AUTHOR=Takeuchi Yu , Tripodi Amber , Montgomery Kellyn TITLE=SAFARIS: a spatial analytic framework for pest forecast systems JOURNAL=Frontiers in Insect Science VOLUME=3 YEAR=2023 URL=https://www.frontiersin.org/journals/insect-science/articles/10.3389/finsc.2023.1198355 DOI=10.3389/finsc.2023.1198355 ISSN=2673-8600 ABSTRACT=

Non-native pests and diseases pose a risk of economic and environmental damage to managed and natural U.S. forests and agriculture. The U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) Plant Protection and Quarantine (PPQ) protects the health of U.S. agriculture and natural resources against invasive pests and diseases through efforts to prevent the entry, establishment, and spread of non-native pests and diseases. Because each pest or disease has its own idiosyncratic characteristics, analyzing risk is highly complex. To help PPQ better respond to pest and disease threats, we developed the Spatial Analytic Framework for Advanced Risk Information Systems (SAFARIS), an integrated system designed to provide a seamless environment for producing predictive models. SAFARIS integrates pest biology information, climate and non-climate data drivers, and predictive models to provide users with readily accessible and easily customizable tools to analyze pest and disease risks. The phenology prediction models, spread forecasting models, and other climate-based analytical tools in SAFARIS help users understand which areas are suitable for establishment, when surveys would be most fruitful, and aid in other analyses that inform decision-making, operational efforts, and rapid response. Here we introduce the components of SAFARIS and provide two use cases demonstrating how pest-specific models developed with SAFARIS tools support PPQ in its mission. Although SAFARIS is designed to address the needs of PPQ, the flexible, web-based framework is publicly available, allowing any user to leverage the available data and tools to model pest and disease risks.