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Unveiling the proximate mechanism of caste differentiation is crucial for

understanding insect social evolution, and gene function analysis is an

important tool in this endeavor. The RNA interference (RNAi) technique is

useful in termites, but its knockdown effects may differ among species. One of

the most important model species in the field of termite sociogenomics is

Reticulitermes speratus Kolbe (Isoptera: Rhinotermitidae). Presoldier and

worker differentiation of this species can be artificially induced by juvenile

hormone and 20-hydroxyecdysone application, respectively. However,

appropriate RNAi technique of genes expressed during caste differentiation has

never been considered. To clarify this issue, first, we injected nine different

volumes of nuclease-free water (NFW, 0–404.8 nL) into workers and found that

survival and caste differentiation rates were strongly reduced by the application

of the top three largest volumes. Second, we injected double-stranded (ds) RNA

of ecdysone receptor homolog (RsEcR) (2.0 µg/151.8 nL NFW) into workers with

hormone treatments. The expression levels of RsEcR were significantly reduced

at 9 days after dsRNA injection. RsEcR RNAi strongly affected bothmolting events

during presoldier and worker differentiation induced by hormone treatments.

The present results highlight the need for caution regarding injection volumes for

RNAi experiments using hormone treatments. We suggest that the injection of

dsRNA solution (2 µg; approximately 100–200 nL) is suitable for RNAi

experiments during caste differentiation induced by hormone application in

R. speratus.

KEYWORDS

caste differentiation, RNAi, juvenile hormone, 20-hydroxyecdysone, ecdysone
receptor gene
Abbreviations: JH, juvenile hormone; 20E, 20-hydroxyecdysone; NFW, nuclease-free water; EcR, ecdysone

receptor; RNAi, RNA interference; dsRNA, double-stranded RNA.
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1 Introduction

The complex society of eusocial insects, such as bees, ants, and

termites, is maintained by the division of labor among castes (1).

Because the acquisition of castes may be an important event for

social evolution in these insects, molecular developmental analyses

have been performed to reveal the genetic determinants underlying

caste differentiation and/or the regulatory mechanism for caste-

specific phenotypic formation, especially in the Hymenoptera (ants,

bees, and wasps) (2–4). Molecular evidence in other social insects,

including termites, has been accumulated (5–8), and insect

sociogenomics is receiving increased attention in related fields of

research (9).

Termites are hemimetabolous eusocial insects that

are phylogenetically distantly related to holometabolous

hymenopteran taxa. Because termite caste differentiation is a

molting process with some specific morphological changes, to

reveal the regulatory mechanism of caste differentiation, we

should focus on the developmental processes during a molt (10,

11). Gene function analysis using RNA interference (RNAi) have

been shown to be useful in termites, and the RNAi technique has

been applied in some species (reviewed by 12). However, RNAi-

based knockdown analyses during caste differentiation have been

conducted mostly for soldier differentiation (13–18) because soldier

differentiation can be easily induced by juvenile hormone (JH)

treatment. To understand the commonality and diversity of caste

differentiation mechanisms in termites, however, we should prepare

an appropriate technique for gene function analysis during other

molts induced by hormone treatment. Moreover, to reveal the

specific phenomenon during differentiation of each caste (e.g.,

unique hormonal regulation; 11), it is necessary to compare the

functions of genes among each molt.

Reticulitermes speratus Kolbe (Isoptera: Rhinotermitidae) is an

important species for understanding the regulatory mechanism of

caste differentiation because the differentiation of all castes,

including soldiers, workers, and reproductives, can be induced

artificially only in this species. Namely, presoldier (intermediate

stage of soldier) differentiation can be induced by JH application to

workers (19). Meanwhile, worker molt can be induced by 20-

hydroxyecdysone (20E) application to workers (20). Replacement

reproductives (neotenics) can be induced by the isolation of

nymphs from natal nests (21). Moreover, in this species, genome

sequencing was completed, and the comprehensive transcriptome

analysis among all castes and during all caste differentiations were

performed (8, 22). Thus, the appropriate method of gene functional

analysis should be established in R. speratus. However, RNAi-based

functional analysis with hormone treatment has not been

performed in R. speratus, although the presoldier differentiation

and worker molts can be induced from the same developmental

stage (old-age workers). Generally, in insects, RNAi efficiencies are

suggested to be different among species, even in the same order (23).

Consequently, based on the previous analyses performed in

termites, an effective RNAi method during caste differentiation

with hormone treatment should be verified in R. speratus. RNAi

analysis with no hormone treatment [using 2 mg of double-stranded
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RNA (about 260 bp) of the JH receptor gene (Methoprene-tolerant)]

was previously succeeded in this species (24), and thus we especially

focused on the effects of the volumes of injection.

In this study, we intended to confirm the RNAi effects on caste

differentiation induced by two hormones. Both JH and 20E

hormones are crucial intrinsic factors for termite caste

differentiation, always accompanied by the molting event. We

therefore focused on the ecdysone receptor (EcR) gene, which is

important for the molting event, including termite caste

differentiation (25). Knockdown of this gene caused molting

failure during soldier differentiation in Zootermopsis nevadensis

(18). The effects of RNAi were confirmed based on the

quantification of gene expression levels and phenotypic

observations during caste differentiation. Based on these results,

we propose a method for gene function analysis during caste

differentiation via the treatment of R. speratus with both hormones.
2 Materials and methods

2.1 Termites

Mature R. speratus colonies were collected in Toyama

Prefecture, Japan, in November 2018 and 2019. Pieces of logs

housing the termites were brought to the laboratory and kept in

plastic cases in constant darkness. Three colonies collected in 2018

(colonies A–C) were used to validate the injection volume. A colony

collected in 2019 (colony D) was used for the RNAi analysis.
2.2 cDNA preparation

Total RNA for double-stranded RNA (dsRNA) synthesis was

extracted from whole bodies of the 5th-6th stage workers (old-age

workers) (five individuals in each sample) using ISOGEN II

(Nippon Gene, Tokyo, Japan). Old-age workers were

discriminated from other developmental stages based on the body

size and antennal segments (26, 27). The extracted total RNA was

purified using DNase treatment to remove genomic DNA. RNA

purity and quantity were measured using a NanoVue

spectrophotometer (GE Healthcare BioSciences, Tokyo, Japan).

cDNA was synthesized from the purified RNA using a High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

Foster, CA, USA).
2.3 dsRNA synthesis

The ecdysone receptor homolog of R. speratus (RsEcR) was

obtained from genome sequence data [RsEcR (gene ID: RS006194;

8)]. Using gene-specific primers (Supplementary Table 1;

Supplementary Figure 1), the dsRNA of RsEcR was amplified.

RsEcR-specific primers were adapted to the T7 promoter

sequences. Gene-specific primers were designed using the

Primer3 Plus software (28). To obtain template dsRNA, amplified
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RsEcR dsRNA was purified using a QIAquick gel extraction kit

(Qiagen, Tokyo, Japan). In accordance with previous studies (14,

16, 24, 29), the GFP sequence for the control experiment was

amplified using the GFP vector pQBI-poll I (Wako, Osaka,

Japan). GFP-specific primers with T7 promoter sequences were

newly designed using the Primer3 Plus (Supplementary Table 1;

Supplementary Figure 2), because we intended to synthesize a

shorter dsRNA (about 300 bp) (see Results). RsEcR and GFP

dsRNA were synthesized using the MEGA script T7

Transcription Kit (Invitrogen, Carlsbad, CA, USA).
2.4 Validation of injection volume for RNAi

Nuclease-free water (NFW: solvent of dsRNA; 50.6, 101.2,

151.8, 202.4, 253.0, 303.6 354.2, and 404.8 nL, respectively) was

injected into the lateral thorax of old-age workers of R. speratus (n =

60 per treatment) using a Nanoliter 2000 microinjector (World

Precision Instruments, Sarasota, FL, USA) attached to a glass

capillary. These individuals were kept in 65 mm petri dishes with

55 mm filter paper treated with 80 mg juvenile hormone III (JH III;

Santa Cruz Biotechnology, Dallas, TX, USA) or 40 µg 20-

hydroxyecdysone (20E; Sigma Aldrich, St. Louis, MO, USA)

dissolved in 200 mL of acetone (20 individuals in each dish), in

accordance with previous studies (19, 20, 30). All dishes were

maintained in constant darkness at 25°C for 2 weeks and checked

every 24 h to monitor the individuals. We calculated the rates of

presoldier molt, worker molt and mortality. The rates of presoldier

and worker molting individuals were percentages of those in

survived individuals. The mortality were percentages of those in

all the treated individuals. Statistical analysis was performed using

two-way ANOVA followed by Tukey’s test with Mac statistical

analysis ver. 3.0 (Esumi, Tokyo, Japan). Prior to the use of the

ANOVA, we performed the Levene’s test on the variance equality

using Mac statistical analysis ver. 3.0 (Esumi).
2.5 RNAi analysis and hormone treatment

RNAi was performed according to methods described in the

previous study (24). RsEcR and GFP dsRNA (2 mg/151.8 nL) were

injected into the side of the thorax of old-age workers of R. speratus

(n = 50 per treatment) following the method described above.

RNAi-treated individuals were kept in 65-mm petri dishes with 55-

mm filter paper treated with 80 mg JH III (Santa Cruz

Biotechnology) or 20 µg 20E (Sigma Aldrich) dissolved in 200 mL
acetone (10 individuals in each dish). Before the RNAi experiment,

workers collected from colony D were treated with different 20E

concentrations (40, 20, 10, and 5 µg), because high mortality were

observed when workers were treated with 40 µg 20E (see Results).

These petri dishes were kept in an incubator at 25°C for 2 weeks to

monitor the rates of molted presoldiers and workers. Induced and

dead individuals were immediately removed from dishes and

preserved in FAA solution (ethanol:formalin:acetic acid = 16:6:1)

for 24 h and stored in 70% ethanol.
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2.6 Real-time quantitative PCR (qPCR)

To check for the knockdown of gene expression, RNAi-treated

individuals of R. speratus (n = 6 per treatment) were collected 6 and

9 days after RNAi treatment. Total RNA was extracted from the

whole body of each individual using ISOGEN II (Nippon Gene,

Tokyo, Japan). As described above, extracted RNA was used for

cDNA synthesis, which was prepared for gene expression analysis of

RsEcR. Relative quantification of transcripts was performed using

PowerUp SYBR Green Master Mix (Applied Biosystems, Foster,

CA, USA) and the QuantStudio 3 Real-Time PCR System (Applied

Biosystems, Foster, CA, USA). Gene-specific primers for qPCR

were designed using Primer3 Plus (Supplementary Table 1).

According to the previous study (31), the suitability of six

reference genes was evaluated using GeNorm (32) and

NormFinder (33) software [EF1-alpha (accession No. AB602838;

34), NADH-dh (No. AB602837; 34), beta-actin (No. AB520714; 35),

glutathione S-transferase 1 (GstD1, gene ID: RS001168; 8),

ribosomal protein S18 (RPS18, ID: RS015150; 8), and eukaryotic

initiation factor 1A (eIF-1A, ID: RS005199; 8)]. These were used as

candidate reference genes in the respective termite species (24) and

other insects, including Drosophila melanogaster and Apis mellifera

(36, 37). Expression levels were calculated using biological

replications (number of replications: n = 6). Statistical analysis

was performed using the Mann-Whitney U test with Mac statistical

analysis ver. 3.0 (Esumi).
2.7 Morphological observations

To evaluate the effects of RsEcR RNAi, we calculated the rates of

individuals with gut purging (elimination of gut contents before the

molt), presoldier induction and worker molting. The rates of gut-

purged individuals were percentages of those in all the treated

individuals. The rates of presoldier induction and worker molting

individuals were percentages of those in gut-purged individuals.

Statistical analysis was performed using Fisher’s test with Mac

statistical analysis ver. 3.0 (Esumi).
3 Results and discussion

3.1 Effects of NFW injection on caste
differentiation induced by hormone
treatment

To determine the optimal injection volume, we injected various

volumes of NFW into the hormone-treated individuals. Presoldiers

were strongly induced from workers (non-injection) by JH III

treatment [73.3% ± 10.4% (colony A, mean ± SD) and 80.0 ± 0%

(colony B)], and no presoldiers were observed in the control

(acetone) treatment of both colonies (0%) (Figure 1A;

Supplementary Table 2). The rates of presoldier molt in NFW-

injected individuals varied among treatments with different

injection volumes [two-way ANOVA, colony: p = 0.96, injection
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volume: p = 1.31E-17, interaction (colony vs injection volume):

p = 0.86] (Figure 1A; Supplementary Table 2). In the treatments

with 50.6–253.0 nL NFW injection, rates of presoldier molt were

essentially similar to those of non-injection in both colonies (about

60–80%). However, presoldier molting rates were drastically

dropped in the treatments with 303.6–404.8 nL injection (below

30%). Mortality were significantly different among treatments with

NFW injection volumes after feeding JH III [two-way ANOVA,
Frontiers in Insect Science 04
colony: p = 0.8, injection volume: p = 2.43E-7, interaction (colony vs

injection volume): p = 0.44] (Figure 1B; Supplementary Table 2).

High mortality was observed in treatments with large

injection volumes.

Worker molt was strongly induced in workers (non-injection)

by 20E treatment [83.3 ± 10.4% (colony A) and 75.0 ± 13.2%

(colony C)], but almost never occurred in the control treatment

[5.0% ± 5.0 (colony A) and 3.3 ± 2.9% (colony C)] (Figure 2A;

Supplementary Table 3). The rates of worker molt were also affected

by the different NFW injection volumes [two-way ANOVA, colony:

p = 7.87E-5, injection volume: p = 3.37E-19, interaction (colony vs

injection volume): p = 4.2E-3]. In the treatments with 50.6–253.0 nL

injection, rates of worker molt were similar to those of non-

injection in both colonies (about 60–80%). However, molting

rates were significantly lower than those of non-injected

individuals in the treatments with 303.6–404.8 nL injection in

both colonies (below 40%). Mortality was significantly different

among treatments with NFW injection volumes after feeding 20E

[colony: p = 2.64E-3, injection volume: p = 1.58E-11, interaction

(colony vs injection volume): p = 0.43] (Figure 2B; Supplementary

Table 3). High mortality were observed in the treatments with large

injection volumes, similar to JH III application.

Termite soldier differentiation requires high JH titers in the

worker body (38, 39). Moreover, in insects, 20E titer levels generally

increase before the larval molt (40). There is a possibility that the

reduction in the molting rates is due to the dilution of hormone titer

levels with the injected NFW (303.6–404.8 nL). Alternatively, the

high mortality observed with large volumes of NFW injections may

be due to some mechanical effects using pure water. To clarify this

possibility, further injection analysis using a physiological saline

solution should be performed. In the damp-wood termite

Hodotermopsis sjostedti, RNAi-based knockdown was effectively
A

B

FIGURE 2

The rates of worker molt (A) and mortality (B) within 2 weeks after NFW (nuclease-free water) injection. The rates are calculated in each petri dish
including 60 individuals (n = 3 dishes in each colony, Supplementary Table 3). NFW-injected workers were treated by 20-hydroxyecdysone (20E)
application (40 µg per dish). Boxes and whiskers indicate the median, quartiles, and range. Statistical results of two-way ANOVA are shown in each
graph. Different letters above the boxes indicate a significant difference (two-way ANOVA followed by Tukey’s test, p < 0.05). Both data are
consistent with the use of parametric statistics by the Levene’s test [p = 0.8534 (A) and 0.9539 (B)].
A

B

FIGURE 1

The rates of presoldier molt (A) and mortality (B) within 2 weeks
after NFW (nuclease-free water) injection. The rates are calculated in
each petri dish including 60 individuals (n = 3 dishes in each colony,
Supplementary Table 2). NFW-injected workers were treated by
juvenile hormone (JH) III application (80 µg per dish). Boxes and
whiskers indicate the median, quartiles, and range. Statistical results
of two-way ANOVA are shown in each graph (two-way ANOVA, p <
0.05). Both data are consistent with the use of parametric statistics
by the Levene’s test [p = 0.8939 (A) and 0.8742 (B)].
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induced by the injection of 1 µL dsRNA solution to the 7th instar

treated with JH analog (15). We suggest that the proper (non-lethal)

volumes of injection should be determined, especially considering

the body size of the target individuals, because H. sjostedti 7th

instars are much larger than the R. speratus workers used in this

study. For RNAi-based knockdown with hormone treatment in R.

speratus, injection volumes should be below 253 nL.
3.2 Effects of EcR RNAi on caste
differentiation induced by hormone
treatment

A previous study showed that RNAi-based knockdown was

effectively caused by injection of 2 µg dsRNA (about 260 bp) in R.

speratus nymphs without hormone treatment (24). In Drosophila

S2 cells, the length of dsRNA for effective RNAi was shown to be

>211 bp (41). In this study, we prepared 2 µg dsRNA (about 300

bp) dissolved in 151.8 nL. According to the results described

above, injection volumes should be reduced as small as possible

(50.6 nL in this study). However, when we used injection volumes

of 50.6 nL, a glass capillary was immediately clogged probably due

to high viscosity. We then selected injection volumes of 151.8 nL,

and injected GFP or RsEcR dsRNA solution (2.0 µg/151.8 nL) into

R. speratus workers. EF1-alpha was selected as the most

appropriate reference gene for real-time qPCR analyses

(Supplementary Table 4). Gene expression levels of RsEcR were

not affected by RsEcR RNAi 6 days after injection (day 6,

Figure 3A; Supplementary Table 5). However, the expression

levels of RsEcR were significantly decreased by RsEcR RNAi on

day 9 (more than 50%) compared to the GFP control (Figure 3B;

Supplementary Table 5). We did not observe any gross

morphological and phenotypic changes in the RNAi-treated

individuals without hormone treatments.

In RsEcR RNAi with JH treatment, the rates of gut-purged

individuals (26%) were significantly lower than those in the GFP

control (64%) (Fisher’s test, p < 0.05; Figure 4A; Supplementary

Table 6). Furthermore, presoldiers emerged from most gut-purged

individuals in the GFP control (87.5%; Figures 4B, C), but never
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from those in RsEcR RNAi treatment (0%; Figure 4B;

Supplementary Table 6). All gut-purged individuals in the latter

failed to molt (Figure 4D), as shown in Z. nevadensis (18).

Before the experiment with RsEcR RNAi with 20E treatment,

mortality of workers with 40, 20, 10, and 5 µg 20E were compared,

because high mortality was observed in workers (colony D) treated

with 40 µg 20E dissolved in 200 µL acetone. Although there were no

statistical differences among treatments, the 20 µg 20E treatment

tended to be higher rates of worker molt and lower levels of

mortality (Supplementary Figure 3; Supplementary Table 7).

Consequently, we decided to perform RNAi using 20 µg of 20E

treatment. The rate of gut-purged individuals (60%) was

significantly lower than that in the GFP control (76%) (Fisher’s

test, p < 0.05; Figure 5A; Supplementary Table 8). RsEcR RNAi

decreased the rates of worker molt (33.3%) compared to the control

(55.3%) (Figure 5B; Supplementary Table 8), and most RNAi-

treated individuals failed to molt (Figures 5C, D). These results

indicate that the RsEcR RNAi assay performed here (injection of 2

µg dsRNA dissolved in 151.8 nL NFW) was successful in R. speratus

workers with hormone treatments. Although the proper amount of

dsRNA should be recognized for each gene, we suggest that the

concentration obtained here can be used as the starting point for

RNAi method during caste differentiation using hormone treatment

in this species. According to the present study and previous works

(15–18, 24), proper amount of dsRNA may be around 0.5–2 µg for

the RNAi experiments in termites.

The relatively weaker effects of RsEcR RNAi treated with 20E

(Figure 5), compared to those with JH III (Figure 4), may be due to

the timing of knockdown effects caused by RNAi. Knockdown

effects of RNAi could not be observed 6 days, but observed 9 days

after dsRNA injection (Figure 3). Since the JH application induces

the molting event to presoldiers, 20E-EcR action may be promoted

after the increase of JH titer in workers treated with JH III. In

contrast, 20E-EcR action may be immediately promoted by the 20E

treatment in workers. Indeed, the initiation of molting event is

occurred early in the 20E treatment, compared to the JH treatment

(approximately 10-11 or 13-14 days after the treatment,

respectively; 20). To clarify the possibility of the different timings

of physiological action after each treatment, further expression
A B

FIGURE 3

Expression levels of RsEcR (n = 6) 6 days (A) and 9 days (B) after RNAi treatment. Total RNA was extracted from the whole body of each individual,
and six different individuals were used for each treatment. Boxes and whiskers indicate the median, quartiles, and range. An asterisk over the boxes
indicates a significant difference (Mann-Whitney U test, p < 0.05). The term n.s. means not significant by statistical test.
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D

A B

C

FIGURE 5

Phenotypic effects of RsEcR RNAi in workers treated by 20E application (20 mg per dish). Only one colony collected in 2019 (colony D) was used for
the RNAi analysis. The rates of gut-purged (A) and molted individuals (B) within 2 weeks after RNAi treatment. The rates are calculated by the
numbers of gut-purged individuals per 50 individuals examined (A), and by the numbers of molted individuals per gut-purged individuals (B). The
numbers of individuals examined are indicated in each bar (Supplementary Table 8). An asterisk over the bars indicates a significant difference
(Fisher’s test, p < 0.05). The typical phenotype of the GFP RNAi-treated individual after the molt (C, normal old-age worker), and the RsEcR RNAi-
treated dead individual before the molt (D, dead old-age worker). Scale bar indicates 1 mm.
D

A B

C

FIGURE 4

Phenotypic effects of RsEcR RNAi in workers treated by JH III application (80 mg per dish). Only one colony collected in 2019 (colony D) was used
for the RNAi analysis. The rates of gut-purged (A) and molted individuals (B) within 2 weeks after RNAi treatment. The rates are calculated by the
numbers of gut-purged individuals per 50 individuals examined (A), and by the numbers of molted individuals per gut-purged individuals (B). The
numbers of individuals examined are indicated in each bar (Supplementary Table 6). An asterisk over the bars indicates a significant difference
(Fisher’s test, p < 0.05). The typical phenotypes of the GFP RNAi-treated individual after the molt (C, normal presoldier) and the RsEcR RNAi-treated
dead individual before the molt (D, dead old-age worker). Scale bar indicates 1 mm.
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analysis of hormone-related genes should be performed during

caste differentiation.
4 Conclusions

We considered appropriate RNAi method during caste

differentiation using hormone treatment in R. speratus. We

suggest that it is necessary to regard not only dsRNA mass but

also injection volumes using RNAi methods with hormone

treatments. Using the method shown here, gene function analysis

during caste differentiation can be performed effectively in

R. speratus.
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