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CO1 barcodes resolve an
asymmetric biphyletic clade for
Diabrotica undecimpunctata
subspecies and provide
nucleotide variants for
differentiation from related
lineages using real-time PCR

Luke R. Tembrock1*, Christina R. Wilson1, Frida A. Zink1,
Alicia E. Timm1, Todd M. Gilligan2, Alexander S. Konstantinov3

and Alexey K. Tishechkin4

1Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States,
2Pest Identification Technology Laboratory, USDA-APHIS-PPQ-Science and Technology, Fort Collins,
CO, United States, 3Systematic Entomology Laboratory, USDA-ARS, Washington, DC, United States,
4Plant Pest Diagnostics Branch, California Department of Food and Agriculture, Sacramento,
CA, United States
Diabrotica undecimpunctata is a multivoltine polyphagous beetle species that

has long been documented as a significant agricultural pest throughout its native

range in North America. This beetle can vector bacterial and viral plant pathogens

that result in major losses to crops such as cucumber and soybean. Many

countries outside the Americas treat D. undecimpunctata as a species of

quarantine importance, while in the USA only the subspecies D. u.

duodecimnotata is subject to quarantine, to prevent introduction from Mexico.

Identification of D. undecimpunctata on the basis of morphology alone can be

complicated given the use of conflicting characters in the description of some

subspecific taxa. To better understand relationships among D. undecimpunctata

subspecies and other related species, we sequenced mitochondrial cytochrome

oxidase 1 (CO1) and nuclear internal transcribed spacer 2 (ITS2) DNA from

individuals in different subspecific taxa and across different parts of the species

range using museum samples and interceptions. When our data were combined

with publicly available Diabrotica data, no pattern of divergence consistent with

the currently recognized subspecific designations was found. In addition, we

compared phylogenetic patterns in CO1 data from the congener D. virgifera to

demonstrate the utility of mitochondrial data in resolving subspecies. From the

CO1 data, a diagnostic real-time PCR assay was developed that could

successfully identify all haplotypes within the large D. undecimpunctata clade

for use in surveys and identification at ports of entry. These findings underscore
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the need to resolve molecular and morphological datasets into cogent, lineage-

based groupings. Such efforts will provide an evolutionary context for the study

of agriculturally important attributes of Diabrotica such as host preferences,

xenobiotic metabolism, and natural and anthropogenic patterns of dispersal.
KEYWORDS

spotted cucumber beetle, maternal inheritance, species concept, plant pathogen
vector, ITS2, Diabrotica virgifera, monophyly
1 Introduction

The leaf beetle species Diabrotica undecimpunctata

Mannerheim (Coleoptera, Chrysomelidae) has been documented

as a serious pest of agricultural importance in North America for

well over 100 years (1–3). Adult D. undecimpunctata feed on more

than 50 plant species, including food, feed, and fiber crops such as

alfalfa, apple, beans, beets, cotton, cucurbits, hemp, maize, peach,

peas, potato, sunflower, and tomato, as well as causing damage to

ornamentals such as canna, carnation, dahlia, peony, rose, and

wisteria (4–7). The larvae are root feeders and are often found on

maize roots but have also been frequently noted on other species,

including several grass species, alfalfa, and peas (5, 7, 8). While the

economic impact of D. undecimpunctata is less than the

US$1 billion annual estimate associated with D. virgifera (9), D.

undecimpunctata does account for serious economic losses during

large infestations (6, 10, 11). One of the most problematic aspects of

D. undecimpunctata feeding is the transmission of the virulent

bacterial pathogen Erwinia tracheiphila (12, 13), which can cause

rapid crop failure among cucurbitaceous species (14). In addition to

transmission of E. tracheiphila, D. undecimpunctata is a competent

vector of the bean pod mottle virus, which can cause losses in

soybean (15). On account of these concerns and the potential for

establishment outside the historic species range (16), D.

undecimpunctata was recently categorized as an A1 quarantine

pest under Annex IIA by the Panel on Plant Health of the European

Food Safety Authority (17).

Given the importance of D. undecimpunctata to agriculture, it has

been the subject of several taxonomic revisions [summarized in (18)].

The currently accepted taxonomic arrangement ofD. undecimpunctata

subdivides the species into four subspecies based primarily on

morphological differences (19): D. u. undecimpunctata Mannerheim

1843, D. u. duodecimnotata Harold 1875, D. u. howardi Barber 1947,

and D. u. tenella LeConte 1858. Difficulty in differentiating between D.

undecimpunctata subspecies, such asD. u. howardi andD. u. tenella, on

the basis of morphology has been previously noted [e.g. (20)]. Some

molecular phylogenetic work has been conducted in Diabrotica and

related lineages, but much of this has been at the genus level and above,

with very little at the subspecies level (21–23). Generating DNA

sequence data sampled at the subspecific level for D.

undecimpunctata will provide a genetic genealogical history that
02
pertains to subspecific designations for this group and will ultimately

improve taxonomic, agronomic, and phylogeographic studies.

Historically, Diabrotica has been split into the three species

groups fucata, signifera, and virgifera (24). While less well studied

than the spread of species in the virgifera species group, it is thought

that the expansion and establishment of D. undecimpunctata in

North American agroecosystems has also been the result of human

activities, such as the large-scale cultivation of maize, cucurbits, and

other host plants, as well as trade in agricultural commodities (25–

27). To this point, D. u. duodecimnotata is frequently intercepted on

agricultural commodities imported from Mexico into the USA

during border inspections. The subspecies D. u. duodecimnotata

is considered a quarantine pest by the United States Department of

Agriculture (USDA) based on its potential to cause damage to

agricultural crops. Diabrotica beetles have also been a concern

outside the Americas since the introduction of D. virgifera

virgifera to Europe in 1992, with its subsequent impact on

agricultural production (28, 29). Given the limited molecular data

sampled at the subspecific level for D. undecimpunctata and the

concerns regarding introduction and establishment outside its

native range, we generated mitochondrial cytochrome oxidase 1

(CO1) and nuclear 45S internal transcribed spacer 2 (ITS2)

sequence data from intercepted and museum specimens to

address the following questions: (1) can current or novel

subspecies of D. undecimpunctata be recognized via CO1 and/or

ITS2 sequence data? and (2) do CO1 data provide fixed nucleotide

variants for the development of a reliable real-time PCR assay to

separate all subspecies of D. undecimpunctata from closely

related species?
2 Materials and methods

2.1 Sample acquisition

From 2018 to 2019, 254 Diabrotica beetles were identified at

ports of entry coming from Mexico into the USA. Of these, 115

samples were preserved in absolute ethanol for later study. In

addition to these beetles acquired from interceptions, loans of

Diabrotica beetles were made from the Smithsonian National

Museum of Natural History, the American Museum of Natural
frontiersin.org
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History, the California Department of Food and Agriculture, and

the University of California at Berkeley and Davis. The 18 most

recently collected museum specimens, mainly from the

Smithsonian, were sampled for non-destructive DNA extraction
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and sequencing. Specimens used are summarized in Table 1 and

sample details for sequences generated in this study can be found

using GenBank accessions OQ649623–OQ649739 for CO1 and

OQ641612–OQ641622 for ITS2.
TABLE 1 Samples used to resolve maternal relationships among Diabrotica species and for development and/or testing of a real-time PCR assay.

Species Origin Sample type Quantity

Diabrotica adelpha N/A NCBI 2

Diabrotica amecameca N/A NCBI 3

Diabrotica balteata N/A NCBI 3

Diabrotica balteata USA/Mexico border Intercept Sanger 2*

Diabrotica balteata Mexico Museum Sanger 1

Diabrotica barberi N/A BOLD 1

Diabrotica barberi N/A NCBI 25

Diabrotica biannularis N/A NCBI 1

Diabrotica cristata N/A BOLD 12

Diabrotica cristata N/A NCBI 2

Diabrotica decempunctata N/A NCBI 1

Diabrotica dissimilis N/A NCBI 1

Diabrotica limitata N/A NCBI 2

Diabrotica longicornis N/A NCBI 1

Diabrotica nummularis N/A NCBI 1

Diabrotica porracea N/A NCBI 3

Diabrotica scutellata N/A NCBI 1

Diabrotica sexmaculata N/A NCBI 1

Diabrotica speciosa N/A NCBI 5

Diabrotica tibialis N/A NCBI 2

Diabrotica undecimpunctata duodecimnotata USA/Mexico border Intercept Sanger 90*

Diabrotica undecimpunctata duodecimnotata Mexico Museum Sanger 1

Diabrotica undecimpunctata howardi N/A NCBI 2

Diabrotica undecimpunctata howardi Mexico, USA (KY, MN, MO, OH, SC) Museum Sanger 6

Diabrotica undecimpunctata tenella USA (AZ, NV, TX, UT) Museum Sanger 4

Diabrotica undecimpunctata undecimpunctata USA (AZ, CA, NM, OR) Museum Sanger 5*

Diabrotica undecimpunctata undecimpunctata N/A NCBI 1

Diabrotica undecimpunctata ssp. Mexico Museum Sanger 1

Diabrotica undecimpunctata ssp. USA/Mexico border Intercept Sanger 7

Diabrotica undecimpunctata ssp. USA (AR, AZ, FL) BOLD 8

Diabrotica undecimpunctata ssp. N/A NCBI 9

Diabrotica virgifera N/A BOLD 1

Diabrotica virgifera N/A NCBI 14

Diabrotica viridula N/A NCBI 4

(Continued)
fro
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2.2 DNA extraction

DNA was extracted from individual adult specimens of

Diabrotica preserved in ethanol or from pinned museum

specimens using a Lucigen MasterPure DNA extraction kit

(Lucigen Corp., Middleton, WI, USA). Isolation of DNA from

intercepted specimens preserved in ethanol was preceded by

drying the specimens in 1.5mL microcentrifuge tubes on a digital

dry bath set to 55°C for 20 to 30 minutes. Museum specimens were

removed from their pins. All individual, whole dried specimens

were placed in 1.5mL microcentrifuge tubes, immersed in 300 mL of

Tissue and Cell Lysis Solution and 1 mL of Proteinase K, and heated

to 65°C overnight on an Eppendorf ThermoMixer FP (Eppendorf

SE, Hamburg, Germany) at 500 rpm. After overnight incubation,

specimens were removed from the lysis buffer, rinsed with absolute

ethanol, and returned to pins (museum specimens) or ethanol

(intercepted specimens). The remaining extraction was carried

out following the manufacturer’s instructions with modifications

as described by Zink et al. (30). After elution, DNA concentration

and purity were measured for a 2mL sample using a NanoDrop 2000

v 1.6 spectrophotometer (Thermo Scientific, Wilmington, DE,

USA). Two readings were taken to ensure machine consistency.

Throughout these and the following steps, all equipment and

materials were sanitized between steps and filter tips were used to

handle any liquids containing DNA to prevent contamination.

Negative controls were employed during all DNA extraction and

PCR steps to test for contamination.
1 https://www.geneious.com.
2.3 CO1 and ITS2 PCR amplification and
sequencing

All PCRs were performed on a Bio-Rad C1000 Touch thermal

cycler (Bio-Rad Laboratories, Inc., Hercules, CA, USA). In order to

generate sequences that could be aligned to previous Diabrotica

CO1 datasets (22, 31) we employed the universal primers S1718

(32) and Nancy (33; Table 2). An optimized PCR protocol was used

due to the degraded nature of many of the samples. The 50 mL
reactions contained 32.75 mL molecular grade H2O, 5.00 mL 10× Ex

Taq buffer, 4.00 mL deoxynucleoside triphosphate (dNTP) mixture

at 2.5 mM, 200 nM S1718 forward primer, 200 nM Nancy reverse

primer, 1.25 mM MgCl2, 0.05 mg bovine serum albumin, 1 unit of

TaKaRa Ex Taq HS polymerase (Takara Bio Inc., Shiga, Japan), and

1 mL of DNA template of varying concentration or autoclaved

ddH2O for no-tissue controls. The thermocycler protocol included

an initial denaturation step of 94°C for 3 min, followed by 40 cycles
Frontiers in Insect Science 04
of 94°C for 20 s, 52°C for 20 s, 72°C for 30 s, and a final extension at

72°C for 5 min. A lid temperature of 105°C was maintained

throughout all cycles. A subset of samples amplified for CO1

showing haplotypic diversity were also amplified for ITS2 so that

mitochondrial relationships could be compared against nuclear

data. The general primers (located in 5.8S and 28S) and

thermocycler protocol described in Navajas et al. (34) were used

to generate complete ITS2-spanning amplicons for comparison

with previously generated data (21); the reaction mixture

employed was otherwise identical to that employed for the CO1

PCRs described above. Success of PCRs was confirmed on 1%

agarose gels containing ethidium bromide and imaged with a UV

light source (Analytik Jena, LLC, Jena, Germany). Reactions with

visible bands were purified using a Qiagen QIAquick PCR

purification kit following the manufacturer’s instructions (Qiagen

Inc., Hilden, Germany). After purification, CO1 PCR products were

sequenced at the University of Chicago Comprehensive Cancer

Center DNA Sequencing Facility on an Applied Biosystems 3730XL

DNA sequencer (Applied Biosystems, Foster City, CA, USA) using

the same primers as for amplification. The ITS2 amplicons were

sequenced with a 3730XL by Genewiz (Azenta Life Sciences Inc.,

Chelmsford, MA, USA). Sequences were manually trimmed to

remove poor-quality base calls from the 5′ and 3′ ends (including
primer sequences), assembled into contigs, and converted into

consensus sequences in Geneious Prime 2021.0.31 for use in

subsequent analyses.
2.4 Phylogenetic and network analyses of
DNA sequence data

The 117 consensus CO1 sequences generated in this study were

combined with 85 Diabrotica sequences from GenBank and 22

from the Barcode of Life Data System (35). The combined dataset

was aligned using MAFFT v 7.450 (36, 37) with default settings.

Once aligned, the matrix was trimmed to exclude non-overlapping

sequences to a size of 227 samples by 420 nucleotides and realigned

using the same method as above. With the symmetrical matrix, a

neighbor joining (NJ) distance tree was resolved using the Tamura-

Nei distance model (38) with another chrysomelid in the same

subtribe Trichobrotica nymphaea (AY242440) set as the outgroup

and 1,000 jackknife replicates to assess branch support. Using

MrBayes 3.2.6 (39), Bayesian inference (BI) was run with a
TABLE 1 Continued

Species Origin Sample type Quantity

Diabrotica wartensis N/A NCBI 3

Lyctus africanus USA (NY intercepted) Intercept Sanger 1

Trichobrotica nymphaea N/A NCBI 1
fro
Sanger sequencing was used to generate CO1 and ITS2 sequences from intercepts and museum samples. *Sample sets from which ITS2 sequences were generated. N/A, not applicable.
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general time reversible + invariable sites + gamma rate variation

among sites (GTR+I+G) substitution and rate variation model, four

gamma categories, four heated chains, a chain length of 1,100,000, a

subsampling frequency of 200, a burn-in of 100,000, and an

unconstrained branch length prior. A second MrBayes run was

conducted with the JC69 nucleotide substitution model (all other

settings the same as above) to assess for any differences in tree

topology and branch support when using a less complex

substitution model. A subset of 10 D. undecimpunctata samples

were selected for amplification of ITS2 based on CO1 haplotype

diversity. The same steps as for analysis of CO1 sequences were

followed for ITS2 but with a trimmed matrix of 26 samples by 530

loci (including gaps) and the use of Acalymma vittatum (AF278557)

as an outgroup. A dataset downloaded from GenBank (318 samples

by 617 nucleotides) of CO1 sequences from the two subspecies of D.

virgifera was analyzed (along with three outgroup taxa) using the

above techniques and was employed as a basis for comparison with

D. undecimpunctata given the phylogenetic and taxonomic

similarities between these lineages. In order to visually resolve

informative single nucleotide variants (SNVs) between CO1

haplotypes most closely related to D. undecimpunctata (based on

the BI tree), the original trimmed matrix was reduced to a 156

sample by 420 nucleotide matrix and analyzed with the TCS

statistical parsimony algorithm (40) as implemented in PopART

1.7 (41).
2 https://www.idtdna.com/calc/analyzer.
2.5 Diagnostic real-time PCR primer and
probe design

The 227 sample by 420 nucleotide alignment of CO1 sequences

(Supplementary Data Sheet 1) was used for primer and probe

design to target D. undecimpunctata and exclude all other

Diabrotica lineages. The alignment was manually scanned for

regions of high SNV density with respect to differences outside D.

undecimpunctata and low SNV density within D. undecimpunctata

using consensus base calls as a guide. From the regions meeting

these criteria, separate ~30-bp windows for forward primers,
Frontiers in Insect Science 05
reverse primers, and a probe were selected within 100- to 150-bp

segments of the alignment for automated primer and probe design.

Five primers and probes were designed using Primer 3 v 2.3.7 (42)

within each window with the following parameter settings for

primers: monovalent salt 50 mM (divalent 1.5 mM); primer DNA

50 nM; dNTP 0.6 mM; Tm °C [calculated using the SantaLucia

method (43)] min. 50, opt. 55.5, max. 60; GC% min. 20, opt. 50,

max. 80; primer length nt min. 14, opt. 22, max. 35; max. dimer Tm

47; max. poly-X 5; and max. 3′ stability 9. All settings were the same

for probe design except for: Tm °C min. 57, opt. 60, max. 63; GC %

min. 20, opt. 50, max. 80; and probe length nt min. 18, opt. 20, max.

36. From the five primers and probes designed from each window,

the best primers and probe were chosen based on the highest

number of nucleotide variants with respect to other closely

related species, location of the nucleotide variants (primer/probe

sequence ends preferred), highest Tm differential between primers

and probe, and lowest level of self-dimerization, hairpin formation,

self-annealing, and hetero-dimerization to the other oligos. These

structural and thermodynamic tests were conducted using the IDT

OligoAnalyzer2 and/or OligoCalc (44). BLASTn searches of the

entire nt database were also employed to ensure specificity of the

selected primer and probe sequences in combination. Control

primers and probe were also designed using the same parameters

but with an 18S rDNA dataset retrieved from a BLASTn alignment

constrained by ‘Coleoptera’. Manual optimization employed

similarity instead of difference in window selection and lower Tm

with respect to the diagnostic primers and probe as final selection

criteria. Primer and probe designs were submitted to IDT

(Integrated DNA Technologies, Coralville, IA, USA) for synthesis

and purification. Final primer and probe sequences can be found

in Table 2.
TABLE 2 Primers and probes used for this study.

Name Use Sequence TM (°C) Source

LC1 ITS2 PCR and sequencing 5′-GGGTCGATGAAGAACGCAGC 62.5* 34

HC2 ITS2 PCR and sequencing 5′-ATATGCTTAAATTCAGCGGG 54.3* 34

S1718 CO1 PCR and sequencing 5′-GGAGGATTTGGAAATTGATTAGTTCC 62.9* 32

Nancy CO1 PCR and sequencing 5′-CCCGGTAAAATTAAAATATAAACTTC 58.4* 33

Dia_und_CO1_500F Real-time PCR diagnostic 5′-ACAGTAATTAATATACGTCCAATAGGA 60.8 This study

Dia_und_CO1_600R Real-time PCR diagnostic 5′-GGTAATGATAATAGTAGTAAAACTGCT 60.8 This study

Dia_und_CO1_535P Real-time PCR diagnostic 5′-/56-FAM/TGACCGAAT/ZEN/ACCATTATTTGTATGAGCA/3IABkFQ/ 64.4 This study

Chrys_18S_1981F Real-time PCR control 5′-GGAAAGATGACCAAACTTGATC 58.4 This study

Chrys_18S_2066R Real-time PCR control 5′-CTGTAATGATCCTTCCGCAG 58.4 This study

Chrys_18S_2016P Real-time PCR control 5′-/5Cy5/AAAAGTCGT/TAO/AACAAGGTTTCCGT/3IAbRQSp/ 59.2 This study
fro
*indicates recalculated Tm from original source.
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2.6 Duplex real-time PCR optimization
and testing

The Minimum Information for Publication of Quantitative

Real-time PCR Experiments (MIQE) guidelines (45) were

followed wherever applicable. All optimization and testing

processes were carried out on a Bio-Rad CFX96 Touch Real-time

PCR Detection System (Bio-Rad Laboratories, Inc.) in 96-well, thin-

walled, white-well, hard-shell PCR plates (Bio-Rad Laboratories,

Inc.) sealed with optically clear Microseal ‘B’ seals (Bio-Rad

Laboratories Inc.). The assay was optimized for annealing

temperature and primer and probe concentration for both loci.

The reaction mix used was as follows: 10.00 mL of 2× iTaq Universal

Probe Supermix (Bio-Rad Laboratories, Inc.); control primers and

probe of 500nM Chrys_18S_1981F, 500nM Chrys_18S_2066R,

250nM Chrys_18S_2016P (labeled with 56-FAM reporter);

diagnostic primers and probe of 500nM Dia_und_500Fa, 500nM

Dia_und_600R, 13.75nM Dia_und_CO1_535P (labeled with 5Cy5

reporter); 1.00 mL DNA template of varying concentration or

ddH2O for no-tissue controls; and ddH2O to complete the

dilution of the supermix to a final volume of 20.00 mL. The
optimized thermocycler conditions were as follows: an initial

denaturation step for 5 min at 95°C, followed by 40 cycles of

95°C for 15 s and 60°C for 15 s, followed by data capture. A lid

temperature of 105°C was maintained throughout all cycles. The

assay was tested on 128 individuals for two replicates conducted by

different laboratory technicians on different days.

The sensitivity of the assay was tested with serial dilutions of D.

undecimpunctata DNA at concentrations from 100 ng/µL to 0.0001

ng/µL using both the diagnostic and control probes in duplexed

reactions. Results were averaged from four independent runs and

the Cq values were compared to DNA concentration on a

logarithmic scale to determine the slope, y-intercept, and

correlation of DNA concentration to assay sensitivity (30, 46).
3 Results

From a combination of intercepted and museum chrysomelid

specimens, we were able to generate 118 CO1 DNA barcodes for use

in analyses and testing (Table 1). During the course of creation of

sequence contigs and quality control, 10 specimens (not included in

Table 1) were found to contain Centistes sp. (Braconidae) parasitoid

wasp larvae [see (47)]. These specimens were excluded from

phylogenetic analyses but were later used in testing the real-time

PCR assay. From the CO1 alignment (Supplementary Data Sheet 1),

the BI and NJ analyses (Figure 1 and Supplementary Figures 1–3)

resolved the Diabrotica species into two clades (fucata and virgifera

species groups) and the D. undecimpunctata lineage (in the fucata

group) into a well-supported monophyletic clade (posterior

probability (PP) 1 GTR, PP 1 JC69, and NJ jackknife (JK) 99.8).

Within the D. undecimpunctata clade, an early-diverging lineage

containing two samples from western California was supported as

distinct (PP 0.99 GTR, PP 1 JC69, and NJ JK 100). Network analysis

of the subclade containing D. undecimpunctata and the most closely

related species further confirmed a nearly homogeneous
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D. undecimpunctata and a next-nearest haplogroup containing

the two western California specimens of D. undecimpunctata

separated by 20 informative nucleotide variants along the shortest

branch from the larger group (Figure 2). In comparison, for the

large D. undecimpunctata haplogroup, excluding the western

California samples, the longest path separating haplotypes was

three nucleotide variants. Across this entire haplogroup, only 14

informative nucleotide variants of either one or two steps described

all the haplotypic diversity. None of the D. undecimpunctata

subspecies designations were isolated to a single haplogroup in

the network analysis (Figure 2) or to any of the subclades in any of

the BI trees (Figure 1 and Supplementary Figures 1, 2) or NJ trees

(Supplementary Figure 3). From the CO1 data, a subset of samples

were selected to be sequenced for nuclear ITS2 to confirm (1) that

the western California lineage was an outlier to other D.

undecimpunctata samples, and (2) that the ingroup made up of

different D. undecimpunctata subspecies was homogeneous. Samples

for this test were selected from different haplotypic lineages

(including the western California lineage) to maximize the

possibility of finding ITS2 nucleotide variants. The results from

ITS2 confirmed that the western California lineage was an outlier

to all other D. undecimpunctata (Supplementary Figures 4–6)

through the retention of an ancestral thymine at position 326

shared with all other Diabrotica species (Supplementary Data Sheet

2). The remaining D. undecimpunctata samples in the dataset were

homogeneous in sequence except for an autapomorphic cytosine at

171 in D. u. undecimpunctata (AF278571) and an adenine at 430 in

the same sample, which was a heterozygotic ‘R’ (adenine or guanine)

peak in one intercepted D. u. duodecimnotata (DIA-007).

The phylogenetic tree of D. virgifera subspecies, generated to

assess the correlation of CO1 data to subspecific designations for

use as a comparator to the congeneric D. undecimpunctata

subspecies, resolved three well-supported clades from a CO1

alignment (Supplementary Data Sheet 3) across all tree-building

methods (Figure 3 and Supplementary Figures 7–9). The first

lineage was early-diverging and consisted of four individuals from

Guatemala, all identified as D. v. zeae. The second lineage contained

individuals from Mexico (23%), the USA (35%), and Croatia (42%,

which is inferred as the primary lineage from which the introduced

populations were sourced), with individuals identified as both D. v.

virgifera (63%) and D. v. zeae (37%). The third lineage consisted

almost exclusively of individuals from Mexico (97%), along with a

small number from Croatia (3%), with all Mexican samples

identified as D. v. zeae and all Croatian samples as D. v. virgifera.

Thus, the CO1 data from D. virgifera did not entirely correspond to

subspecific designation but rather appeared to be associated with

attributes such as unidirectional reproductive incompatibility and

geographic isolation (both of which can be involved with

speciation), which are discussed in detail below.

Of the 110 target D. undecimpunctata samples tested with the

real-time assay described here, four produced anomalous results.

For these anomalous samples, very low (1.6–5.6) and very high

(32.9–37.1) Cq values were produced for the diagnostic and control

probes, respectively. Such an outcome is most likely the result of

abnormal differences between CO1 and 18S copy number.

Fortunately, in these rare cases the probes can be rerun in
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separate reactions to confirm the results. Of the 10 D.

undecimpunctata samples (not included in the 110 target

samples) that had been parasitized by Centistes, only one

produced an anomalous result, which was nearly identical to that

of the four samples described above. The non-target D. balteata (2),

Lyctus africanus (1), and early-diverging D. undecimpunctata (2)

from western California all produced positive results for the control

probe and negative results for the diagnostic probe. A third D.

balteata sample failed for both probes, likely due to deteriorated

DNA. All samples that showed amplification for each probe were

used to set the relative fluorescence unit (RFU) threshold above

which a sample is considered positive. This value was set to 500 for

the diagnostic probe and to 250 for the control probe. For each, a Cq

between 5 and 30 was considered positive. Background values

originated from either NTC samples or non-targets in the case of

the diagnostic probe and were used to inform threshold setting. No

non-target samples produced amplification of the diagnostic assay.

Using these thresholds, the Cq values across all targets ranged from

6.18 to 28.93 (mean 15.71 ± SD 4.38) for the diagnostic probe

(Figure 4A) and from 10.72 to 29.41 (mean 17.18 ± SD 3.99) for the

control probe (Figure 4B). The end RFU values across all replicates
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ranged from 813.94 to 1934.33 (mean 1359.33 ± SD 209.07) for the

diagnostic probe (Figure 4A) and 315.21 to 3169.02 (mean 1533.68

± SD 546.79) for the control probe (Figure 4B). In addition, DCq

(|control probe Cq – diagnostic probe Cq|) was calculated for each

reaction containing target DNA using the thresholds described

above for which values ranged from 0.01 to 6.56 (mean 1.50 ± SD

0.65). From this, the DCq cutoff to confirm a sample as positive was

set to 7.

The real-time PCR assay, when run in duplex, showed a linear

dose response in Cq for both probes across a DNA dilution series

(Figure 5). From the standard curve, the assay developed here

should provide reliable target detection at DNA concentrations ≥

0.1 ng/µL.
4 Discussion

A set of Diabrotica CO1 sequences originating from multiple

different public data repositories and studies, as well as sequences

newly generated as part of this study from museum specimens and

port-of-entry interceptions, showed no clear association with
FIGURE 1

A phylogenetic tree for Diabrotica generated via Bayesian inference with a general time reversible (GTR) substitution model using an alignment of
227 CO1 DNA barcodes. Values at nodes are posterior probabilities; Trichobrotica nymphaea was set as an outgroup. Within D. undecimpunctata,
subclade terminals are labeled by subspecies: D. undecimpunctata (u), D. u. duodecimnotata (ud), D. u. howardi (uh), D. u. tenella (ut), and D. u.
undecimpunctata (uu). The large unstructured grade is labeled by percentage of terminals with a given subspecific designation. The virgifera species
group is denoted VC in the tree, with all other Diabrotica terminals belonging to the fucata species group. Inset image is an adult D.
undecimpunctata.
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current subspecies designations and genetic divergence when

multiple phylogenetic approaches were applied (Figure 1). The

nuclear ITS2 sequence data did not provide any additional

resolution among these subspecies; however, like the CO1 data,

ITS2 separated all D. undecimpunctata samples from other

Diabrotica species and resolved an outlier lineage from western

California (Supplementary Figures 4–6). While complete genome

data may provide additional resolution (48) and further insight into

the relationships among D. undecimpunctata lineages, such data

cannot be rapidly or inexpensively generated, nor will the level of

sampling be equivalent to the currently available CO1 databases for

some time. Additionally, CO1 data have proven to be highly

effective in the identification of insect species that were originally

described based on morphology when applying a monophyly

criteria (49, 50). While CO1 is often congruent with morphology-

based species descriptions, such data have also been useful in

detecting cryptic insect lineages (51–53). Thus, our CO1 and ITS2

results are not intended to immediately refute the validity of the

current morphology-based D. undecimpunctata subspecific

categories, but rather (1) to provide a framework for the re-

examination of morphological and biological attributes in these

taxonomic categories (54, 55) and (2) to supply data for the

development of a molecular assay for use in inspection of

transshipped commodities or high-throughput field surveys.
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We compared our CO1 data forD. undecimpunctata sampled at

the subspecific level to D. virgifera, the only other Diabrotica species

with extensive mtDNA sampling at the subspecific level, to examine

how genetic and taxonomic patterns correlated within and between

these lineages (Figures 1, 3). In both species, subspecific designation

did correspond to well-supported CO1 lineages, although more so

in D. virgifera. The subspecific split between D. v. virgifera and D. v.

zeae is thought to be largely driven by the infection of D. v. virgifera

males by Wolbachia bacteria, resulting in cytoplasmic

incompatibility when they mate with uninfected D. v. zeae

females and thus the perpetuation of a unidirectional

reproductive barrier (56). The divergence resulting from this

prolonged reproductive incompatibility is evident in the

matrilineal CO1 data (Figure 3), with the resolution of a D. v.

zeae lineage restricted to Mexico (save two D. v. virgifera from

Croatia, which might be the result of misidentification or post-

invasion mitochondrial introgression from the loss of Wolbachia

infection) and a polyphyletic lineage of D. v. virgifera and D. v. zeae

found in both Mexico and the USA. All D. v. zeae in the

polyphyletic lineage are from either Texas or Mexico, an area

which is thought to be a hybrid zone given the intermediacy of

traits found among individuals collected in this region (57). As

such, the polyphyly in this lineage may be the result of reciprocal

crosses between D. v. virgifera females and D. v. zeaemales in which
FIGURE 2

A TCS network from an alignment of 156 Diabrotica CO1 sequences. Each hatch mark along a branch indicates an informative nucleotide variant
between haplotypes. Network terminals are scaled by the number of individuals sharing an identical haplotype; a key to the size of these terminals is
provided in the lower right. The D. undecimpunctata haplogroups are color coded as in Figure 1.
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rates of viability are known to be much higher (56). A third early-

diverging lineage of D. v. zeae from Guatemala was resolved in the

dataset and may represent an ancestral haplotype, as it shares

several nucleotide variants with outgroup taxa not present in the

other two lineages (Supplementary Data Sheet 3). This third,

evidently relictual, lineage may in part be the result of

mitochondrial displacement induced via Wolbachia-driven

cytoplasmic incompatibility (58, 59), geographic isolation (60),

and/or positive selection (61). By extension, the early-diverging

lineage resolved in D. undecimpunctata may have evolved via

similar processes given similarities in genetic and geographic

patterns between these congeneric lineages, but more work is

needed to assess what factors are driving these patterns of

asymmetrical mitochondrial haplotype counts in these Diabrotica

lineages. Furthermore, the question of whether these early-

diverging monophyletic lineages should be treated as distinct

species needs additional research. Interestingly, the species range

of D. u. undecimpunctata has been considered to be restricted to the
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west coast of the USA and it has also been considered the most

morphologically divergent and easily identified subspecies (20).

Beyond the taxonomic need to study these early-diverging

Diabrotica lineages, phylogeographic and ecological studies may

provide additional insights into the relictual status and biology of

these lineages. For instance, if Guatemala and western California

were the locations in which D. virgifera and D. undecimpunctata

first evolved, then the dispersal of D. undecimpunctata may not

have initially followed maize cultivation from Mexico as was the

case for D. virgifera (26). Study of Diabrotica populations in their

centers of origin/diversity may also yield insights into natural

enemies or other aspects of their biology applicable to controlling

their populations in agroecosystems [e.g. (62)].

Like the early-diverging CO1 lineages found in D. virgifera and

D. undecimpunctata, several similar patterns of divergence were

noted in our analyses of CO1 from other Diabrotica taxa; these may

have been the result of operational error and/or biological

processes. For example, within the species D. adelpha and D.
FIGURE 3

A phylogenetic tree generated via Bayesian inference with a general time reversible (GTR) substitution model using an alignment of CO1 barcodes
for 314 Diabrotica virgifera identified to subspecies downloaded from GenBank. Values at nodes are posterior probabilities; one D. undecimpunctata,
two D. amecameca, and one D. porracea were used as outgroup taxa. Clades are color coded as follows: orange, a mainly D. v. zeae clade from
Mexico; green, a mixed D. v. virgifera and D. v. zeae clade from Mexico and the US; and blue, a D. v. zeae-only clade from Guatemala. For each
colored clade, the percentage of terminals identified as D. v. virgifera (Dvv) and D. v. zeae (Dvz) is indicated, as well as the percentage of terminals
from Guatemala (GT), Croatia (HR), Mexico (MX), and the United States (US).
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limitata, haplotypes were separated by 53 and 28 SNVs, respectively

(Figure 2). The publicly available CO1 sequences for D. biannularis,

D. balteata, D. speciosa, and D. tibialis were, by contrast, similar to
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what is generally observed for intraspecific variability in beetles and

other insects (49, 63), although increased sampling is needed to

more fully describe the nucleotide variability in these Diabrotica

lineages. Given the discrepancies observed between taxonomic

designation and CO1 haplotypes, both here and in other

phylogenetic appraisals of Diabrotica and allied species (22), a

concerted effort should be made to better understand how the

sorting and evolution of mitochondrial and other genetic and

genomic data corresponds to morphological, behavioral, and

adaptive divergence. Such efforts will provide an evolutionary

context to the study of agriculturally important attributes of

Diabrotica such as host preferences, xenobiotic metabolism, and

natural and anthropogenic patterns of dispersal and migration.

The real-time PCR assay described here was effective at

distinguishing D. undecimpunctata from related species. Given

the known challenges of separating some D. undecimpunctata

subspecies on the basis of morphology and the frequency with

which these beetles are intercepted on agricultural commodities, the

real-time PCR assay presented here represents a useful tool for

rapid identification at ports of entry. Similarly, given concerns

about the introduction of D. undecimpunctata outside North

America, this assay could also be used for prescreening of

agricultural commodities before export. The assay was designed

to exclude the early-diverging western California lineage at present,

until follow-up work can clarify the species status of these

individuals; however, given that these samples are rare and

geographically isolated, this should not affect routine screening

efforts. If this haplotype needs to be included in future assays, design

of a probe should be straightforward given the number of SNVs

separating this haplotype from the next-nearest specimens.

When other Diabrotica species were tested with our real-time

PCR assay there was no signal for the diagnostic probe, indicating
B

A

FIGURE 4

End relative fluorescence unit (RFU) values plotted against Cq values
for each probe run in duplex across all replicates using DNA from
museum specimens and intercepted Diabrotica. (A) Results from the
CO1 diagnostic probe labeled with a 56-FAM fluorophore; (B) results
from the 18S control probe labeled with a 5Cy5 fluorophore. Cutoff
values are shown in blue (A) and red (B) boxes.
FIGURE 5

Serial dilutions of template DNA for three D. undecimpunctata individuals with a standard curve based on response in Cq for the CO1 diagnostic and
18S control probes run in duplex.
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that these samples did not produce off-target amplification. In a

small number of target samples (five), large differences between

diagnostic and control probe Cq might have been related to early

stages of Centistes parasitism, as one of these samples was known to

have been parasitized (47), or to other factors known to affect CO1

copy number (64). In the future, using only legs in DNA extraction

might limit such imbalances in CO1 and 18S copy number to the

extent that these were associated with the whole-body extractions

employed throughout this study. Testing of more Diabrotica species

and of D. undecimpunctata at different life stages should be carried

out to further validate the findings reported here. A broader

diversity of sample types should also be tested with the primers

and probes developed for this study so that this assay can be

adapted for other applications, such as testing of soil samples for

the presence of D. undecimpunctata larvae [e.g. (65)] or the

processing of bulk samples using ddPCR [e.g. (66)]. Soil sampling

of this type could be an important planning tool for producers,

helping them to decide to plant resistant crops when evidence of D.

undecimpunctata is found. The assay described here could be

expanded to identify not only D. undecimpunctata but also

associated plant pathogens such as E. tracheiphila in

multiplex PCRs.
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