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The diverse roles of insulin
signaling in insect behavior
Anastasia A. Weger and Clare C. Rittschof*

Department of Entomology, University of Kentucky, Lexington, KY, United States
In insects and other animals, nutrition-mediated behaviors are modulated by

communication between the brain and peripheral systems, a process that relies

heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous

studies have focused on the mechanistic and physiological functions of insulin-

like peptides (ILPs) in critical developmental and adult milestones like pupation or

vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult

nutrient-mediated behaviors related to survival and reproductive success. Here

we briefly review the range of behaviors linked to IIS in insects, from conserved

regulation of feeding behavior to evolutionarily derived polyphenisms. Where

possible, we incorporate information from Drosophila melanogaster and other

model species to describe molecular and neural mechanisms that connect

nutritional status to behavioral expression via IIS. We identify knowledge gaps

which include the diverse functional roles of peripheral ILPs, how ILPs modulate

neural function and behavior across the lifespan, and the lack of detailed

mechanistic research in a broad range of taxa. Addressing these gaps would

enable a better understanding of the evolution of this conserved and widely

deployed tool kit pathway.
KEYWORDS

nutrition, developmental plasticity, fat body, foraging, fecundity, mating, social insect,
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Introduction

Nutritional state is a universal factor that alters behavioral expression in animals

including insects (1, 2). Adult insects must accrue sufficient energy to support things like

somatic maintenance, mate search, egg development, nest construction, oviposition, and

parental care (3–7). To do this, individuals combine complex information about their own

nutritional state with environmental information like resource and mate availability (8) in

order to make prudent decisions about energy acquisition and use.

Insulin/insulin-like growth factor signaling (IIS) is one of the most well-recognized

pathways that contributes to the organization and expression of energy-sensitive behaviors

(1, 9). This pathway, particularly its satiety signaling function, is conserved across

vertebrates and invertebrates (9). However, presumably because of the diverse

connections between nutritional state and behavioral expression, IIS has been co-opted
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to regulate phenotypes like egg production, reproductive tactics,

and courtship behavior across taxa (10–12). It thus offers fertile

ground for studies that investigate the physiological links between

nutritional state and nervous system processes, and how these

relationships evolve.

In this mini review, we explore the variety of roles for IIS in

regulating behavioral expression in adult insects. One of our major

goals is to describe links between IIS activity and the modulation of

nervous system function, highlighting knowledge gaps in these

areas. To do so, we use known mechanistic examples from

Drosophila melanogaster (13, 14), and draw parallels and

distinctions with other species where possible. To emphasize the

expansion and diversification of IIS over evolutionary time, we

focus on behaviors ranging from most conserved (e.g., feeding

behaviors) to derived (e.g., social behaviors and polyphenisms).
Insulin/insulin-like growth factor
signaling pathway fundamentals

IIS activity is dynamic throughout life. Here we focus on how IIS

modulates adult behaviors, but we include some developmental

processes that give rise to adult polyphenisms. IIS involves the

action of insulin-like peptides (ILPs), which are produced in the

brain and peripheral tissues and operate either as circulating

hormones or neuromodulators (15–17). These peptides fall into

three categories based on their shared homology with their

vertebrate counterparts: insulin-like, insulin growth factor-like (IGF),

or relaxin-like (18). Most ILPs are insulin-like (18, 19). Studies in some

taxa differentiate insulin-like, IGF-like, and relaxin-like peptides, but

many others refer to all types collectively as ILPs (18, 20, 21). In

keeping with the convention set by D. melanogaster, we will generally

refer to ILPs but note IGF and relaxin-like peptides where possible.

Insulin-like and IGF-like peptides activate the tyrosine kinase

insulin receptor (InR) causing insulin receptor substrate (IRS)

phosphorylation and downstream activation or inhibition of

effectors via two major pathways, the phosphoinositide 3-kinase/

protein kinase b (PI3K/Akt) pathway, which is associated primarily

with cellular energy metabolism (22, 23), and the mitogen-activated

protein kinase (MAPK) pathway, which is involved in cell and

organismal growth, typically during development, via ecdysone

signaling (4, 20). Notably, these pathways can have overlapping

effects that are difficult to differentiate (18, 24–26). With PI3K/Akt,

IRS binds to PI3K, activating Akt, which phosphorylates and inhibits

a class O of forkhead box transcription factor (FOXO) and its

downstream targets (27, 28), including developmental growth and

differentiation regulators in conserved pathways such as hedgehog

signaling (29–31, see 32 for an example of FOXO activity in adults).

Akt can also activate the cAMP-response element binding protein

(CREB, involved in memory formation) and inactivate glycogen

synthase kinase 3 (GSK3), promoting glycogen synthesis and

energy storage (23, 33–35). Alternatively, IRS can interact with

growth factor receptor bound protein-2 (Grb2), ultimately

initiating MAPK signaling (23).
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While the identity of insulin-like peptides and IGFs are well-

established in a variety of insect species, less is known about relaxin-

like peptides outside of D. melanogaster (36). In D. melanogaster,

relaxins activate G-protein coupled receptors (GPCRs), specifically

leucine-rich repeat-containing GPCRs 3 and 4 (Lgr3 and Lgr4)

during metamorphosis and oviposition, respectively (14, 18, 37–40).

Recent studies are beginning to investigate relaxin-like peptide

GPCRs in other taxa (24, 37, 41, 42).

IIS activity is often manipulated and/or measured using changes

in ILP, InR, or IRS mRNA or protein levels. FOXOmRNA levels are

also commonly used to infer PI3K/Akt pathway activity (43); other

downstream effects of InR and the effects of relaxin-like peptides are

less studied. To understand the role of IIS in coordinating

nutritional state and behavior, it is necessary to know the location

of ILP production and action in the periphery and brain. These are

best understood in D. melanogaster (reviewed in 15), although

characteristics are likely to be similar in other species (9, 44). In D.

melanogaster, some ILPs are released by insulin-producing

neurosecretory cells (IPCs) in the brain, where they act locally

(45). IPCs respond directly and indirectly to peripheral signals

including fat body produced ILPs, hemolymph glucose content,

adipokinetic hormone, and other peptides and biogenic amines that

can also act independently of nutritional state (17, 18, 37, 46,

Figure 1). IPCs project to the heart, corpora cardiaca, and the

midgut, stimulating ILP release from those tissues (8, 18, 50).

Peripheral ILPs are also produced by ovarian follicle cells and

regions of the gut. Some of these ILPs act locally, and others

circulate (15, 51, 52). Notably, ILP production and inhibition are

impacted by circulating hormones including juvenile hormone (JH)

and ecdysteroids, and in turn, ILPs can affect the synthesis of these

hormones (38, 47, 53–56). Many details regarding the coordination

of ILP production and release among tissues, and the interaction of

IIS with other behaviorally relevant pathways, are still under study.
IIS regulation of feeding behavior

Perhaps the most universal function of IIS is in satiety signaling,

telling an individual they do not need food (46). IIS activity has been

implicated in feeding behaviors in diverse species, including fruit

flies (D. melanogaster), locusts (Schistocerca gregaria), and mantids

(Tenodera sinensis9, 44, 57). ILPs produced in brain IPCs or

peripherally, e.g., in the fat body, alter sensitivity to food cues or

food acquisition behaviors through changes in sensory physiology,

activity levels, nutrient preferences, and learning and memory

processes (1, 9, 58–61). For example, in D. melanogaster, elevated

circulating ILPs following food intake inhibit short neuropeptide F

(sNPF) expression in the olfactory sensory neurons, reducing

sensitivity to food odors and inhibiting food searching behavior

(45). Similarly, starvation, and decreased production of ILPs by

IPCs, induces hyperactive food search (62), while locomotion

inhibits IPC ILP production, increasing sensitivity to food cues (63).

Data from other insects indicate that at least some IIS-mediated

satiety mechanisms are generally conserved, although locations of
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ILP production, signaling relationships, and neural mechanisms

giving rise to behavioral variation may differ. For example, in the

desert locust Schistocerca gregaria, IIS via both MAPK and PI3K/

Akt pathways increases sNPF expression in the optic lobe, leading

to decreased feeding (57). Parasite infection at the time of a

bloodmeal increases mosquito (Anopheles stephensi) olfactory

sensitivity to hosts due to changes in midgut ILP mRNA

expression (59). Female mosquitoes alternate between nectar and

blood feeding as their nutritional needs change with egg production.

In the mosquito Aedes aegypti, nutrient-specific hormone dynamics

stimulate different sets of ILPs in the brain and peripheral tissues to

synchronize metabolism and reproductive stage (47), as well as

activate digestion of blood meals along with the target of rapamycin

(TOR) pathway (64). In Western honey bees (Apis mellifera), IIS in

the fat body modulates neural sensory systems via unknown

mechanisms to cause a preference for lipid and protein-rich

pollen over nectar in foragers (65). In this species, increased

expression of brain InR mRNA is also correlated with

spatiotemporal memory formation and anticipation of

encountering known food resources (66), possibly through the

MAPK pathway (67). Similarly, in D. melanogaster, IIS has been

linked to cAMP-dependent memory formation and aversive

learning in both adults and larvae (34, 68–71). In mantids,

injection of mammalian insulin causes decreased movement, but

rather than decreasing foraging activity, this causes a shift from

active prey stalking to a more sedentary ambush strategy (44). It is

largely unknown how ILPs modulate nervous system processes in

these diverse species and contexts, but clearly IIS is involved in
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many types of behaviors and preferences related to foraging and

diet choice.
IIS regulation of courtship, mate
choice, and oviposition

In insects, IIS reflects nutrient availability for reproduction, and

as such it affects vitellogenesis and the number of eggs a female

produces (43, 72). However, because reproductive individuals

perform suites of behaviors required to successfully mate and lay

eggs, IIS is also more broadly involved in courtship and mate choice

(49, 73). For example, in D. melanogaster males, tarsal contact with

pheromones from male competitors or heterospecific females leads

to the release of an ILP from the IPCs, inhibiting the P1 neurons

that promote courtship (49). Relaxin-like ILPs and associated

downstream mechanisms in male glial cells and abdominal

ganglion neurons are also required for mating, sexual receptivity,

and mate attraction in D. melanogaster (74–76). Similarly, in

females, IIS in olfactory sensory neurons responsive to male sex

pheromones mediates a starvation-induced decrease in sexual

receptivity (12, 48). IIS seems to incorporate individual mating

history in the context of mating decisions: inhibiting ILP

production in unmated females increases sexual receptivity (77)

while following a mating event, decreased InR expression or ILP

production reduces willingness to remate (78).

Peripheral IIS activity in females also alters attractiveness to

males through cuticular hydrocarbon (CHC) profiles. In D.
FIGURE 1

For a hypothetical adult insect, we show various IIS mechanisms that coordinate activity in the brain and periphery to give rise to behavioral
variation. In the head (box insert), IPCs release locally acting ILPs to modulate nervous system processes like sensory responses and locomotor
activity. Nearby glands such as the corpora cardiaca (CC), corpora allata (CA), and the prothoracic gland (PG) produce hormones that can alter ILP
production and release from IPCs (18, 47). IPCs are activated by peptides (sNPF, tachykinin) or biogenic amines (octopamine, serotonin) released by
other neurons in the brain in response to neural or peptide signaling from peripheral sensory systems (navy blue lines, (48, 49), or peripheral signals
like hemolymph glucose levels (green line, 46); these are modulated by social and nutritional cues and nutritional status (indicated by navy blue lines,
18). The fat body also releases several types of uncharacterized fat body signals (FBSs), as well as Upd2 and CCHa2 in response to changes in
available nutrients, and these ultimately stimulate IPC ILP production through unknown mechanisms (17). The fat body, and other tissues including
the midgut and gonads (e.g., ovaries), also produce ILPs, shown in purple (15). These ILPs, some of which are also produced by the IPCs, can act on
the brain as well as ganglia or other peripheral tissues (15). Notably, although we have depicted all relationships with a directional arrow, various
signals can activate or inhibit IPCs depending on environmental context and the specific taxa.
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melanogaster, increased ovary IIS with decreased fat body IIS alters

CHC production in fat body oenocytes (73) and increases mate

attraction (52, 79). Because diet and nutrition influence IIS and

CHC production, CHCs are honest signals of female quality (80).

CHCs can indicate female mating status, fertility, and mating

compatibility in many other insect species, suggesting this

connection between IIS and mating cues may be broadly

conserved in species from hymenopterans to coleopterans (81–83).

IIS mediates maternal offspring provisioning and oviposition

site selection, combining the classic role of IIS in feeding behavior

with its more elaborated reproductive functions. D. melanogaster

females use gustatory cues to choose oviposition sites based on

substrate sucrose concentrations (40). Interestingly, these decisions

are not mediated by IPC-produced ILPs, but rather via relaxin-like

ILP7 activity in neurons in the thoracic-abdominal ganglia (15),

which have projections to the sub-esophageal ganglia and the

female reproductive tract (40). The other D. melanogaster relaxin

peptide, ILP8, is expressed in follicle cells and binds to receptors on

abdominal ganglia cells, enabling the oviduct muscle to perform the

needed oviposition movement (84). Ovary IIS may also modulate

provisioning behaviors in social species where sterile workers feed

offspring: in honey bees, workers with larger ovaries show a

preference for pollen (used to make larval food) over nectar;

genetic studies assessing variation in pollen preference have

implicated the IIS pathway (85, 86).
IIS regulation of adult polyphenisms

Eusocial insect castes

IIS activity plays a critical developmental role across insects,

affecting both juvenile and adult phenotypes (4). Here we highlight

the developmental role of IIS in the context of adult polyphenisms,

which are well-studied examples of nutrition-mediated behavioral

variation in adult insects. For example, across independent

evolutionary origins of eusociality, there is a common role for

nutrition and IIS in caste determination, although the pathway is

implemented differently among taxa (87–91). In honey bees, where

colonies contain a single reproductive queen and thousands of

sterile female worker bees, the queen larval diet increases IIS and

leads to a spike in juvenile hormone (JH) production necessary for

queen development (92–94). Later in development, queen IIS drops

to worker-like levels (95), suggesting a transient increase in IIS/JH

in queens gives rise to persistent effects at multiple levels of

biological organization (93). While JH is produced in the corpora

allata, it is unclear which tissues are involved in producing the

upstream IIS signal and responding to IIS/JH (96).

IIS/JH signaling during larval stages could directly impact the

development of the brain and/or other tissues that communicate

with the brain throughout adulthood. In honey bees, IRS expression

during development is responsible for differentiating queen and

worker ovaries, but additional variation in IRS expression

throughout adulthood also underpins behavior-relevant variation

in ovary size among workers (85, 86, 97). For example, among

workers, there is evidence that ovary size modulates the response to
Frontiers in Insect Science 04
social pheromones (98). Enlarged ovaries are associated with

increased octopamine signaling in the brain (98); octopamine

activates the IPCs and thus could modulate olfactory sensitivity

through IIS (8). A similar mechanism appears in the clonal raider

ant Ooceraea biroi, where adults can switch between ovary activated

(reproductive) and ovary suppressed (brood care) phases. Larval

pheromones suppress reproduction and promote brood care by

inhibiting ILP expression in adult IPCs (89).

While it is unknown whether or how IIS/JH signaling impacts

brain development, differences in IIS expression continue into

adulthood in honey bees; queens have decreased brain IIS

compared to workers (87). Other social species also show caste

differences in brain IIS, but patterns vary. Reproductives have

higher brain IIS compared to workers in a wasp (Polistes

candensis99), termite (Cavitermes tuberosus100), earwig (Forficula

Auricularia101), andmany ant species (20, 89, 102–106). IIS could be

linked to different, specific functional outcomes in these diverse social

species, for example, species-specific trade-offs among egg

production, queen behavior, and lifespan (87). Resolving these

relationships requires more detailed work, including assessment of

the specific mechanisms activated by IIS. For example, in

reproductives of the ant Harpegnathos saltator, brain produced

ILPs activate MAPK in the fat body and ovaries, but not the PI3K/

Akt pathway (20), while ovarian activation of PI3K/Akt signaling

occurs in other ant species (102, 103). These different responses to

ILPs in the ovaries could mediate divergent phenotypic outcomes.

The unresolved complexities in IIS continue when looking

among members of the worker caste in social insects. Honey bee

workers show dietary and physiological changes corresponding to

adult age-related behavioral shifts (“age polyethism”), including a

massive loss of lipid stores in the fat body associated with the

transition from nursing to foraging behaviors (107). As the fat

body shrinks during aging, increased ILP production leads to

increased JH and behavioral changes (97, 108–111). However,

while older workers have higher whole-body IIS activity compared

to younger workers, they have higher brain IIS (112) but lower fat

body IIS (113). IIS activity differences could also correspond to

tissue-specific divergence in downstream pathways. For example,

a brain biomarker for honey bee foraging behavior is a

extracellular signal-regulated kinase (ERK), a member of the

MAPK pathway (114), which has been associated with learning

and memory processes in the context of food acquisition (67). In

contrast, in the fat body, IRS (the PI3K/Akt pathway) is activated

in nurse bees who consume an amino acid rich diet compared to

foragers; decreased IRS/IIS signaling results in precocious foraging

(113). Thus, two different IIS downstream pathways in two

different tissues both contribute to the same phenotypic

outcome. Other honey bee species, the wasp Polistes metricus,

and the ant Temnothorax longispinosus show similar age- and

tissue-related patterns (88, 115–117), while the bumble bee

Bombus terrestris, stingless bee Tetragonisca angustula, and ant

Solenopsis invicta show the opposite, at least in terms of age

patterns (118–120). The mechanistic implications of these

complexities remain unclear.

Notably, many studies in eusocial insects use gene expression

data exclusively to implicate IIS in caste differences. These data do
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not necessarily reflect circulating ILP levels or the quantity of stored

ILPs that could be released to activate IIS. More work examining

protein interactions and phosphorylation downstream of ILP

receptor binding is necessary to validate and interpret the role of

IIS in the context of behavioral differences between queens and

workers or among workers.
Wing length and weapon
size polyphenisms

Juvenile nutrition and IIS activity are involved in the

development of discrete adult polyphenisms in wing length in

some hemipterans and weapon size in some coleopterans. When

food quality is low, some hemipterans produce long-winged

morphs that disperse at a cost to fecundity (121). As

hemimetabolous insects, the switch between morphs can happen

until the last nymphal instar, allowing for rapid response to

environmental conditions (121). IIS patterns and wing morph

expression are similar across several species: in soapberry bugs

(Jadera haematoloma), linden bugs (Pyrrhocoris apterus), and pea

aphids (Acyrthosiphon pisum), high quality food or low population

densities lead to elevated IIS activity (inferred by pathway

manipulation and gene expression data) and the development of

wingless morphs (30, 51, 122, 123). However, in the brown

planthopper (Nilaparvata lugens), this pattern is generally

reversed (31, 124). Downstream mechanisms could include GSK3,

which is associated with wing deformities (125, 126). Wing tissues

are particularly sensitive to ILPs and variation in IIS does not affect

allometry or growth in other tissues (121). This tissue specificity

extends beyond species with conspicuous polyphenisms, e.g., D.

melanogaster and the tobacco hornworm Manduca sexta. Thus,

developmental nutrition may have other subtle effects on adult

flight, dispersal phenotypes, and reproductive capacity across

diverse species (19, 127).

In Scarabaeidae beetles, exaggerated male weapons like horns are

common.Males with high-quality larval nutrition have large weapons

and engage in male-male fighting over mates, while males with poor

nutrition have small or no weapons and rely on sneaker tactics (10).

As in the wing example, other tissues are unaffected by variation in

ILPs. When nutrition is high-quality, ILPs drive weapon tissue

proliferation through InR activation (128, 129). Without these

signals, the transcription factor FOXO stops cell proliferation and

the development of weapon structures (130). There is some

interesting variation in how IIS acts in different beetle species. In

the rhinoceros beetle Trypoxylus dichotomus, InR knockdown results

in greatly diminished horns (130). In contrast, InR knockdown has

no effect on horn growth in the dung beetleOnthophagus nigriventris,

but FOXO knockdown suppresses growth in both the horns and

genitalia (10, 29, 128, 131). IIS has also been implicated in more

subtle variation in flight and fighting capabilities in bark beetles

(Dendroctonus ponderosae) and crickets (Gryllus assimilis and Gryllus

firmus5, 132–134), suggesting it may play a more generalized role in

competition-related behavior and polymorphisms.

In the dimorphic horned beetle examples, developmental IIS

leads to differences in adult morphology and behavior, but it is
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unclear whether IIS exerts organizational effects on the brain during

development, or continuously regulates adult behavioral

differences. For example, variation in doublesex expression and

serotonin levels in the adult brain predict differences in

aggression across dimorphic males (135, 136). Doublesex is a

target of IIS in developing horn tissues and serotonin impacts the

body size threshold that distinguishes the horn morphs (29, 137),

but it is unknown whether IIS regulates either mechanism in the

adult brain. Similarly, in the pea aphid, differential ILP expression

between nymphal winged and wingless individuals occurs in the

thorax, but ILPs are also differentially expressed in the brain and

thorax during adulthood, suggesting further phenotypic impacts

(51, 138). Understanding the relationships in activity of IIS across

the life stages could lead to new insights about the evolution and

regulation of phenotypic plasticity. IIS appears to integrate

environmental cues over the lifetime to modulate behavioral

expression, and as such, it could serve as a mechanism that

impacts the duration of environmental effects (139, 140).
Discussion

IIS’s role in communicating nutritional state and regulating

feeding behaviors has been elaborated over evolutionary time to

coordinate reproductive physiology, courtship and mating

behaviors, maternal provisioning behaviors, social insect caste

differentiation, and the development and adult regulation of

dimorphic dispersal and reproductive phenotypes.

Food choice and food-related locomotion are broadly associated

with IIS, but there is substantial species-level variation in food cues,

nutrients and preferences, locomotion patterns, and the ecological

contexts that regulate foraging behaviors. Future studies could

investigate the mechanistic bases of this species-level variation, in

terms of how both internal state and external information modulate

IIS and cause behavioral change. Insects present some particularly

interesting and economically relevant contexts where IIS is essential to

feeding behavior, including grasshopper (Oedaleus asiaticus) plague

activity resulting from sub-optimal diets (141) or changes in feeding

behavior due to crowding in armyworms (Mythimna separata142).

Examining IIS activation, including ILP production and modes of

action in the brain across diverse taxa is critical to understanding the

evolution of IIS and may also highlight new tools for pest control.

Substantial gaps remain in understanding the role of IIS in

coordinating activities between the brain and peripheral tissues.

These mechanisms are diverse and context dependent even in well

studied species like D. melanogaster (15). However, certain

emergent patterns may be conserved. For example, in D.

melanogaster, different ILPs are responsible for within and cross-

tissue signaling. ILP number varies greatly among taxa (143),

possibly reflecting the diversity of contexts requiring IIS regulation,

or the tissues involved. Most species have 1 or 2 InRs that activate

tissue-specific downstream targets (144) but the mechanisms that

allow specificity in downstream interactions, including how limited

numbers of InR receptors give rise to diverse effects from numerous

peptides, are still mostly unknown (55). While the most-studied

model species D. melanogaster has only one InR, many other species
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have two, and Blattodea three, which can lead to novel relationships

and interactions that should be studied further (144). For example,

in the brown planthopper, InR2 directly inhibits InR1 during wing

morph development, while the third Blattodea receptor is

hypothesized to have a role in social termite evolution (124, 144).

Identifying the downstream pathways activated specifically by

IIS is challenging as many of them can be affected by several other

signaling pathways (20, 23, 145–147). This is especially problematic

in non-model organisms where genetic tools and experimental

approaches to manipulate ILP abundance are not well-developed.

It is also important to consider the possibility that some peptides

identified as insulin-like may belong to other peptide classes (e.g.,

IGF-like), which could suggest divergent downstream effects (20,

38, 105). Future studies could address these complexities by at least

elaborating on the details of tissue-specific IIS and confirming the

involvement of IIS using direct measures of ILP abundance and

scaffolding or phosphorylation state of downstream targets (24).

Another compelling pattern that emerges from eusocial caste

differentiation is that IIS is used to integrate cues associated with

seasonal timing and other abiotic factors. For example, in the social

paper wasp Polistes metricus, late season larvae become reproductive

gynes that will overwinter and establish new nests the following year.

As such, larvae are fed more and have activated IIS (148). The ant

Pogonomurmex rugosus can only produce new queens after the original

queen has hibernated, a transition caused by environmental signals like

temperature that induce numerous physiological and behavioral

changes in queens, including decreased metabolism and feeding.

Hibernated queens have increased ILP expression, which increases

the amount of vitellogenin deposited in eggs leading to new queen

production (149). These provide additional examples of the ways in

which IIS has been co-opted in novel contexts associated with

nutrition variation.

Despite broad connections between IIS and behavior,

mechanistic work outside of D. melanogaster remains limited.

More diverse functional information could elucidate the conserved

and divergent aspects of IIS among species and contexts, for example,

in terms of where ILPs originate in the body (59), or how the different

IIS components interact with each other (121). Our current model

systems have highly derived phenotypes that may hinder attempts to

form generalizable hypotheses. Broadening work in other taxa will

also help explain why IIS is inconsistently used to regulate the same

phenotypes across species (89). For example, some fig wasp species

have winged and wingless males (150) that differ in aggression and

weapon size (151). Although these phenotypes resemble the bugs and

beetles discussed above, no link has been made to IIS or nutrition. Is

this an independent evolutionary event with repeated co-option of

the IIS pathway? Comparative investigations of the evolutionary

origins of phenotypes like polyphenisms could help determine
Frontiers in Insect Science 06
whether IIS is a “toolkit pathway” that has been repeatedly

deployed over evolutionary time to give rise to similar phenotypes

(120, 152). Its ubiquity among species and behaviors suggests this

could be the case.
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