless, dates of first

infestation within season may be surprisingly close across large

distances, they can be highly variable within a region, and they may

vary significantly annually (Figure 10). Data collections that start

too early may result in futile efforts. Late data collections may fail to

capture the first infestations. To describe some of the processes, we

relied on data series with initial observations of no insects (e.g.,

vSA), and only those data series could be used for such estimates.

Proper timing is essential to in-depth data analysis, but it may also

be the most challenging factor in scheduling field activities.

Computational modeling can aid field research (14) but

ultimately decisions remain with practitioners.

A blend of laboratory studies, common field studies, and field

data collection is needed to increase our understanding of causative

effects of environmental factors on the dynamics of pest and natural

enemy populations. Further investigations of pest and natural

enemy interactions and impact on their respective populations

need to account for temporal scale (29). A thorough

understanding of the dynamics of pests and their natural enemies

is critical for AWPM programs and thus for sustainable agriculture.

Broader understanding of these dynamics requires holistic

approaches to data collection, insect metric selection, and

inclusive analysis of environmental factors in future studies. The

practical application of the research results to AWPM include

adjusting the timing of monitoring for pests geographically based

on knowledge of historical infestation patterns, assessing the

likelihood of economic infestations based on spatiotemporal

features of landscapes and broader scale regions where knowledge

of infestation history is applicable to predicting future infestations

and their severity. In addition, finer scale attributes of landscape

composition and configuration can be used to predict severity of

infestations at the scale of individual fields.
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