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Seasonality influences key
physiological components
contributing to Culex pipiens
vector competence

Eleanor N. Field and Ryan C. Smith*

Department of Plant Pathology, Entomology and Microbiology, Iowa State University,
Ames, IA, United States
Mosquitoes are the most important animal vector of disease on the planet,

transmitting a variety of pathogens of both medical and veterinary importance.

Mosquito-borne diseases display distinct seasonal patterns driven by both

environmental and biological variables. However, an important, yet unexplored

component of these patterns is the potential for seasonal influences on

mosquito physiology that may ultimately influence vector competence. To

address this question, we selected Culex pipiens, a primary vector of the West

Nile virus (WNV) in the temperate United States, to examine the seasonal impacts

on mosquito physiology by examining known immune and bacterial

components implicated in mosquito arbovirus infection. Semi-field

experiments were performed under spring, summer, and late-summer

conditions, corresponding to historically low-, medium-, and high-intensity

periods of WNV transmission, respectively. Through these experiments, we

observed differences in the expression of immune genes and RNA interference

(RNAi) pathway components, as well as changes in the distribution and

abundance of Wolbachia in the mosquitoes across seasonal cohorts. Together,

these findings support the conclusion that seasonal changes significantly

influence mosquito physiology and components of the mosquito microbiome,

suggesting that seasonality may impact mosquito susceptibility to pathogen

infection, which could account for the temporal patterns in mosquito-borne

disease transmission.

KEYWORDS

seasonality, Culex pipiens, mosquito, semi-field, physiology, Wolbachia, gene
expression, RNAi
Introduction

Several mosquito-borne pathogens, such as malaria, dengue, and West Nile virus

(WNV), display seasonal patterns in their transmission (1–6) that are driven by

environmental variables that influence mosquito life-history traits (7–9), physiology (10,

11), and abundance (11–14), which ultimately shape mosquito-borne disease transmission
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(15). However, there is little information on how seasonal trends

may influence mosquito susceptibility to pathogen infection.

The ability of a mosquito to transmit disease, otherwise known

as vector competence, is a multivariate trait incorporating aspects of

innate immunity, the microbiota, and host physiology (16–21).

RNA interference (RNAi) pathways serve as the primary

mechanism for controlling virus infection in the mosquito host

(18–20). This includes the prominent roles of Dicer-2 (DCR2) and

Argonaute-2 (AGO2) in the production of small interfering RNAs

(siRNAs) that cause the targeted degradation of viral RNAs (18–20).

In addition, the activation of the JAK-STAT, Toll, and IMD

immune signaling pathways initiates the expression of

downstream effector genes [such as cecropin (22, 23) and Vago

(24, 25)] that limit virus infection (18, 19). The mosquito

microbiome can also have a significant impact on vector

competence, influencing infection outcomes for a variety of

mosquito-borne pathogens (26–28).

The endosymbiont Wolbachia pipientis naturally infects a wide

range of arthropods, including the mosquito Culex pipiens (29).

Although Wolbachia is often associated with host alterations to

reproduction (30), the presence of Wolbachia has been shown to

influence mosquito arbovirus infection in both natural (31) and

artificial hosts (32, 33). When paired with the previous observation

that Wolbachia-induced arbovirus resistance is density dependent

(32, 34), the presence ofWolbachia can have a significant impact on

mosquito vector competence.

Temperature has been implicated as the primary driver of

seasonal transmission dynamics (15, 35–41) and vector

competence (37, 42), with known impacts on mosquito immune

function (such as melanization and phagocytosis) (43, 44) and

immune gene expression (43–45), which serve as the first line of

defense against invading pathogens. Temperature has also been

implicated in the shaping of the mosquito microbiota (46), most

notably that of Wolbachia (47–49), which can have positive or

negative impacts on arbovirus infection (32, 33). Moreover,

temperature can also influence the efficacy of the RNAi pathway

(50), which is integral to mosquito antiviral immunity (18–20).

Although these studies demonstrate the complexity and widespread

influence of temperature on the mosquito vector, it is currently

unclear how temperature in the context of other seasonal factors,

such as photoperiod and relative humidity, may together influence

mosquito vector competence.

To approach this question, we performed semi-field

experiments with a laboratory-derived strain of Culex pipiens, a

primary vector of WNV in the United States, to examine potential

seasonal differences in mosquito host physiology that could

influence vector competence. We demonstrate that adult female

Cx. pipiens reared under spring, summer, and late-summer

conditions display distinct differences in the expression of

immune genes and RNAi pathway components, and in

Wolbachia abundance. These data suggest that mosquito

physiology and vector competence is dynamic, where different

seasonal environmental conditions may have a significant

influence on mosquito susceptibility to pathogen infection. As a

result, our data suggest that environmental conditions at different

times of the year likely influence vector susceptibility and seasonal
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trends of mosquito-borne disease transmission that are potentially

transferable to other vector–pathogen systems.
Materials and methods

Culex pipiens rearing and maintenance

A laboratory colony of Cx. pipiens mosquitoes, originally

isolated from field collections in Ames, IA, United States, was

maintained at 25°C, 85% relative humidity, and 16 : 8 hours (L :

D; light : dark) on 10% sucrose ad libitum. Larvae were maintained

using an equal mix of crushed Milk-Bone® and TetraMin® fish

food, while commercial sheep’s blood (Hemostat Laboratories),

provided via artificial membrane feeding, was used for blood

feeding and subsequent egg production.
Semi-field studies

To determine how different seasonal environmental conditions

might influence mosquito physiology, we performed semi-field

experiments with a laboratory colony of Cx. pipiens, in a similar

manner to previous studies (11) at different times of the year.

Initiated with first-instar larvae, mosquitoes were reared to

adulthood under spring (week 19, May), summer (week 30, July),

and late-summer (week 35, late August) conditions (Figure 1A). These

time points are representative of periods of little-to-no WNV activity,

increasing WNV activity, and peak WNV activity, respectively, which

ultimately shape the seasonality of WNV transmission (5, 6).

For the semi-field studies, first-instar larvae from our laboratory

colony of Cx. pipiens were placed in metal rearing trays covered by a

tempered glass pane to provide protection from the elements,

contaminants, or potential predation. Rearing trays were placed at

two locations in Ames, IA, United States, at epidemiological weeks 19

(9 May), 30 (25 July), and 35 (29 August) in 2021, coinciding with

periods of differing mosquito activity and WNV transmission

intensity in the state of Iowa (5, 11, 14, 51, 52). The use of adult

mosquitoes at week 30 corresponded with previous semi-field studies

(11), with the resulting mosquito samples shared between

experiments. Larval density in each experimental condition was

approximately 300 per tray in 1 L of distilled water, with larvae

maintained on an equal mix of crushed Milk-Bone® and TetraMin®

fish food. Resulting pupae were collected and placed in special

eclosion chambers (BioQuip) directly adjacent to the larval rearing

trays where, following emergence, adults were maintained on 10%

sucrose under semi-field conditions until the collection of mosquito

samples and sheltered under a metal cage to provide protection from

animal disturbance. The last cup of adults was collected on 15

October (week 41), terminating the semi-field study.
Environmental data

Daily high and low temperatures (°C) were collected for the

study period fromMay to October using the southeast Ames station
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(IA0203) of the Iowa State University Mesonet (https://

mesonet.agron.iastate.edu) to understand semi-field temperature

conditions. A 30-year average was provided from the central Iowa

station (IA50014) to place the study year’s values in a larger context.

Diurnal temperature ranges were determined using the central Iowa

station as the difference between the average daily high temperature

and average daily low temperature for each week. Photoperiod data

were obtained from an online sunrise/sunset table for Des Moines,

IA, United States (www.timeanddate.com), with hours of daylight

displayed as average weekly values. Data were visualized in R

(version 3.6.3) using the ggplot2 package.
Gene expression analysis

Adult female Cx. pipiens (5–8 days post eclosion) were collected

from laboratory or semi-field samples and stored at –80°C for later

processing. Mosquitoes were pooled into groups of 5–10

mosquitoes for analysis, with three or more replicates per

experimental treatment. RNA was extracted from stored samples

using Trizol® and cDNA was synthesized using the RevertAid

cDNA kit (Thermo Fisher Scientific). Immune genes previously

implicated in antiviral immunity were selected from previous

studies (24, 50), with primer sequences listed in Table S1. Relative

gene expression was measured via quantitative reverse

transcription-polymerase chain reaction (qRT-PCR) using a

Quant Studio 3 (Thermo Fisher Scientific) and PowerUp SYBR

Green (Thermo Fisher Scientific) under the following conditions:

50°C for 2 min, 95°C for 15 s, and 60°C for 1 min for 40 cycles.
Wolbachia quantification in Culex pipiens

An initial PCR was performed to amplify an approximately 900-bp

fragment of the Wolbachia 16S ribosomal RNA gene from our
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with Wolbachia-specific primers (53) (Table S2). Following cloning

and Sanger sequencing, the resulting 16S sequence was deposited in

GenBank (accession number OQ034610). From this sequence, specific

Wolbachia primers derived from our Cx. pipiens colony (ISU Wolb),

amplifying a 249-bp amplicon, were designed to determine relative

Wolbachia titers when normalized to transcript levels of ribosomal

protein L32 (Rpl32) (48, 54) (Table S2). To determineWolbachia titers

across laboratory and seasonal conditions, dissected ovaries and

ovariectomized carcasses were stored at –80°C until further

processing. DNA was isolated using the Marriot DNA extraction

procedure as described previously (5, 55–57) and stored at –20°C

prior to future use. Amplification was performed by qRT-PCR using a

Quant Studio 3 (Thermo Fisher) and PowerUp SYBR Green (Thermo

Fisher) under the following conditions: 50°C for 2 min, 95°C for 15 s,

and 60°C for 1 min for 40 cycles.Wolbachia titers were determined by

calculating the delta Ct of Wolbachia copies relative to Rpl32 and

transformed (2n) to produce relative Wolbachia density estimates for

each tissue sample (48, 54).
Statistical analyses

All statistical analyses were performed using GraphPad (Prism

version 7). One-way non-parametric ANOVA tests (Kruskal–

Wallis) with Dunn’s post hoc analysis being used to test

differences in gene expression and Wolbachia titers.
Results

Semi-field studies to address
mosquito seasonality

To assess the seasonal conditions of our semi-field studies

(outlined in Figure 1A), we examined the effects of temperature
A B C

FIGURE 1

Overview and temperature conditions of the semi-field experiments examining Culex pipiens seasonality. (A) Graphical overview of semi-field
experiments where first-instar Culex pipiens larvae were reared outside at three time points (week 19, 30, and 35 of the year) to represent spring,
summer, and late-summer conditions. Mosquitoes were reared outside for their entire development, first in metal trays for larval growth, then the
pupae were collected and placed in eclosion chambers to allow for adult emergence. Adult female mosquitoes were collected 5–8 days post
emergence for further molecular analysis. Mosquitoes were obtained from a laboratory colony of Cx. pipiens. (B) Conditions experienced by each
study group, with temperatures reflecting the weekly average of the daily high, average, and low temperatures for Ames, IA, United States, in 2021
when the experiments were performed. (C) Photoperiod (daylight) averages are displayed by week, highlighting conditions for each study group.
Graphics in (A) were created with BioRender.com.
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(Figure 1B) and photoperiod (Figure 1C) for each of the semi-field

cohorts during our study period.

The spring cohort experienced the largest variation in temperature,

recording the coldest weekly low temperature of 3.6°C in week 20 and

the warmest weekly high of 32.6°C in week 24 of our study period

(Figure 1B, Table 1). In contrast, the summer cohort experienced the

most stable temperature conditions, with little fluctuation in daily

temperature ranges, compared with the other experimental groups

(Figures 1, S1). The late-summer cohort faced declining temperatures

during its development, with daily lows dipping below 10°C in week 39

(Figure 1B). Although life-history traits were not directly collected in

these experiments, the summer (week 30) cohort had the shortest

developmental time and highest percentage of larvae reaching

adulthood. By comparison, mosquito development in both the spring

and late-summer cohorts was extended. Together, these data suggest

that weekly temperature fluctuations are much more dynamic in the

spring and late summer, such that the effects of temperature may

influence mosquito development and physiology very differently than

the more uniform summer conditions.

An additional measurable aspect of our seasonal conditions is

the photoperiod, for which the spring cohort experienced the

highest levels, averaging 14 hours and 46 minutes of daylight

(Figure 1C). The amount of daylight decreased across the other

seasonal cohorts, with the summer condition experiencing a slight

decrease (14 hours and 12 minutes) and the late-summer cohort

subjected to a prominent decrease in photoperiod of approximately

2 hours (12 hours and 23 minutes; Figure 1C).
Seasonality influences key components of
mosquito antiviral immunity

With previous studies demonstrating the effects of temperature

on mosquito immune function (43–45, 50), we examined immune

gene expression in the context of our seasonal conditions. With

RNA interference (RNAi) considered the primary mechanism of

antiviral immunity in mosquitoes (58, 59), we determined the

relative gene expression of two primary RNAi pathway

components, Dicer-2 (DCR2) and Argonaute-2 (AGO2) (50, 58)

in the context of our semi-field experiments. Both genes displayed

significantly increased expression during the summer cohort when

compared with the laboratory colony or other experimental semi-

field groups (Figure 2A), suggesting elevated RNAi activity and

increased antiviral defenses during this time period.

In addition, we also examined Vago and cecropin A (CEC-A)

expression, immune genes previously implicated in the Culex

antiviral response to WNV (24, 25) and as an important
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61) including viruses, respectively (22, 23). Vago displayed reduced

levels of expression during the spring and late-summer conditions

(Figure 2B), whereas CEC-A displayed a similar, less pronounced

phenotype with significantly reduced expression during the late-

summer time period (Figure 2C). This suggests that Vago- and

CEC-A-mediated immune responses may be attenuated during

these seasonal time points. Together, these data suggest that

important mediators of the mosquito immune response and

antiviral immunity are influenced by seasonality, suggesting that

mosquito susceptibility to pathogen infection may be highly

variable during the course of the season.
Seasonality influences Wolbachia
abundance and tissue localization

Cx. pipiens are natural hosts of Wolbachia, insect endosymbionts

that influence mosquito vector competence for arbovirus infection (32,

33). Although Wolbachia dynamics in response to temperature have

been explored extensively in other mosquito species (47–49), the impacts

of temperature on Wolbachia in Cx. pipiens have not been previously

explored. AlthoughWolbachia are commonly associated with germ-line

tissues, Wolbachia can also be found within somatic tissues of Culex

species (33, 54, 62). For this reason, we specifically examinedWolbachia

titers by qRT-PCR (54) in the ovaries and the dissected ovariectomized

carcass of adult females reared in the laboratory and our semi-field

conditions (Figure 3). When compared with the results from laboratory-

reared mosquitoes, the Wolbachia titers in the ovaries of mosquitos

reared in semi-field conditions were significantly reduced across seasonal

conditions, with the reduction in Wolbachia the most prominent at the

spring time point (Figure 3), thus demonstrating that Wolbachia

abundance in the mosquito ovary notably changes throughout the

year. As expected, Wolbachia abundance was substantially higher in

germline tissue than in somatic tissue (Figure 3). Wolbachia levels were

slightly reduced in somatic tissues during the late summer, yet did not

display similar differences across seasonal time points (Figure 3).
Discussion

Although the seasonal trends of mosquito-borne diseases are

well established, few studies have attempted to understand the

mechanisms by which mosquito vector competence may change

across seasons. To begin to address this question, we performed

semi-field studies to measure changes in components that influence

mosquito vector competence (immune gene expression and
TABLE 1 Seasonal conditions of each semi-field cohort.

Group Weeks active§ Average high (°C) Average (°C) Average low (°C)

Spring 19–24 23.4 17.2 10.9

Summer 30–34 29.4 22.7 15.9

Late summer 35–41 27.0 19.9 12.7
§Defined as the weeks from when the first-instar larvae were placed in semi-field conditions to when adults were collected for processing.
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Wolbachia dynamics) in Cx. pipiens across seasonal time points that

reflect periods of low- to high-WNV transmission trends.

WNV exhibits clear seasonal transmission trends in Culex

populations and human cases, with infections peaking in the late

summer across the United States (5, 6), yet the mechanisms driving

these seasonal trends have been largely unexplored. Although

previous studies have suggested that the spatiotemporal abundance

of Culex vector populations in the summer and late summer can lead

to increased levels of WNV infection in mosquito populations (14,

52), overall Culex abundance in Iowa typically peaks much earlier in

the season (i.e., May/June) (5, 11, 14, 51, 52). Therefore, combining

both mosquito abundance and infection data (vector index) is more

predictive than mosquito abundance alone in predicting human

WNV cases (63–66), demonstrating the importance of identifying

the physiological components that contribute to mosquito infection

and transmission of WNV. Although climate conditions are known

to influence interannual differences in mosquito populations (14) and

promote virus amplification (35, 41), the influence of seasonal

changes on mosquito physiology and vector competence have not
Frontiers in Insect Science 05
been adequately addressed outside of the context of diapause (11, 67,

68). Through the use of seasonal cohorts in our semi-field studies, we

have demonstrated that components of the RNAi pathway and

immune-related genes are differentially expressed over the spring,

summer, and late-summer seasons, suggesting that the susceptibility

of Cx. pipiens to infection is highly variable throughout the year. In

addition, differences in Wolbachia abundance and localization in

somatic and germline tissues may similarly contribute to Cx. pipiens

physiology and vector competence.

Temperature, a key component of seasonality, has previously

been found to have an effect on mosquito immune function (43)

and vector competence in virus infection (38–40). In Culex tarsalis,

increasing temperatures resulted in fewer infected females following

exposure to WEE (69), suggesting that the antiviral immune

response was stronger at higher temperatures. This is further

supported by the results from a study by Adelman et al. (50),

which used a transgenic Aedes aegypti sensor strain to investigate

the impacts of temperature on the RNAi pathway, demonstrating

the destabilization of RNAi at cooler temperatures (18°C). Our
A

B C

FIGURE 2

Seasonality of Culex pipiens immune gene expression. Gene expression was examined using samples from our Cx. pipiens colony under standard
rearing conditions (laboratory) and across seasonal conditions (spring, summer, and late summer) from semi-field experiments. Expression of (A)
genes involved in the RNA interference (RNAi) pathway (AGO2 and DCR2), (B) the immune factor Vago, or (C) the antimicrobial gene CEC-A were
evaluated by quantitative reverse transcription- polymerase chain reaction (qRT-PCR). Each replicate contained groups of four pooled mosquitoes,
with three or more independent samples per experimental condition. Data are displayed as the mean ± SEM, with significance determined using a
one-way ANOVA with a Tukey’s multiple comparison test. Significant differences between conditions are denoted by asterisks (*, p < 0.05; ***, p <
0.001; ****, p < 0.0001); all other comparisons between conditions were not significant. SEM, standard error of the mean.
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results show that the summer-reared group (experiencing

uniformly warm temperatures) displayed the highest expression

of the RNAi machinery components Dcr-2 and Ago-2. These genes

were expressed at much lower levels during the spring and late

summer when mosquitoes experienced cooler temperatures. This

indicates that the RNAi pathway may be attenuated during these

seasonal time frames, corresponding with the initiation of viral

cycling in the spring and increased frequency of mosquito WNV

infections in the late summer. However, these observations should

be directly tested in the future through WNV infection experiments

under seasonal conditions, and, as a result, the lack of direct testing

represents a limitation in the interpretation of our current study.

Similar trends were also found for other components of the

immune system, such as Vago and CEC-A, which also displayed

reduced levels of expression in the spring and late summer. Vago has

been described as an interferon-like cytokine that activates the Jak-

STAT pathway to limit WNV infection in Culex quinquefasciatus

(24), whereas cecropins and other antimicrobial peptides (AMPs)

have been implicated in antiviral immunity in insects (22, 23).

Although the functional role of Vago has not previously been

explored in the context of seasonality, previous studies have

demonstrated that cecropin expression is influenced by

temperature (42, 43). Together, our data suggest that the

downregulation of these genes during the spring and late summer

likely contribute to seasonal differences in Culex vector competence

and susceptibility toWNV infection, although these conclusions need

to be further tested in future WNV infection experiments.

In addition to components of the innate immune system, microbes

can also modulate mosquito physiology and vector competence in

important ways.Wolbachia are insect endosymbionts that affect many

aspects of host biology, from reproduction (30, 70) to pathogen

infection (32, 33, 71, 72). Wolbachia are distinct from the general gut

microbiota, as they are intracellular bacteria distributed in both somatic

and germ-line tissues (62). Although our data suggest that changes in
Frontiers in Insect Science 06
ovaryWolbachia titers could influence cytoplasmic incompatibility and

reproduction, we did not directly address whether or not these changes

have measurable reproductive phenotypes and will look to address

these questions in future experiments. Similar to previous studies

evaluating Wolbachia in field-collected Cx. pipiens (54), we found

that somatic titers of Wolbachia were highly variable in laboratory

samples and in samples from each of our semi-field conditions.

Considering previous evidence that indicates that somatic infection

densities of Wolbachia may contribute to WNV resistance (54), it is

possible that the decrease in somatic Wolbachia levels in the late

summer could influence Cx. pipiens vector competence and

susceptibility to WNV infection. However, the lack of significant

differences in somatic Wolbachia titers across our seasonal

conditions suggests that any alterations to vector competence result

from the highly variable somatic Wolbachia infections between

individual mosquito samples as opposed to seasonal conditions.

Diurnal temperature fluctuations (i.e., the change between day and

night temperatures) are most pronounced during the spring and late

summer in temperate climates, and have previously been suggested to

influence mosquito vector competence (73–77). This includes recent

studies where diurnal temperature fluctuations influenced WNV titers

in both Cx. tarsalis and Cx. quinquefasciatus; however, these differences

in viral titers did not significantly influence infection, dissemination, or

transmission (76). However, these data suggest that the variations in

diurnal temperature correspond with seasonal changes, which may

have additional impacts on mosquito host physiology and antiviral

immunity. As a result, the seasonal differences in immune gene

expression and Wolbachia abundance identified in our study may

account for these physiological changes, thereby warranting further

laboratory studies to distinguish the effects of seasonal temperature

differences and diurnal temperature fluctuations.

Additional seasonal influences beyond that of temperature,

such as changes in photoperiod and humidity, have been less

explored in the context of mosquito vector competence. Although
FIGURE 3

Seasonality of Wolbachia titers in Culex pipiens ovary and carcass samples. Wolbachia titers (16s RNA) were examined in individual Cx. pipiens ovary
or carcass (remaining tissue following ovary dissection) samples reared in the laboratory or under spring, summer, and late-summer semi-field
conditions by quantitative reverse transcription- polymerase chain reaction (qRT-PCR) and normalized to Rpl32 expression. A one-way non-
parametric ANOVA (Kruskal–Wallis) with a Dunn’s multiple comparison test was used to determine significance. Significant differences between
conditions are denoted by asterisks (*, p < 0.05; ***, p < 0.001; ****, p < 0.0001).
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the combined effects of photoperiod and temperature are essential

for promoting mosquito diapause (11, 78), the evidence suggests

that photoperiod alone can influence mosquito size, lifespan, and

propensity for blood-feeding (79). This suggests that other aspects

of mosquito physiology may be influenced by photoperiod, yet these

have not been adequately explored to date. Although humidity is

also an important determinant of mosquito lifespan, recent

evidence indicates that mosquito dehydration can influence

carbohydrate metabolism and blood-feeding behavior, with the

potential to increase pathogen transmission (80). However, future

studies are needed to fully determine the impacts of humidity and

dehydration on mosquito vector competence.

Although these experiments were conducted in mosquitoes

reared under semi-field conditions, we believe that our results can

similarly be used to interpret trends in natural populations of Cx.

pipiens. Our seasonal observations of elevated immune expression

in the summer, contrasted by impaired immune function in the

spring and late summer, closely correspond to previous studies

demonstrating seasonal differences in the vector competence of Cx.

tarsalis populations collected from the field (81). Reisen et al. show

that higher levels of western equine encephalitis virus were required

to infect mosquitoes during the summer months, whereas

mosquitoes were much more susceptible to virus infection in the

spring and late-summer/fall months, demonstrating important

seasonal differences in mosquito vector competence (81). As Cx.

tarsalis is not naturally infected with Wolbachia such as Cx. pipiens

(33), it is possible that changes to the efficiency of RNAi or immune

expression, similar to those in our own results, could account for

these observations of seasonal differences in infection outcomes.

Although further studies are required to fully delineate the

seasonal influences on mosquito physiology and their impacts on

mosquito-borne pathogen infection, we believe that our

experiments are an important first step in evaluating the seasonal

influences that determine mosquito vector competence.
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