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Dendrochronology reveals
different effects among host
tree species from feeding by
Lycorma delicatula (White)
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Scott M. Salom1, Tracy C. Leskey2, Kelly C. McIntyre1,
Brian Walsh3 and James H. Speer4

1Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg,
VA, United States, 2Appalachian Fruit Research Station, United States Department of Agriculture -
Agricultural Research Service (USDA—ARS), Kearneysville, WV, United States, 3Pennsylvania State
University Extension, Leesport, PA, United States, 4Geography and Geology Department of Earth and
Environmental Systems, Indiana State University, Terre Haute, IN, United States
The spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae), was

first detected in the United States in Berks County, Pennsylvania, in 2014. Native

to China, this phloem-feeding planthopper threatens agricultural, ornamental,

nursery, and timber industries in its invaded range through quarantine restrictions

on shipments, as well as impacts on plants themselves. The long-term impacts of

L. delicatula feeding on tree species have not been well studied in North America.

Using standard dendrochronological methods on cores taken from trees with

differing levels of L. delicatula infestation and systemic insecticidal control, we

quantified the impact of L. delicatula feeding on the annual growth of four tree

species in Pennsylvania: Ailanthus altissima, Juglans nigra, Liriodendron

tulipifera, and Acer rubrum. The results suggest that L. delicatula feeding is

associated with the diminished growth of A. altissima, but no change was

observed in any other tree species tested. The results also suggest that

systemic insecticides mitigate the impact of L. delicatula feeding on A.

altissima growth.

KEYWORDS

Lycorma delicatula, spotted lanternfly, Ailanthus altissima, tree of heaven,
dendrochronology, tree core
Introduction

The spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae), is native

to China and was first detected in the United States, in 2014, in Berks County, Pennsylvania

(1). This phytophagous phloem-feeder has over 100 identified host species worldwide and

56 host species confirmed in North America (2). As a phloem feeder, L. delicatula has the

potential to cause serious economic and ecological impacts (3). In Pennsylvania, L.
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delicatula has proven to be a major pest to grapevines. Some

vineyards, with repeated seasons of high pest pressure from L.

delicatula, have experienced yield losses of up to 90%, and have

been subject to triple the number of insecticide applications (4).

Studies have shown that some insecticides kill L. delicatula, but re-

invasion by adult insects from surrounding forests and vegetation

into vineyards continues through the late summer and fall (5, 6).

Although much of L. delicatula development can occur on

cultivated plants, forest and ornamental/shade trees can be obligate

hosts for some of the L. delicatula life cycle (4). The tree of heaven,

Ailanthus altissima (Miller) (Sapindales: Simaroubaceae), is an

invasive tree species in North America and is a preferred host of L.

delicatula in its native range. Although L. delicatula may not require

this tree to complete development, A. altissima certainly can

constitute a significant proportion of the diet of L. delicatula and is

a valuable host plant in the insect’s development (7). The L. delicatula

host range also comprises many economically important North

American hardwoods, including black walnut [Juglans nigra L.

(Fagales: Juglandaceae)], maple [Acer spp. L. (Sapindales:

Sapindaceae)], oak [Quercus spp. L. (Fagales: Fagaceae)], and tulip

poplar [Liriodendron tulipifera L. (Magnoliales: Magnoliaceae)] (1).

The potential economic losses to the forest industry caused by L.

delicatula have been projected at US$152.6 million per year in

Pennsylvania alone (8). These estimates, however, do not fully

account for the ramifications of L. delicatula invasion on tree

health, as many of these effects have not been investigated.

Invasive phloem-feeding insects are a primary cause of

disturbance in many forest ecosystems, altering community

dynamics, biogeochemical processes, and carbon cycling (9, 10).

Phloem sap is composed of carbohydrates and amino acids that are

necessary for the production of proteins (11). Depending on

phloem nutritional quality, phloem-feeding insects can feed

continuously for many hours, ingesting high amounts of phloem

sap and excreting excess glucose (11). Large aggregations of L.

delicatula feeding on a tree effectively remove quantities of

important nutrients from the tree manufactured during

photosynthesis. In addition, the consumption of phloem sap

results in L. delicatula’s excretion of honeydew, facilitating sooty

mold growth that inhibits plant photosynthesis (12).

Although L. delicatula feeding can have detrimental effects on

tree physiology in some forest species (13), our understanding of,

and methodology for, assessing how sap-feeding insects alter tree

growth are limited (14). Dendrochronology, the study of dating

events using annual tree rings (15), has been used to identify

historic defoliation events and beetle outbreaks in forests

throughout the United States (16–18). To date, no study has

looked into the effect of L. delicatula on the radial growth of host

trees. In this study, we used dendrochronological methods to

quantify the impact of L. delicatula feeding on host tree radial

growth, and the ability of systemic insecticide treatments to mitigate

this impact. The hypothesis we consider is that the presence of L.

delicatula populations reduces the woody growth of host trees, as

reflected by growth rings. This is important for two reasons. First, in

the event that L. delicatula has a negative effect on the radial growth

of economic hosts, there would be an argument for the value of

preventative treatment. Second, regarding the effect of L. delicatula
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on the tree of heaven, field observations have revealed visible effects

on tree vigor and health; knowledge of these effects could result in

the extended lifespan of treated trap trees and our increased

understanding of the ecological impacts of this insect on this host.
Materials and methods

Study area

To investigate the impact of L. delicatula feeding on the radial

growth of known host trees, samples were collected from two sites

in Pennsylvania where L. delicatula has been established in high

densities. The Pennsburg site was first documented as containing L.

delicatula in 2016, and the Blue Marsh Lake site was first

documented as containing L. delicatula in 2017. The populations

of both of these sites increased year over year [personal

observations, BW and Brianna Treichler, the United States Army

Corps of Engineers (USACE)] following initial infestation and

continued to grow throughout 2020 at both sites. “High density”

is a relative term and is often relative to the lifecycle stage and

corresponding host species. The sites contained clear evidence of L.

delicatula feeding on common host trees, particularly sooty mold

growth on the trunks, cadavers from previous seasons abundant on

the ground, and nearby understory stunted or killed by the sooty

mold growth to the point of resembling the aftermath of a brush

fire. It is not uncommon to document several hundred adult L.

delicatula per tree in a 2-minute visual count on preferred hosts in

the fall. Tree species composition at these sites was primarily mixed

deciduous hardwood stands native to the area that have been

invaded by the tree of heaven. The typical species at these

locations include black walnut (J. nigra), red maple (Acer rubrum

L.), silver maple (Acer saccharinum L.), tulip poplar (L. tulipifera),

black cherry (Prunus serotine Ehrh.), sassafras [Sassafras albidum

(Nutt.0 Nees)], mixed oak (red (Quercus rubra L.), chestnut

(Quercus montana Willd.), white (Quercus alba L.), and hickories

[shagbark—Carya ovata (Mill.) Koch; pignut—Carya glabra (Mill.)

Sweet]. The habitat characteristics where trees were sampled

generally consisted of fragmented edge habitats along farm fields

or maintained parkland adjacent to roads and trails.

On 7 January 2020, tree cores were collected from Pennsburg,

Upper Hanover Township of Montgomery County, Pennsylvania,

USA (latitude, longitude: 40.36672, −75.54746). The cores of A.

altissima (n = 10), Ac. rubrum L. (n = 8), J. nigra L. (n = 8), and L.

tulipifera (n = 5), which had high densities of L. delicatula feeding

on them, were collected between 2016 and 2019. In Pennsburg, the

first trees selected were A. altissima, which were divided according

to whether they were treated or untreated. Again, larger trees were

selected with the expectation that they would provide a longer pre-

infestation record. In Blue Marsh Lake, the trees that were selected

were A. altissima, then treated or untreated (treated trees being

previously selected by USACE personnel for treatment based on

observed densities and proximity to areas with an increased risk of

SLF hitchhiking to new locations on conveyances of park visitors),

again with larger trees selected with the expectation of providing a

longer pre-infestation record.
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On 5 March 2020, A. altissima tree cores encompassing three

insecticide treatment levels were collected from Blue Marsh Lake

Recreation Area in northwest Berks County, Pennsylvania, USA

(40.380709, −76.028454), where L. delicatula was initially

discovered in 2016. The management of L. delicatula at Blue

Marsh by the Philadelphia District USACE started in 2018 after

high densities of adults were observed. The trees were selected for

insecticide treatment based on the infestation level of L. delicatula. A.

altissima trees that received 2 consecutive years of insecticide

treatment were sprayed on 6 October 2018 and 26 July 2019. The

A. altissima trees that received a single insecticide treatment were

sprayed on 16 August 2019. Afterward, untreated trees still had large

numbers of L. delicatula. Treated trees were sprayed until runoff with

the systemic insecticide dinotefuran (Transtect 70 WSP insecticide;

Rainbow Treecare Scientific Advancements, Minnetonka, MN, USA)

as a basal bark application at 37.34 g AI/L from the ground to 30–38

cm on the trunk and 360° around the tree. Ten cores were collected

from each treatment, for a total of 30 A. altissima cores.
Core collection and laboratory processing

All trees were cored at standard breast height (1.4 m aboveground)

using a Jim-Gem® 35-cm increment borer (model 63084; Forestry

Suppliers, Jackson, MS, USA) with a core diameter of 5.15 mm, and all

trees cored had a diameter at breast height (DBH) longer than 25 cm.

The extracted cores were immediately placed in labeled plastic straws

lined with hole punches to allow the cores to remain straight while

drying. The cores were air-dried on a baking sheet at room temperature

for 2 weeks in accordance with standard practice (19).

Once dried, the cores were processed using standard

dendrochronological methods (19). The cores were removed from
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the straws and individually mounted to 25 cm wood blocks with

grooves cut down the center to accommodate the core. The groove

was approximately 2 mm deep, allowing at least 50% of the core to

remain exposed. The exposed surface of each core was then sanded

with 220-grit sandpaper using a random orbital sander (DeWalt

model DWE6420, Baltimore, MD, USA) for approximately 10–15

seconds to create a flat working surface. Each core was then sanded

with progressively finer grit paper (320, 400, and 1,500 grit) for 2

minutes per grit. This was done to remove scratches from the

previous grit and create a prepared surface with clearly defined rings

and wood cells for dating and measurement under a microscope

(20) Representative cores are illustrated in Figure 1.
Core measurement

The tree cores were cross-dated using the list method, a standard

process by which narrow rings are matched between cores to ensure

accurate dating (21). The ring widths in cores collected from

Montgomery County, PA, USA, were measured to the nearest 0.01

mm using a dissecting microscope and Velmex measuring system. A

sliding stage was incrementally moved via a small crank and a crosshair

in the microscope was used to visually delimit the ring boundaries

when taking measurements. The sliding-stage micrometer was

connected to a computer and measurements were recorded in

MeasureJ2X software (VoorTech Consulting, Holderness, NH, USA).

Due to the university building access restrictions as a result of

COVID-19, A. altissima cores collected from Berks County, PA,

USA, were measured digitally. Cores were placed under a dissecting

scope equipped with a nine-megapixel digital camera (SKU:

MU900; AmScope, Irvine, CA, USA) that was connected to a

computer. Scope calibration and measurements were collected
FIGURE 1

Representative core of each species. Ailanthus altissima (A), Juglans nigra (B), Liriodendron tulipifera (C), and Acer rubrum (D), with the year marker
representing the first year’s growth.
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on-screen using AmScope software (version x64, 3.7.7303). The

calibration was done at × 1 zoom using a 0.01-mm stage

micrometer (SKU: MR096; AmScope). All the ring widths were

measured to the nearest 0.01 mm.

After all the ring widths were measured, core dating accuracy

was statistically evaluated using the computer program COFECHA

(22, 23). COFECHA applies a 32-year cubic smoothing spline

across all the data to create a master chronology for each site and

species (24). Each tree core series is then compared with the master

chronology by splitting it into 50-year segments and using 25 years

of overlap to calculate the series intercorrelation for that site and

species (24). Potential errors identified by COFECHA were

investigated and corrected by re-cross dating. Any cores with

unresolvable errors were excluded from further analysis.
Data standardization: tree size and age

The ring width tends to decrease over time as trees must allocate

a greater proportion of resources to wood production to cover an

increasing circumference (25). Dendrochronological studies often

standardize ring width chronologies to control for varied growth

rates among trees of differing sizes and ages (26). To standardize for

age–size growth dependencies, raw ring width chronologies were

standardized by fitting a negative exponential curve to the data

using the computer program ARSTAN (27). ARSTAN was

originally developed by Edward R. Cook of Columbia University

and has been used since the late 1980s to conduct autoregressive

time series standardization of tree ring data (27). If the negative

exponential curve did not fit, a horizontal line through the mean

was used for standardization (26, 28). The raw ring width value was

then divided by the fitted curve value for each measurement,

resulting in a dimensionless ring width index (RWI) with an

average growth of approximately 1 (25). An RWI > 1 corresponds

to greater than average annual growth, whereas a RWI < 1

corresponds to less than average annual growth.
Data standardization: climatic variables

Standardization has also proven to be useful in understanding

the impacts of insects, climate, and other various environmental

pressures on tree growth (25). Climatic variables have been shown
Frontiers in Insect Science 04
to influence tree growth (17, 24, 29–31). In this study, we removed

the most correlated climate variables from each data set to focus

results on the effect of L. delicatula feeding. Climate data for both

sampling locations were obtained from the National Oceanic and

Atmospheric Administration (NOAA) database for Pennsylvania

Climate Division 3, Southeastern Piedmont (32, 33). This data set

consisted of monthly averages for minimum temperature,

maximum temperature, average temperature, precipitation, and

Palmer Drought Severity Index (PDSI) values from 1895 to 2019.

To identify the dominant climate variables that altered tree

growth, each site and tree species standardized chronology was

compared with each climatic parameter using a correlation matrix

in Microsoft Excel® (Microsoft Corporation, Redmond, WA, USA)

(34). Once the dominant climate variable [the climate variable that

most affected tree growth (34)] was identified, all data for that

variable were divided by their average to create a dimensionless

climate index. To normalize by climate, and thus remove the

dominant climate signal, the climate index was subtracted from

the standardized chronology (RWI) for each site and species (34).

We attempted to standardize A. altissima chronologies obtained

fromMontgomery County by fitting a negative exponential curve to

the raw ring-width data, but later year growth was close to zero and

unrealistically skewed the RWIs. Therefore, to equalize the variance

across series, we standardized A. altissima chronologies in ARSTAN

by fitting a horizontal line through the mean, and the distribution of

RWIs was then shown to be approximately normal. To maintain

consistency all J. nigra and L. tulipifera series were standardized in

ARSTAN by fitting a horizontal line through the mean to equalize

variance across the series and the RWI distribution and were shown

to be approximately normal (Table 1). The same method using

ARSTAN was used for all cores.
Data analysis

The RWIs were combined for all cores to form a master

chronology for each site and species. Pre- and post-L. delicatula

infestation years were then compared to determine if there were

detectable differences in radial tree growth. Since L. delicatula

presence was confirmed in the region in 2016, initial populations

were likely established in the area in 2015. Thus, tree growth prior

to 2015 was considered pre-infestation growth, whereas that from

2015 to 2019 was considered post-infestation growth.
TABLE 1 Summary of COFECHA results characterizing radial growth of tree species from increment cores.

Site Species Ncores Mean ring width (mm) Series intercorrelation* Mean sensitivity**

Upper Hanover Ailanthus altissima 8 3.80 0.483 0.290

Upper Hanover Acer rubrum 7 1.95 −0.103 0.347

Upper Hanover Juglans nigra 5 2.46 0.307 0.361

Upper Hanover Liriodendron tulipifera 5 5.74 0.592 0.298

Blue Marsh Ailanthus altissima 22 4.79 0.485 0.327
*A measure of how well each tree core series correlates with the master chronology made by COFECHA; a larger number equals a higher correlation.
**A measure of year-to-year variation in tree ring width from 0 to 1. A mean sensitivity of around 0.2 is accepted for climate reconstruction (24).
Growth patterns are characterized among trees of the same species at the same site.
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The RWI data were imported into R (The R Foundation for

Statistical Computing, Vienna, Austria) (35), where the distribution

was checked for normality using the Shapiro–Wilk test. If normality

was met, paired t-tests were used to compare the RWI of infested

years (2015–2019) to uninfested years (2010–2014) for each site and

species. Similarly, a comparison of RWI from earlier uninfested years

(2005–2009) to the uninfested years (2010–2014) for each site and

species was also created to act as a control and to determine if

environmental conditions may have had a significant impact on the

mean growth of sampled trees. If normality was not met, RWIs would

have been compared using the non-parametric paired Wilcoxon test

(36). However, the residuals of all chronologies were shown to be

approximately normal, so no Wilcoxon test was needed for analysis.

Results

Impact of Lycorma delicatula infestation
on tree growth

Ailanthus altissima
The A. altissima chronologies, obtained from Montgomery

County, ranged in length from 16 to 48 years, with a mean length
Frontiers in Insect Science 05
of 30.7 years. For a two-tailed correlation of annual tree ring widths

to climate data, with a sample size of 47 years at a confidence level of

0.05, the critical value for Pearson’s correlation coefficient was 0.285

(31). All climatic variables were correlated with the standardized A.

altissima chronology, and the September average temperature had

the highest negative correlation of −0.576. A linear regression

analysis was carried out for September’s average temperature as

compared with the standardized chronology (Figure 2A). The

regression analysis showed that approximately 33% [R2 = 0.331,

degrees of freedom (df) = 47; p < 0.001] of the tree’s reduced growth

could be attributed to September’s average temperature. After

subtracting the normalized climate index from the standardized

chronology, a Student’s paired t-test showed significantly lower

rates of growth from 2015 to 2019 than from 2010 to 2014 (t =

4.424, df = 4; p = 0.011). The growth from 2005 to 2009 and 2010 to

2014, periods when A. altissima was presumed to be uninfested, was

not significantly different (t = 2.366, df = 4; p = 0.077; Figure 2B).

Juglans nigra
The J. nigra chronologies, collected from Montgomery County,

ranged in length from 26 to 81 years, with a mean length of 48.8

years. For a two-tailed correlation of annual tree ring widths to
B

C D

A

FIGURE 2

Impact of climate conditions and Lycorma delicatula on the ring width index for Ailanthus altissima in Upper Hannover Township, PA, USA (A, B) and
Blue Marsh Recreation Area, Berks County, PA, USA (C, D). Regression analysis of A altissima ring width index values and September’s average
temperature (A); a comparison of A altissima ring width index values with the dominant climate variable removed in years before (i.e., 2005 to 2009
and 2010 to 2014) and after (2015 to 2019) the likely start of L. delicatula infestation (B); a regression analysis of A altissima ring width index values
and the average temperatures for June and July (C); and a comparison of A altissima ring width index values with the dominant climate variable
removed in trees without insecticide treatment. (D). NS, the difference between means not significantly different from zero; *, the difference
between means significantly different from zero (p < 0.05).
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climate data, with a sample size of 81 years at a confidence level of

0.05, the critical value for Pearson’s correlation coefficient was 0.216

(36). All climate variables were correlated with the standardized

chronology for J. nigra, and September’s minimum temperature

had the largest negative correlation of −0.262. A linear regression

analysis was carried out for September’s minimum temperature as

compared with the standardized chronology (Figure 3A). The

regression analysis showed that approximately 7% (R2 = 0.069, df

= 81; p = 0.018), of the tree’s reduced growth could be attributed to

September’s minimum temperature. After subtracting the

normalized climate index from the standardized chronology, a

Student’s paired t-test showed no significant reduction in growth

after L. delicatula infestation (t = 2.056, df = 4; p = 0.109). However,

the climate-adjusted RWI from 2010 to 2014 was significantly less

than from 2005 to 2009 (t = 3.559, df = 4; p = 0.024; Figure 3). The

fact that there are differences in the RWI between the two-time

intervals in the absence of L. delicatula shows that factors other than

L. delicatula can influence tree regrowth.

Liriodendron tulipifera
The L. tulipifera chronologies, collected from Montgomery

County, ranged in length from 17 to 40 years, with a mean length

of 25.8 years. For a two-tailed correlation of annual tree ring widths

to climate data with a sample size of 40 years at a confidence level of

0.05, the critical value for Pearson’s correlation coefficient was 0.301

(36). All climate variables were correlated with the standardized

chronology for L. tulipifera, and July’s maximum temperature had

the largest negative correlation of −0.474. A linear regression

analysis was carried out for July’s maximum temperature as

compared with the standardized chronology (Figure 4A). The

regression analysis showed that approximately 23% (R2 = 0.2251,

df = 40; p < 0.001) of the variation in the RWI could be attributed to

July’s maximum temperature. After subtracting the normalized

climate index from the standardized chronology, a Student’s

paired t-test showed a significant reduction in the growth of L.

tulipifera after L. delicatula infestation (t = −2.961, df = 4; p =

0.042). There was no significant difference in the two uninfested
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time periods when the dominant climate variable was removed (t =

2.288, df = 4; p = 0.084; Figure 4B).

Acer rubrum
The A. rubrum chronologies, obtained from Montgomery

County, had a high degree of variation in ring width and ranged

in length from 19 to 151 years, with a mean length of 61.4 years.

None of the seven Ac. Rubrum trees sampled correlated well with

the master chronology created in COFECHA (Table 1) and were

excluded from further analysis.
Impact of chemical treatment on
Ailanthus altissima growth

The A. altissima chronologies, collected from Blue Marsh,

ranged in length from 5 to 37 years, with a mean length of 19.4

years. The eight cores did not date well with the master chronology.

Discrepancies in the wood could not be identified and the cores

were removed from further analysis. All other series dated well in

COFECHA, with an interseries correlation of 0.485 (Table 1). To

remain consistent, we standardized Blue Marsh A. altissima

chronologies by fitting a horizontal line through the mean, and

the distribution of RWIs was found to be approximately normal.

For a two-tailed correlation of annual tree ring widths to climate

data, with a sample size of 38 years at a confidence interval of 0.05,

the critical value for Pearson’s correlation coefficient was 0.312 (37).

All climate variables were correlated against the standardized

chronology for A. altissima and it was found that June’s and

July’s average temperatures had the largest negative correlation,

at −0.520 and −0.447, respectively. A linear regression was

calculated for June’s and July’s average temperatures as compared

with the standardized chronology (Figure 2C). The regression

analysis showed that approximately 32% (R2 = 0.323, df = 38; p <

0.001) of reduced tree growth could be attributed to June’s and

July’s average temperatures. After subtracting the normalized

climate index from the standardized master chronology, the data
BA

FIGURE 3

Impact of climate conditions and Lycorma delicatula on the ring width index for Juglans nigra in Upper Hanover Township, PA, USA. Regression
analysis of J nigra ring width index values and September’s minimum temperature. (A) and a comparison of J nigra ring width index values with the
dominant climate variable removed in years before (i.e., 2005 to 2009 and 2010 to 2014) and after (2015 to 2019) the likely start of L. delicatula
infestation. (B). NS, the difference between means not significantly different from zero; *, the difference between means significantly different from
zero (p < 0.05).
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were broken up into treatments for analysis using a Student’s paired

t-test (0, 1, and 2 years of insecticide treatment, respectively).

No insecticide treatment
After accounting for the dominant climate variables, A.

altissima without insecticide treatment showed a significant

reduction in RWI from 2015 to 2019 than from 2010 to 2014 (t =

3.513, df = 4; p = 0.025). However, no significant difference in

climate-adjusted RWIs was found when we compared the two

periods presumed to be before the L. delicatula invasion period,

that is, the period from 2005 to 2009 to that from 2010 to 2014, (t =

1.308, df = 4; p = 0.261; Figures 2D, 5A).

One year of insecticide treatment

After accounting for the dominant climate variables, A.

altissima that received 1 year of insecticide treatment did not

show a significant reduction in climate-adjusted RWI after the

presumed introduction of L. delicatula (t = −0.264, df = 4; p =

0.805). Similarly, no significant difference in RWI was found when

we compared the two periods before the L. delicatula invasion (t =

1.818, df = 4; p = 0.143; Figure 5B).

Two years of insecticide treatment
After accounting for the dominant climate variables, A.

altissima that received 2 years of insecticide treatment did not

show a significant reduction in RWI post-L. delicatula invasion

(t = −2.612, df = 4; p = 0.059). Similarly, no significant difference in

RWI was found when we compared the two preceding periods of

uninfested years prior to L. delicatula invasion (t = 2.153, df = 4; p =

0.098; Figure 5C).
Master chronologies

Master chronologies indicate differences in growth patterns

among the L. delicatula hosts examined. A. altissima had

suppressed growth in 2007 (likely from a severe drought that
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year) and 2015 (potentially from L. delicatula feeding)

(Figure 6A). Interestingly, J. nigra had suppressed growth in

2010, perhaps due to a late-season drought, but no negative

impacts on growth that could be associated with L. delicatula

feeding from 2015 onward were found. L. tulipifera had a

substantial increase in growth rate in 2016, the year L. delicatula

was confirmed in the area, but no other notable growth observations

were made.
Discussion

Lycorma delicatula impact on
Ailanthus altissima

We found evidence of L. delicatula reducing the annual growth

of A. altissima at two field sites. Similar impacts on trees have been

reported in related systems. Research in Mexico used

dendrochronological methods and found that a phloem-feeding

scale insect, Stigmacoccus garmilleri Foldi (Hemiptera:

Stigmacoccidae), negatively affected the growth of oak trees as

scale densities increased (37). Similarly, dendrochronological

research has shown that Tsuga canadensis (L.) (Pinales: Pinaceae)

exhibits a sharp reduction in growth immediately following

infestation from the xylem feeder Adelges tsugae (Annand)

(Hemiptera: Adelgidae) (38). Tree ring analysis has also shown

that increasing densities of xylem-feeding periodical cicadas,

Magicicada spp. Davis, can negatively affect the growth of many

tree species (14, 31).

Not all observed variations for A. altissima RWI seen in the

master chronology from the Upper Hanover Site (Figure 6A) can be

attributed to L. delicatula feeding. This result is not surprising

because many variables affect tree growth (30). For example, a

suppression in A. altissima growth occurred prior to L. delicatula

introduction, beginning in 2007 (Figure 6A). This reduction can

likely be attributed to a severe drought that occurred during the

summer and fall of 2007 in the mid-Atlantic region (39).
BA

FIGURE 4

Impact of climate conditions and Lycorma delicatula on the ring width index for Liriodendron tulipifera in Upper Hanover Township, PA, USA.
Regression analysis of L. tulipifera ring width index values and July’s maximum temperature. (A); and a comparison of L tulipifera ring width index
values with the dominant climate variable removed in years before (i.e., 2005 to 2009 and 2010 to 2014) and after (2015 to 2019) the likely start of L.
delicatula infestation (B). NS, the difference between means not significantly different from zero; *, the difference between means significantly
different from zero (p < 0.05).
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This drought potentially caused a reduction in growth for the

following several years as the trees recovered.

Treating A. altissima with the insecticide dinotefuran reduces

the impact of L. delicatula on tree growth. We were therefore able to

compare the radial growth of different A. altissima trees over the

same time period and location with the only difference being heavy

L. delicatula feeding influenced by insecticide treatment. In

addition, in North America, there are very few arthropod enemies

associated with A. altissima (40). Atteva aurea (Cramer)

(Lepidoptera: Attevidae), the Ailanthus webworm, has been

reported as a non-native herbivore to A. altissima, but severe

damage has been documented only rarely on seedlings and young

saplings (40). All trees sampled in this study measured greater than

25 cm DBH. Therefore, it is unlikely that an additional herbivore of

A. altissima was responsible for the decreased growth observed in

the untreated trees at Blue Marsh. This may indicate, where

warranted, that treating high-value trees, such as timber,

ornamental, or other economically valuable species, may help to

reduce the impacts of L. delicatula. In some areas, A. altissima is a

valuable tree and may benefit from protection. Other tree species,

not studied here, may in the future be shown to also be sensitive to

feeding by L. delicatula (41, 42).

In our experimental design, no trees uninfested with L.

delicatula were treated with dinotefuran; in theory, the larger tree

rings could have been due to the application itself. There have been
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cases where insecticides have elevated plant functions, including

photosynthesis (43). In that study, which featured an evaluation of

apple tree response to 33 insecticides, most had no effect on

photosynthesis; 12 had an effect, but only two increased

photosynthesis. No neonicotinoids were included in that study.

However, there has been no evidence reported for elevated plant

function by dinotefuran. In fact, this insecticide has been shown to

have a negative effect on plant roots (44) and increases oxidative

stress in plants (45). It is unlikely, then, that the dinotefuran

application itself was responsible for the larger tree ring growth

noted in dinotefuran-treated trees.

Our dendrochronological methods did not provide evidence of

L. delicatula significantly reducing the growth of J. nigra. J. nigra

had sample chronologies that correlated well with their master

chronology in COFECHA, indicating that they were accurately

dated (Table 1). Additional sampling may have discerned a

significant difference; a downward trend was apparent. We did

detect a significant reduction in the growth of J. nigra between the

two preceding time periods before we presume L. delicatula was

introduced. This growth suppression appears to have begun in 2010

(Figures 3B, 6B) and may be the result of a late-season drought

affecting the sampling area. A similar decrease in growth can be

seen in the master chronology of A. altissima from Upper Hanover

(Figure 6A), but this did not appear to affect significance in the

analysis of A. altissima cores. The reason for this phenomenon is
B C

A

FIGURE 5

Impact of insecticide treatment and Lycorma delicatula on the ring width index with the dominant climate variable removed for Ailanthus altissima in Blue
Marsh Recreation Area, Berks County, PA, USA. Trees had no insecticide treatment (A), 1 year of treatment (B), or 2 years of treatment (C). Comparisons
apply to years before (i.e., 2005 to 2009 and 2010 to 2014) and after (2015 to 2019) the likely start of L. delicatula infestations. NS, the difference between
means not significantly different from zero; *, the difference between means significantly different from zero (p < 0.05).
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unclear and beyond the scope of this article; further research

is needed.

Liriodendron tulipifera also had cores that correlated well with

their master chronology in COFECHA (Table 1). Once the

dominant climate factor of July’s maximum temperature for L.

tulipifera was removed, there was evidence suggesting a significant

increase in growth occurred after L. delicatula invasion (Figure 4B).

This phenomenon could be evidence that some tree species benefit

from L. delicatula invasion. Yang (2004) tested a hypothesis where

he looked at the effect of periodical cicada density on the growth of

the American bellflower, Campanulastru americanum L. (Asterales:

Campanulaceae) (46). He enriched the soil of American bellflowers

with different densities of periodical cicada carcasses that resulted in

bellflowers in the experimental group having larger seeds and

leaves, and higher nitrogen concentrations in leaves than the

control group (46).

The impact of L. delicatula on J. nigra and L. tulipifera may still

be occurring, despite no impact being detected using our methods.

For example, L. tulipifera is often less infested than A. altissima, and

not considered a consistent primary host, whereas J. nigra is often

seen as a primary host during the fourth instar and early adult life

stages of L. delicatula (authors’ observation). By contrast, A.

altissima is frequently documented to host all L. delicatula life

stages and fed on throughout the entire growing season. Reduced

feeding durations on L. tulipifera and J. nigra may result in growth
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impacts not being detectable within just 5 years. A larger sample

size that includes a diversity of different sites could help clarify if L.

delicatula does impact growth in non-A. altissima tree hosts and

ensure that we were not just looking at trees that had escaped

herbivory. Furthermore, as L. delicatula is often found feeding in

the canopies of trees, stem analysis of canopy branches may provide

useful information in future studies (40).

Lastly, this difference in impact level between A. altissima and L.

tulipifera and J. nigra could be explained by the large number of A.

altissima at this Upper Hanover Site. L. delicatula feeding may have

been focused on its preferred host A. altissima, to the exclusion of L.

tulipifera and J. nigra, and the results of sampling a site without A.

altissimamay have indicated a significant feeding impact on J. nigra

and L. tulipifera.
Conclusions

Dendrochronology can be used to identify and quantify long-

term L. delicatula feeding injury to certain trees, such as A.

altissima, as it has been used with other phloem feeders or

invasive tree-feeding herbivores. We were unable to quantify any

negative impact of feeding by L. delicatula on J. nigra or L. tulipifera.

Either the radial growth of those species is not affected by L.

delicatula feeding, or it may be that standard dendrochronology
B C

A

FIGURE 6

Master chronologies for Ailanthus altissima (A), Juglans nigra (B), and Liriodendron tulipifera (C), showing the annual ring width index with the
dominant climate variable removed over the life course of the sampled trees in Upper Hanover Township, PA, USA. Ailanthus altissima had
suppressed growth in 2007 (likely because of a severe drought that year) and 2015 (potentially from L. delicatula feeding). Juglans nigra had
suppressed growth in 2010, perhaps due to late-season drought. Liriodendron tulipifera had a substantial increase in growth rate in 2016, the year
L. delicatula was confirmed in the area.
frontiersin.org

https://doi.org/10.3389/finsc.2023.1137082
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Dechaine et al. 10.3389/finsc.2023.1137082
methods may not be the most effective way of identifying a feeding

signal and studying the long-term impacts for these tree species. It is

possible that the use of quantitative wood anatomy and the

hydrologic conductance measured by pore size could be used as a

better measure of insect injury. It is also possible that these tree

species are simply not as affected by L. delicatula feeding. Basal

insecticide applications of dinotefuran appear to reduce and prevent

damage to A. altissima trees that experience heavy feeding by

L. delicatula.
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