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Artificial diets are widely used to produce insects for research and education

programs. Completed diets, in which the diets are fully made from individual

ingredients and ready to use, often have high water activity, making them

vulnerable to degradation. Proper storage is critical to maintaining diet quality,

yet the storage conditions are not well investigated. In this study, we

characterized the effects of storage conditions (temperatures and storage

duration) on the quality of a diet capable of rearing both specialist and

generalist insect species. The completed diet, produced by both private

industry and a USDA-Agricultural Research Service laboratory, was exposed to

varying temperatures during a 24-hour transit over 1600 km. After transit, it was

stored at 4°C for a total storage period of 28 days. In a separate experiment, the

completed diet was stored immediately after diet production at five fixed

temperatures (-20, 4, 22, 25, and 33°C) for up to 28 days. For both

experiments, at 5 intervals after storage (1, 7, 14, 21, and 28 days), diet quality

was accessed by life history parameters (survival, molting, and weight) of western

corn rootworm (Diabrotica virgifera virgifera LeConte) larvae, the most serious

maize pest in the United States. Our results showed that exposure to varying

temperatures between -2°C and 27°C for 24 hours had no significant impact on

diet quality. However, extended storage (beyond 24 hours) at any of the fixed

temperatures negatively affected diet quality. Insects reared on diets stored for

over 24 hours at fixed temperatures ranging from -20°C to 33°C had significant

declines in performance. Among the tested temperatures, -20°C and 4°C were

found to be the most effective for preserving diet quality. At these low

temperatures, there were no significant changes in insect weight and survival

for diets stored within 21 and 28 days, respectively, though molting was

significantly reduced within 7 days of storage. These findings provide the base

of information on the storage conditions for completed diets, supporting the

production of healthy insects.
KEYWORDS
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Introduction

Agricultural insect pests present one of the most significant

threats to global food security. Annual economic losses as a direct

result of these arthropod pests are estimated at $470 billion

worldwide annually (1). With rising temperatures, crop

production losses to agricultural pests are projected to

significantly increase by 10% to 25% per degree of global mean

surface warming (2). Mitigating this ever-present threat requires a

concerted effort by both public and private institutions to routinely

develop new management methods for insect pest management.

Entomological research requires conducting experiments with

insect specimens, which relies heavily on the ability to produce

insects using artificial diets (3). Rearing insects on artificial diets is

simpler, more controlled and convenient in many ways compared

to rearing on natural host plants (4, 5).

Insect artificial diets are generally found in one of two forms

such as mixtures of individual ingredients or completed diets.

According to Cohen (5), completed diets are those that have been

fully synthesized from their individual ingredients and are ready to

use, whereas the mixtures of individual ingredients typically refer to

the combinations of ingredients that do not include water and have

not undergone any production processes. While the individual

ingredients are usually stable, completed diets often have a

shorter shelf-life. Most dry ingredients (moisture contents of

<10%) preserve their nutritional value and palatability for months

under low temperatures (e.g., <0°C) (5). Completed diets typically

consist of 70% - 95% water (w/w) (6) and possess high water

activity, which promotes oxidation, nutrient degradation, and

microbial attack (7). Even under cold conditions, degradation of

completed diets can continue to take place (5). Inappropriate

storage of completed diets can result in reductions in nutrient

quality and development of toxins from microbial infestations,

causing detrimental effects on the growth and development of

insects fed on these diets. Cohen and Crittenden (8) reported the

destruction of nutrients (i.e., ascorbate) in three completed diets can

occur within 48 hours in a refrigerator or in rearing room

conditions. Despite these findings, the stability of completed diets

under different temperature and storage duration conditions has

not been characterized.

Artificial diets have been a key component in research programs

to monitor resistance development and develop new insecticidal

toxins and other control agents (e.g., entomopathogenic

nematodes) to manage insect pests of maize (9–16). The western

corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera:

Chrysomelidae), is the most important pest of maize in the United

States and some parts of Europe (17). This insect species is one of

the world’s most expensive pests to control, costing up to $2 billion

annually in losses and control costs to U.S. maize growers (18).

In this study, a recently developed diet capable of supporting

both generalist and specialist insect species in the corn rootworm

complex (Diabrotica spp.) including the western corn rootworm

was selected (19). The goal of the present study is to determine the

effects of temperature (varying or fixed) and storage duration on the

quality of a completed diet using the universal diet. The completed

diet was prepared by both a private industry (Frontier Agricultural
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Sciences, Newark, Delaware) and a USDA-Agricultural Research

Service laboratory (USDA-ARS Plant Genetics Research Unit

(PGRU), Columbia, MO). The completed diet was exposed to

different varying temperatures during transit for approximately 24

hours from Frontier Agricultural Sciences to the USDA-ARS PGRU

(distance ~1600 km) followed by storage at 4°C for a total storage

period of 28 days. In a separate experiment, the completed diet was

stored immediately after diet production at five fixed temperatures

(-20, 4, 22, 25, and 33°C) for up to 28 days. The quality of the

completed diet at intervals after storage of 1, 7, 14, 21, and 28 days

was evaluated by life history parameters (survival, molting, and

weight) of the western corn rootworm larvae reared on the diets.
Materials and methods

Artificial diet

A universal diet for corn rootworms (Diabrotica spp.) capable

of rearing both specialist and generalist insect species including

the western corn rootworm, the northern corn rootworm

(D. barberi Smith & Lawrence), and the southern corn rootworm

(D. undecimpunctata howardi Barber) was utilized (19). This artificial

diet also supports the development of the Mexican corn rootworm

(D. virgifera zeae Krysan & Smith) (Huynh et al., unpublished). The

universal diet, detailed in Huynh, Hibbard, Vella, Lapointe, Niedz,

Shelby and Coudron (20), is comprised of 15 ingredients (e.g., wheat

germ, whole egg powder, cellulose, vitamin mix, salt mix,

preservatives, water) that are commonly used in many insect diets

(5). A single batch of its dry mixture, prepared by Frontier

Agricultural Sciences, was used for all experiments.
Insects

Adults of a non-diapausing strain of the western corn rootworm

were maintained at the USDA-ARS PGRU as described previously

(21). This strain, originally established from eggs purchased from

Crop Characteristics (Farmington, MN), has been maintained on a

non-transgenic maize line (Viking 60-01N, Albert Lea Seed, Albert

Lea, MN) for multiple generations (22). The adult beetles were reared

on an artificial diet (23) and water in 30 × 30 × 30 cm cages

(BugDorm®, BioQuip Products Inc., Rancho Dominguez, CA).

Petri dishes (9-cm, Fisher Scientific, Pittsburgh, PA) containing 80-

mesh sieved soil as an ovipositional medium were placed in the

rearing cages to collect eggs (24). After the eggs were collected, the

egg dishes were incubated at 25 ± 1°C in darkness for prompt use

or were stored at 8 ± 1°C for later use in an incubator (Percival,

Perry, IA) (10).
Egg treatment

Before conducting the bioassays, the egg dishes were incubated

at 25 ± 1°C in darkness in a Percival incubator. Once several eggs

had hatched, the eggs were surface-sterilized according to
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previously described procedures (25, 26) with modifications.

Briefly, the mixtures of eggs and soil were rinsed through a 250-

µm, 60-mesh sieve (Hogentogler & Co. Inc., Columbia, MD) to

remove soil. The eggs retained in the sieve were collected into a 50

mL beaker using a stream of tap water. The eggs were then rinsed

with tap water to remove neonates and hatched egg cases that

floated to the water’s surface. Next, the eggs were treated with

undiluted Lysol (10 ml, Clean & Fresh Multi-Surface Cleaner,

Reckitt Benckiser, Parsippany, NJ) for 3 min, followed by a triple

rinse with purified water to remove the Lysol solution. The eggs

were then rinsed with 10% formaldehyde solution (10 ml,

HT501128, Sigma Aldrich, St. Louis, MO). After removing the

formaldehyde solution, the eggs were triple rinsed with purified

water and were dispensed to a coffee filter paper (Pure Brew,

Rockline Industries, Sheboygan, WI). The filter paper was then

placed inside a container with a lid (16-oz, LG8RB-0090 & DM16R-

0090, Solo Cup Company, Lake Forest, IL) and incubated at 25 ±

1°C in darkness in the Percival incubator. Larvae that hatched

within < 24 h were used for the insect bioassays.

The eggs can be surface-sterilized to obtain larvae for multiple

days. After the initial egg treatment, in the following days, the eggs

were washed with 10% formaldehyde solution for 3 min, followed

by a triple rinse with purified water. The eggs were then dispended

to a new filter paper in a 16-oz container and were incubated as

described above to collect the newly hatched larvae (< 24 h old).
Effects of varying temperatures during
transit and storage duration on diet quality

The artificial diet was prepared in 96-well plates by Frontier

Agricultural Sciences using a procedure described previously (20)

with modifications. Briefly, agar was added to purified water and the

agar solution was boiled using a microwave until the agar was

completely melted. The dry mixture was poured into the agar

solution when it cooled to approximately 65°C. The plates (96-

well plate, 3370, Corning Inc., Corning, NY) were then filled with

diet solutions (200 µl per well) using a repeater pipette

(HandyStep® S, Brandtech, Essex, CT). The diet plates were

sealed with an adhesive sealer (AB-0558, Thermo Scientific™,

Waltham, MA). All fills occurred in a laminar flow hood (1800

Series, Thermo Scientific™) to prevent incidental contamination.

All filled diet plates were prepared at the same time.

The completed diet plates were allowed to be exposed to varying

temperature conditions experienced during transit for 24 hours

from Frontier Agricultural Sciences to the USDA-ARS PGRU. The

filled diet plates were packed in separate Styrofoam shipping boxes

filled with either hot packs, cool packs, ice packs, or dry ice to mimic

varying potential environmental conditions experienced during

transit. Five different temperatures ranging from 0°C to 30°C

were targeted. During the transit, the box temperatures were

monitored at one minute intervals using a data logger (UX100-

003, Onset, Bourne, MA) placed inside each box. Upon receipt, the

diet plates were immediately stored at 4°C for up to 28 days. At 5

durations after storage (1, 7, 14, 21, and 28 days), the quality of the

prepared diet was evaluated by life history parameters (survival,
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molting, and weight) of the western corn rootworm larvae reared

on diets.
Effects of fixed temperatures and storage
duration on diet quality

The completed diet was prepared in 96-well plates (3370,

Corning Inc.) at the USDA-ARS PGRU as described previously

(20) using the same dry diet batch as used for the transit

experiment. After the completed diet plates were made, the diet

plates were immediately stored at 5 different fixed temperatures

(-20, 4, 22, 25, and 33°C) for 5 durations (1, 7, 14, 21, and 28 days).

Diet assays were conducted to evaluate the effects of these fixed

temperatures on diet quality immediately after each predetermined

duration. The quality of the artificial diet was assessed via the

evaluation of life history parameters (weight, molting, and survival)

of the western corn rootworm larvae reared on the diets.
Insect diet bioassays

The bioassays were conducted as described previously (27). All

materials used in the diet assays were surface-treated via exposure to

UV light for 10 min in a biological cabinet (SG403, SterilGARD® III

Advance cabinet, Sanford, ME). Each treatment was a completed

diet exposed to different temperatures and time intervals of storage.

Each replicate included the artificial diet pipetted to a 12-well row of

the 96-well plate. Each treatment was replicated 6 times in different

diet plates. Each well was infested with one western corn rootworm

neonate (< 24 h old) using a fine paintbrush. A sealing film (TSS-

RTQ-100, Excel Scientific, Inc., Victorville, CA) was used to cover

the plate. For ventilation, a hole was made in the sealing film over

each well using a number zero insect pin. The plates were kept in a

Percival incubator at 25°C in darkness for 7 days. Larval molting,

survival, and evidence of contamination (fungi and bacteria) were

recorded daily, whereas larval weight was measured at the end of the

experiments. During the experiment, larvae were typically found on

the surface of the diet. Larval molting was recorded by observing the

presence of the old cuticles that the larvae shed during the molting

process on the diet’s surface, while larvae were considered dead if

they did not exhibit coordinated movement after being touched

with the number zero insect pin. For larval dry weight, all live larvae

in each treatment were pooled per replicate (12 possible) into 95%

ethanol, dried in an oven (Binder GmbH, Tuttlingen, Germany) at

55°C for 48 h, and weighed using a micro balance (MSU6.6S-000-

DM, Sar tor iu s Lab Ins t rument s GmbH & Co. KG,

Goettingen, Germany).
Data analyses

To determine survival and molting rates, the number of live

larvae and successful larval molts from 1st to 2nd instar per

replicate were divided by the initial number of larvae and

multiplied by 100 to obtain percentages. The weight per larva (in
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mg) was calculated by dividing the dry weight by the number of live

larvae per replicate. If all larvae for a replicate were dead, the larval

weight for this replicate was recorded as 0.

The experiments were designed as a 2-factor factorial design

(temperature × time). The life history data, including percent

survival, weight, and percent molt to second instar, were analyzed

separately using analysis of variance (ANOVA) in generalized linear

mixed models (PROC GLIMMIX) in SAS 9.4 (SAS Institute, Cary,

NC). Temperatures and time exposure were the fixed effects and

replication was the random variable. Differences between treatments

were determined using Fisher’s least significant difference (LSD) at

p < 0.05. The percent variables (survival and molt) were arcsine

square-root transformed and the numeric variable (weight) was

square-root transformed prior to the analysis to meet the

assumption of normality and homoscedasticity. The untransformed

data were presented as MEAN ± SEM.
Results

Effects of varying temperatures during
transit and storage duration on diet quality

The diet plates arrived at the USDA-ARS PGRU (Columbia,

MO) after departing approximately 24 hours from Frontier

Agricultural Sciences (Newark, DE). During the transit, the

complete diet was exposed to 5 different averaged temperatures of

6.6 ± 6.7°C, 9.7 ± 2.7°C, 18.8 ± 1.5°C, 22.5 ± 1.0°C, and 25.2°C ±

1.6°C with major temperature exposure from -2°C to 27°C (Table 1;

Figure 1). Upon receipt, all the diet plates were visually examined,

and they were presented in good physical condition (i.e., gel matrix

intact, no constituent separation, no excess moisture, no

desiccation) and were stored at 4°C for up to 28 days.

Exposure to varying temperatures from -2°C to 27°C for

approximately 24 hours during the transit had no significant

impacts on the quality of the completed diet assessed by life history

parameters measured (survival, molt, and weight) (Table 2).

However, the duration of storage at 4°C after shipping had

significantly detrimental effects on the quality of the artificial diet

for feeding the western corn rootworm larvae (Table 2). With respect

to time of storage with all varying temperatures combined (Figure 2),

significant reductions in larval molting and weight were observed for

the completed diets stored within 7 days. There was no significant
Frontiers in Insect Science 04
difference in larval weight and molting between 7 and 14 days after

storage, whereas the lowest larval molting and weight were found at

21 and 28 days of storage, respectively. Larval survival remained

above 95% at all time points evaluated, indicating that diet storage for

up to 28 days did not adversely affect survival (Figure 2). The

interactions between temperature × time were not significantly

different for any of the life history parameters (Table 2).
Effects of fixed temperatures and storage
duration on diet quality

The fixed temperatures, time of storage, and their interactions

significantly impacted the quality of the completed diet for rearing the

western corn rootworm larvae (Table 3). With respect to the

temperatures with all the time of storage combined (Figure 3A),

averaged larval survival was over 95% for temperatures from -20°C to

25°C. In contrast, survival declined significantly to 60% for the

highest temperature of 33°C. Temperatures of -20°C and 4°C had

the highest larval weight and molting rates, followed by temperatures

of 22°C and 25°C. The temperature of 33°C had the lowest rates for

all examined parameters (weight, molting, and survival). Regarding

storage duration with all temperatures combined (Figure 3B), the

completed diet stored for 7 days had a significantly negative impact

on larval molting and weight. A significant reduction in larval

survival was found starting after 21 days of storage.

Figure 4 reveals the interactions between temperature and storage

duration for each examined parameter. Over a 14-day storage period,

there was no significant difference in larval survival on the completed

diet stored at any temperature (Figure 4A). However, significant
TABLE 1 Temperature exposure of diet plates during the transit for
approximately 24 hours.

Thermal
conditions

during transit

Averaged
temperature
exposure

Major
temperature
exposure

1 6.6 ± 6.7°C -2°C - 6°C

2 9.7 ± 2.7°C 6°C - 12°C

3 18.8 ± 1.5°C 15°C - 19°C

4 22.5 ± 1.0°C 21°C - 24°C

5 25.2 ± 1.6°C 23°C - 27°C
FIGURE 1

Temperature exposure to diet plates during the transit for
approximately 24 hours. Violin shapes show distributions of
temperatures, measured at one minute intervals, for 24 hours in
each treatment. Red dots are data points.
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TABLE 2 Effects of temperature (varying) and storage duration on quality of an artificial diet.

Parameter Effect df F P

Survival Temperature 4, 120 0.30 0.8804

Time 4, 120 9.42 <0.0001

Temperature × Time 16, 120 0.33 0.9934

Molting Temperature 4, 120 2.33 0.0599

Time 4, 120 44.18 <0.0001

Temperature × Time 16, 120 1.42 0.1420

Weight Temperature 4, 120 2.27 0.0660

Time 4, 120 34.19 <0.0001

Temperature × Time 16, 120 1.57 0.0869
F
rontiers in Insect Science
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The diet quality was assessed by life history parameters (survival, molting, and weight) of western corn rootworm larvae reared on the artificial diet.
FIGURE 2

Percent survival, dry weight, and percent successful completion of molt to 2nd instar for western corn rootworm larvae reared on an artificial diet
for 7 days. During the transit, the completed diet was exposed to varying temperatures ranging from -2°C to 27°C for approximately 24 hours. Upon
receipt, the completed diet was stored at 4°C for 5 time points (1, 7, 14, 21, and 28 days). Bars with different letters are significantly different (P <
0.05). Mean ± SEM. Untransformed data were presented, while analyses were performed with square-root transformed or arcsine square-root
transformed data.
TABLE 3 Effects of temperature (fixed) and storage duration on quality of an artificial diet.

Parameter Effect df F P

Survival Temperature 4, 120 332.24 <0.0001

Time 4, 120 272.67 <0.0001

Temperature × Time 16, 120 134.14 <0.0001

Molting Temperature 4, 120 72.94 <0.0001

Time 4, 120 114.12 <0.0001

Temperature × Time 16, 120 5.00 <0.0001

Weight Temperature 4, 120 264.21 <0.0001

Time 4, 120 106.51 <0.0001

Temperature × Time 16, 120 66.39 <0.0001
The diet quality was assessed by life history parameters (survival, molting, and weight) of western corn rootworm larvae reared on the artificial diet.
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reductions in survival were observed primarily at the highest

temperature (33°C), with no survival found after 21 days of storage

(Figure 4A). Significant declines in molting began at all temperatures

after 7 days of storage, except for the highest temperature (33°C)

where reductions occurred after just 1 day of storage (Figure 4B).

After 7 days of storage, diets stored at -20°C and 4°C supported

greater larval molting compared to those stored at higher

temperatures. Larval weight at the lowest two temperatures

remained unaffected within 21 days of storage (Figure 4).
Contamination

No evidence of contamination (bacteria or fungi) was observed

during all experiments, except for the temperature storage at 33°C.

After 21 days of storage at 33°C, the completed diet was mostly

contaminated with bacteria. This contamination contributed to

100% mortality of the insects fed on these diets (Figure 4A).
Frontiers in Insect Science 06
Discussion

Artificial diets are critical to many programs as they are used

to rear insects for research across various entomological fields

(e.g., insect management in agriculture, development of nutrient

sources for human consumption or animal feed) and other

biological sciences (3, 5). The success of these programs hinges

on the health of the insects, which is directly affected by the quality

of the diets (28). Although insects are frequently reared on

completed diets requiring proper storage to maintain their

quality, there is limited information available on the storage

conditions of completed diets. In this study, by characterizing

temperature and time storage conditions, we determined the

quality of a completed diet after storage at different varying and

fixed temperatures from -20°C to 33°C for up to 28 days.

Our results indicated exposure to varying temperatures from -2°C

to 27°C for less than 24 hours during transit had no significant effect on

the quality of the completed diet (Table 1). However, longer storage
FIGURE 3

Percent survival, dry weight, and percent successful completion of molt to 2nd instar for western corn rootworm larvae reared on an artificial diet
for 7 days. (A): storage duration with all temperatures combined, (B) temperatures with all the storage duration combined. Bars with different letters
are significantly different (P < 0.05). Mean ± SEM. Untransformed data were presented, while analyses were performed with square-root transformed
or arcsine square-root transformed data.
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time (>24 hours) at different temperatures caused negative impacts on

diet quality. In fact, the performance of the western corn rootworm

larvae fed on the completed diet stored over 24 hours at fixed

temperatures ranging from -20°C to 33°C was significantly reduced

(Figures 2, 3). Among the temperatures examined, low temperatures

(-20°C and 4°C) proved to be the most effective for preserving diet

quality. Insects fed on diets stored at these low temperatures exhibited

higher weight and better molting rates compared to those reared on

diet stored at higher temperatures (22°C, 25°C, and 33°C)

(Figures 2–4). The observed reductions in insect performance are

likely due to nutrient degradation in the completed diet, which can

occur quickly after storage. Cohen and Crittenden (8) reported

significant declines in ascorbic acid in these completed diets for plant

bugs, lepidopteran larvae, and green lacewings within 48 hours of

storage in a refrigerator at 4°C or in rearing room conditions at 27°C.
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Notably, the completed diet used in this study contains 80% water (20).

Insect diets that often have over 75% water and thereby possess high

water activity (>95%) which facilitates various forms of degradation

(e.g., oxidative deterioration), attributing to the instability of completed

diets (5, 6).

Among the life history parameters examined, it is clear that

molting was the parameter that was the most affected (Figure 4). At

low temperatures (-20°C or 4°C), significant reductions in larval

molting were seen when the insects fed on completed diets stored

within 7 days, whereas declines in larval weight and survival did not

occur within 21 and 28 days, respectively, for diets stored at such

low temperatures. Sterols, which are precursors to ecdysteroids

(molting hormones) of insects, are often added to insect diets as a

vital ingredient. Since insects cannot synthesize sterols, they must

obtain them from their diet (29). During storage, lipid oxidation in
FIGURE 4

Percent survival (A), dry weight (B), percent successful completion of molt to 2nd instar (C) for western corn rootworm larvae reared on an artificial
diet for 7 days. Bars with different letters are significantly different (P < 0.05). Mean ± SEM. Untransformed data were presented, while analyses were
performed with square-root transformed or arcsine square-root transformed data.
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completed diets might occur rapidly, resulting in declines in the

availability of sterols, or possibly other lipids such as fatty acids,

which are essential for juvenile hormone production. Cholesterol, a

common ingredient in insect diets, provides sterols necessary for

insect growth and development. The completed diet used in this

study contains 0.0055% cholesterol (20). Increasing the proportion

of cholesterol in this diet may mitigate the loss of sterols.

Researchers in insect rearing often encounter challenges with

the problem of diet preservation. The standard techniques for

preserving human food do not always translate to insect diets.

Most completed diets are composed of a complex mixture of several

ingredients with high water activity, making them susceptible to

various kinds of degradation (5). Even before insects contact the

completed diet, interactions among diet components during

processing and storage can affect its quality. Moreover, infestation

of diets with insects negatively impacts the biochemical integrity of

the diet. Insect feeding accelerates oxidative deterioration by the

introduction of digestive secretions, increasing exposure to

atmospheric oxygen, and contamination of the diet with microbes

from their mouthparts and frass (30).

To produce healthy insects on artificial diets, it is essential to

maintain diet quality under appropriate conditions while

considering economic feasibility. This study adds to the limited

number of studies characterizing the effects of storage conditions

(temperature and storage duration) on the quality of insect diets.

Short-term exposure (less than 24 hours) to varying temperatures

between -2°C and 27°C had no adverse effects on diet quality, but

prolonged exposure (over 24 hours) at any fixed temperatures

from -20°C and 33°C deteriorated the completed diets. The best

preservation of diet quality was achieved at -20°C and 4°C, where

insect weight and survival remained unaffected within 21 and 28

days of storage, respectively, though molting was reduced within 7

days of storage. This provides essential information on the storage

conditions for completed diets, supporting the production of

healthy insects.
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