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RNAi turns 25:contributions and
challenges in insect science
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Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University
of Kentucky, Lexington, KY, United States
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning

technology, made significant contributions to advances in biology because of its

ability to mediate the knockdown of specific target genes. RNAi applications in

medicine and agriculture have been explored with mixed success. The past 25

years of research on RNAi resulted in advances in our understanding of the

mechanisms of its action, target specificity, and differential efficiency among

animals and plants. RNAi played a major role in advances in insect biology. Did

RNAi technology fully meet insect pest and disease vector management

expectations? This review will discuss recent advances in the mechanisms of

RNAi and its contributions to insect science. The remaining challenges, including

delivery to the target site, differential efficiency, potential resistance

development and possible solutions for the widespread use of this technology

in insect management.
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1 Introduction

The target-specific interference of mRNA transcription, stability, and translation by

complexes of Argonaute (Ago) family proteins and small RNAs such as small interfering

RNA (siRNA) and microRNA (miRNA) resulting in decreased levels of gene products and

their function is referred to as RNA interference (RNAi) (1, 2). Twenty-five years of

research on methods development, mechanisms of action, and development of applications

in animals, humans, and plants led to its widespread use in basic and applied research (3,

4). RNAi methods contributed significantly to advances in all areas of biology. RNAi-based

therapeutics have been developed and are being used for the treatment of human diseases.

Also, RNAi-based methods have been developed for pest and disease control and crop

improvement in agriculture. Science Journal declared RNAi as the technology of the year in

2002. The Nobel Prize in Medicine for 2006 was awarded to Fire and Mello for discovering

RNAi. Since its discovery, RNAi has played an important role in advances in insect science.

Initial research on RNAi in insects was conducted in the model insect, Drosophila

melanogaster. During the next few years, RNAi function was discovered in many insect

species, including some economically important insects such as pests, disease vectors, and

beneficial insects. RNAi works efficiently in some groups of insects, such as beetles but is
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inefficient in other insects, such as moths and butterflies. The

differential efficiency of RNAi among pests and the potential

development of resistance to RNAi are some of the major hurdles

to the widespread use of RNAi in insect pest and disease vector

management. There are many reviews published on RNAi; rather

than adding one more to this list of reviews on this subject, I will

focus my discussion on the critical evaluation of contributions of

RNAi over the past 25 years along with challenges and possible

solutions for widespread use of this technology for the management

of pests and disease vectors.
2 RNAi discovery

Gene silencing research started with an unexpected phenotype

detected in petunia plants. When a gene coding for an enzyme to

enhance purple color was introduced into petunia plants, the

transgenic plants showed a decrease rather than an increase in

purple color (5). Further research revealed co-suppression of the

endogenous gene coding for the enzyme involved in the production

of purple color (6). Co-suppression of the endogenous gene was

reported for virus resistance in plants and animals. La Crosse (LA)

virus gene introduced into an infectious Sindbis virus expression

vector caused interference to its replication (7). Also, the expression

of virus genes interfered with the replication of the California

serogroup virus in mosquito cells and mosquitoes (8). The

silencing of genes was reported in the fungus, Nuerospora crassa

(9). However, in these studies, the trigger of silencing and the

mechanism of silencing were not identified. A landmark publication

in RNAi by Fire and Mello (2) in 1998, for the first time, identified

double-stranded RNA (dsRNA) as the molecule that triggered RNA

silencing and coined the term RNA interference (RNAi). This

publication also reported on the mechanism of action of dsRNA

to achieve target gene silencing. Subsequent research during the

next few years reported RNAi in nematodes, insects, plants, and

trypanosomes (10–18). The functioning of RNAi was reported in

mammalian cells in 2001 (19) and mice in 2002 (20). Research on

RNAi during the past 25 years resulted in development of many

applications in medicine and agriculture (21–28).
3 RNAi in insects

The first insect to demonstrate RNAi function was the fruit fly,

Drosophila melanogaster (12, 29). Fruit fly genetic and genomic

tools were employed to study the functions of genes using

transgenic flies (30). Transgenic fly lines expressing RNAi triggers

for almost all genes identified in the Drosophila genome are

available from Drosophila stock centers. These UAS transgenic

flies can be crossed with GAL4 lines expressing GAL4 in a tissue

and stage-specific manner, allowing the knockdown of target genes

in specific tissues and stages. The addition of RNAi to the

Drosophila toolbox revolutionized functional genomics in this

model insect and facilitated studies on the function of genes

involved in almost every aspect of insect life (3). High throughput

screening assays were developed using Drosophila cell lines and
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transgenic flies and used to identify genes and their function in

developmental and physiological processes in flies (31–57). During

the next few years functioning of RNAi was demonstrated in other

insects such as Anopheles gambiae (30), Tribolium castaneum (18),

Anopheles stephensi (22), Blattella germanica (58), Manduca sexta

(59), Apis mellifera (60–62), Aedes aegypti (63), Locusta migratoria

(64), Leptinotarsa decemliata (65) and Nilaparvata lugens (66).
4 RNAi mechanism

Double-stranded RNAs in the cytoplasm of the cells are

recognized by dicer enzymes and digest them into small

interference RNA (siRNA) of 18-21 base pair length (20, 67, 68).

The RNA-Induced Silencing Complex (RISC) containing argonaute

proteins (69, 70) facilitates the binding of siRNA to complementary

DNA/mRNA blocking replication, transcription and translation

(71). This results in reduced levels of target gene products hence

the knockdown or knockout effect of the target gene function. In

mammalian cells, dsRNAs induce interferon response (72). Most of

the the critical players including, dicers and argonautes involved in

RNAi response are conserved in insects. However proteins involved

in dsRNA uptake and transport into cytoplasm vary among insect

species contributing to differences in RNAi response among insect

species (more discussion on this in section 6) However, the

interferon response in insect cells is not robust. Therefore, long

dsRNAs could be used as RNAi triggers in insects. The exogenously

applied dsRNA is processed to multiple siRNAs by insect cells

bypassing the need for optimization of siRNA for each gene

normally required for efficient silencing of target genes in

vertebrates. Long dsRNAs (200-400 bp) are delivered to insect

cell lines in vitro or injected into insects in vivo to induce RNAi

response. This makes it easier to implement RNAi technology in

laboratories without access to bioinformatics tools. This may be one

of the reasons for the extensive use of RNAi in entomology

laboratories all over the world. RNAi technology contributed to

advances in our knowledge of pest biology, insecticide targets and

resistance development to insecticides. Most of this research on

non-model insects during the past 25 years would not have been

possible without the use of RNAi technology.
5 Applications of RNAi in basic
science and pest control

RNAi made significant contributions to advances in our

understanding of insect biology. A combination of genetics and

genomic tools and the availability of genome sequences in model

insects such as the fruit fly, silk moth and red flour beetle facilitated

research in functional genomics to determine functions of genes

involved in insect development, reproduction and behavior. RNAi

also played an important role in advancing the biology of non-model

insects that include pests, disease vectors and beneficial insects.

Research on the identification and characterization of insecticide

target sites and mode of action of insecticides and resistance

development against insecticides by insects is aided by the use of
frontiersin.org

https://doi.org/10.3389/finsc.2023.1209478
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Palli 10.3389/finsc.2023.1209478
RNAi methods. Functional genomics studies aided by RNAi in

destructive pests such as the brown plant hopper, locust and disease

vectors such as the yellow fever mosquito advanced our knowledge on

development, reproduction and immune response in these insects.

RNAi works well and is used extensively in the red flour beetle,

Tribolium castaneum to study the function of genes involved in

growth, development, reproduction and insecticide resistance (73–

100). The western corn rootworm, Diabrotica virgifera virgifera is

another coleopteran insect where RNAi helped to identify targets

for insecticide development (101, 102).

Expression of RNAi triggers in plants results in the knockdown of

target genes in insects that feed on transgenic plants resulting in their

mortality (101, 103). These results showed the potential of RNAi

technology in pest management and attracted investment from both

public and private sectors for the development of RNAi-based

methods for controlling pests and disease vectors. The utility of

RNAi technology to protect crops and trees from insect damage was

tested in multiple systems, including cotton (104–106), rice (107),

potato (108, 109), tobacco (110–113), poplar (114) and wheat (115).

Surprisingly, the plant-mediated delivery of RNAi triggers was tested

only in a few crop-pest systems. Difficulty in producing transgenic

plants for economically important crops and hesitancy in public

acceptance of food derived from genetically modified crops may have

contributed to the slow progress of research in this area. Despite 20

years of efforts, only one plant-mediated RNAi product, corn seed for

protection against corn rootworm has been commercialized.

In insects such as the Colorado potato beetle, tephritid fruit fly (116)

and beet armyworm (117), feeding dsRNAproduced in bacteria induces

efficient knockdown of target genes and mortality. dsRNA produced in

yeast (118) and algae (119–121) was also reported to trigger RNAi in

mosquitoes. In vitro synthesized dsRNA also induces efficient RNAi in

coleopteran insects such as the Colorado potato beetle and flea beetle,

and these products are under development for registration to control

these pests. RNAi is also being developed to protect beneficial insects

from pathogens such as the Israeli Acute Paralysis Virus that infects

honey bees (122). Remebee-1, a dsRNA product, was developed to

control this disease of honey bees (60). Transgenic silkworms expressing

dsRNA targeting lef-1 gene of Bombyx mori nucleopolyhedrovirus

(BmNPV) were developed to control this viral disease (123, 124).

Another application of RNAi is for blocking the transmission of

human and plant pathogens by insect vectors. dsRNA targeting the

defensin gene in Anopheles gambiae adults reduced antimicrobial

defense against Gram-positive bacteria (30). Also, knockdown of a

complement-like protein 1, TEP1, gene in An. gambiae increased the

number of developing parasites in the susceptible strain but abolished

melanotic refractoriness in the refractory strain (125). RNAi played a

critical role in understanding host-parasite interactions and immune

responses in mosquitoes (126–140).
6 Roadblocks to widespread
use of dsRNA pesticides

After 25 years of research on RNAi, why do we have only a few

RNAi-based pesticides registered for pest management? The

differential efficiency of RNAi among insects and its lower
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efficiency in major pests, potential resistance development and

public hesitancy in accepting food from genetically modified

crops are the major hurdles to the widespread use of RNAi in

pest management. After discovering the functioning of RNAi in

many insects, it became clear that RNAi works with variable

efficiency among insect species tested. In beetles belonging to

Tenebrionidae, Chrysomelidae and other families, the RNAi is

efficient and systemic (141–147). Injection of dsRNA induces

efficient RNAi in hemipteran insects, the milkweed bug

(Oncopeltus fasciatus) (148), the brown marmorated stink bug

(Halyomorpha halys) (149), the bed bug (Cimex lectularius) (150)

and also in other insects such as B. germanica (58), S. gregaria and

L. migratoria (151, 152) belonging to other orders. In contrast,

RNAi is variable and inefficient in insects from most of the other

orders, such as Lepidoptera (153). Interestingly, RNAi works well in

leafhoppers from the order Hemiptera but is inefficient in aphids

belonging to the same order. In most insects, injection works better

than feeding for delivering dsRNA. In Drosophila, transgenic

expression of hairpin dsRNA works more efficiently compared to

feeding or injection of dsRNA. In locust and a few other insects only

injection of dsRNA triggers RNAi; feeding dsRNA in these insects

does not result in the knockdown of target genes (151). RNAi

efficiency is also variable in different tissues and stages of an insect.

RNAi efficiency also depends on the target gene and its expression

levels (154). Constitutively and highly expressed target genes are

knocked down much more efficiently than those expressed at lower

levels and restricted developmental stages and tissues (154). These

results suggest that degradation of RNA in the alimentary canal,

delivery of dsRNA to cytoplasm for digestion by dicer enzymes and

recruitment by RISC complex and expression levels of genes

involved in RNAi might play important roles in determining

RNAi efficiency.

The first roadblocks encountered by the dsRNA en route to its

site of action are double-stranded ribonucleases (dsRNases) (155–

160) (Figure 1). In Locusta migratoria, injection but not oral

delivery of dsRNA induces RNAi (151). dsRNA digestion by

nucleases is a major contributor to inefficient RNAi (161).

Silencing of dsRNase genes improves RNAi efficiency (156, 162–

164). dsRNases are more active in the tobacco budworm (Heliothis

virescens, inefficient RNAi) than those in L. decemlineata (165).

dsRNA added to the medium of Sf9 cells is degraded by dsRNases

secreted by these cells; silencing dsRNases improve RNAi efficiency

in these cells (166). RNAi efficiency-related nuclease (REase)

identified in lepidopterans has been proposed as a main factor

contributing to inefficient RNAi in these insects (157).

Formulations that protect dsRNA from nucleases might improve

RNAi efficiency in insects that are refractive to dsRNA.

The second roadblock dsRNA encounters while reaching its site

of action in the cytoplasm of the cells is crossing the cell membrane

and intracellular transport (Figure 1). Clatherin-mediated

endocytosis was identified as a major pathway for dsRNA uptake

(167–174). Macropinocytosis was identified as the major route of

dsRNA uptake in the boll weevil (Anthonomus grandis) (175).

Depending on the concentration and size, dsRNA may enter cells

through multiple mechanisms (171). In L. migratoria, dsRNA does

not induce RNAi in follicle cells and oocytes because these tissues
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do not take up dsRNA (176). In coleopterans, intracellular transport

is efficient in delivering dsRNA to the cytoplasm (165). In contrast,

in lepidopterans, the intracellular transport is inefficient and most

of the dsRNA is trapped in the endosomes (165, 177).

Differences in the expression levels of key players involved in

the intracellular transport of dsRNA and its processing to siRNA

and recruitment to RISC complex influence RNAi efficiency.

Differences in the processing of dsRNA to siRNA were detected

between L. decemlineata and S. frugiperda (165). In insects

belonging to orders Lepidoptera, Orthoptera, Hemiptera and

Diptera, the processing of dsRNA to siRNA is not as efficient as

in coleopterans (178). Differences in the expression levels of Dicer

enzymes and their activity could contribute to the differences

observed in dsRNA to siRNA processing. The number of

Argonaut genes identified, as well as participation of these in

siRNA, miRNA and piRNA pathways, vary among insects (172,

179–185). Transgenic expression of Ago2 in B. mori improved

RNAi efficiency, suggesting that this protein may be one of the

limiting factors responsible for the refractiveness of lepidopterans to

RNAi (186).

A double-stranded RNA binding protein (StaufenC) was

identified as a key player for efficient RNAi in coleopterans, L.

decemlineata (65) and T. castaneum (187). Interestingly, this gene

has been identified only in coleopterans and is required for

processing dsRNA to siRNA in these insects. L. decemlineata,

Lepd-SL1 RNAi resistant cells selected by exposure to dsRNA

trigger for multiple generations express lower levels of StaufenC

than RNAi susceptible cells. These studies showed that StaufenC is

a key player in efficient RNAi coleopterans and a potential target

for resistance development to RNAi-based pesticides (187).

Recent studies showed that StaufenC functions in coleopterans

like Loquacious in D. melanogaster which is involved in

processing dsRNA to siRNA (188). The nematode C. elegans

requires systemic RNA interference defective protein 1 (CeSid1)
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for successful RNAi (189). The expression of CeSid1 in insect cell

lines improves RNAi (190–192). However, the requirement of

SID1 homologs for RNAi function varies among insects tested

(193, 194). Expression of CeSid1 in two S. frugiperda cell lines,

ovarian-derived Sf9 and midgut-derived Sf17 cells, showed that

CeSid1 increases RNAi efficiency in Sf9 but not in Sf17 cells (195).

In Sf9 cells expressing CeSid1, decreased accumulation of dsRNA

in late endosomes and increased processing dsRNA to siRNA was

observed. The Verson’s glands showed the greatest improvement,

while the midgut showed the least improvement in RNAi

efficiency in CeSID1-expressing transgenic insects. These data

point to the variability of RNAi machinery among cell and

tissue types (195).
7 Strategies to improve RNAi
efficiency in major pests and disease
vectors

Delivery of dsRNA to the site of action in the cytoplasm of the

cell will likely improve RNAi efficiency in major pests and disease

vectors that are refractive to RNAi. As with any other insecticide-

active ingredients, the formulation is key to the successful delivery

of dsRNA to the site of action. Several materials were developed to

formulate dsRNA with the goal of improving RNAi efficiency

(Figure 2). In the mosquito, Anopheles gambiae, larvae, chitosan

and dsRNA formulations improved RNAi efficiency (196). Several

other nanoformulations of dsRNA, including guanidine-containing

polymers, nanocarrier/dsRNA/detergent formulation, guanylated

polymers and branched amphiphilic peptide bilayer conjugated

gold nanoparticles were also shown to improve RNAi (175, 197–

215). The nanoformulations of dsRNA help protect dsRNA from

dsRNases (210–214), facilitate dsRNA penetration through the
FIGURE 1

The major roadblocks to efficient RNAi in insects. The cartoon illustrates dsRNA degradation by dsRNases, endosomal entrapment and lack of key
players in RNAi such as StaufenC as the major reasons for inefficient RNAi Lepidopterans and other insects.
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body wall (216), and improve the cellular uptake and endosomal

escape of dsRNA (210–214, 217, 218), ultimately resulting in

increased RNAi efficiency (Figure 2). Short (23 nt) RNAs with

partially closed ends (pcRNAs) were shown to enter cells through a

clathrin-independent pathway and improve knockdown of target

genes (219). The pcRNAs might help in overcoming some of the

hurdles faced by dsRNA reaching the cytoplasm in insects that are

recalcitrant to RNAi. dsRNA expressed in microorganisms such as

bacteria (117, 220–223), yeast (118, 224–226), algae (119–121),

Bacillus thuringiensis bacteria (227, 228) and plant viruses (229)

were shown to induce knockdown of target genes in insects that

ingest these microorganisms expressing dsRNA. Plant-mediated

delivery of dsRNA is another option. Indeed, the first RNAi

commercial product is based on this method; transgenic maize

expressing dsRNA targeting the SNF7 gene of corm rootworm

protects plants from its damage (101). In-planta expression of

dsRNA has been demonstrated to protect crops from pests (104,

109, 111, 230–232).
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8 Conclusions and future perspectives

Over the past 25 years, RNAi made irrefutable contributions to

advances in our understanding of insect structure and function.

However, advances in developing RNAi methods for pest and

disease vector control are not that encouraging; only one

commercial product and a few additional products are in the

pipeline. One of the major roadblocks to the widespread use of

RNAi technology in insect control is its variable efficiency among

major insect pests and disease vectors. Also, the availability of

transgenic crop plants expressing B. thuringiensis toxins that are

effective against Lepidopteran pests and inefficient RNAi in major

sucking pests slowed the development of RNAi-based products. The

potential development of pest resistance to RNAi products is also a

major concern. Nanoformulations of dsRNA could help deliver

dsRNA to the site of action and improve RNAi efficiency.

Advances in methods for producing and delivering dsRNA through

microorganisms are encouraging. The research on RNAi during the
FIGURE 2

Nanotechnology may help increasing RNAi efficiency in major pests. Nanoformulations of dsRNA such as dsRNA, polyphenol (−)-epigallocatechin-3-
O-gallate (EGCG) and poly-l-lysine (PLL) protect dsRNA from degradation by dsRNases, improve uptake, intracellular transport and endosomal
escape of dsRNA resulting in increased RNAi efficiency.
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next 25 years will likely find solutions to these problems and promote

widespread use of this technology in insect control and other fields.
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