
Frontiers in Insect Science

OPEN ACCESS

EDITED BY

Sudeshna Mazumdar-Leighton,
University of Delhi, India

REVIEWED BY

Wei Guo,
Institute of Zoology (CAS), China
Hai-Zhong Yu,
Gannan Normal University, China

*CORRESPONDENCE

Subba Reddy Palli

rpalli@uky.edu

†
PRESENT ADDRESS

Najla M. Albishi,
Department of Biological Sciences, King
Faisal University, Al-Hassa, Saudi Arabia

SPECIALTY SECTION

This article was submitted to
Insect Molecular Genetics,
a section of the journal
Frontiers in Insect Science

RECEIVED 01 December 2022
ACCEPTED 03 January 2023

PUBLISHED 16 January 2023

CITATION

Albishi NM and Palli SR (2023) Autophagy
genes AMBRA1 and ATG8 play key roles in
midgut remodeling of the yellow fever
mosquito, Aedes aegypti.
Front. Insect Sci. 3:1113871.
doi: 10.3389/finsc.2023.1113871

COPYRIGHT

© 2023 Albishi and Palli. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Brief Research Report

PUBLISHED 16 January 2023

DOI 10.3389/finsc.2023.1113871
Autophagy genes AMBRA1 and
ATG8 play key roles in midgut
remodeling of the yellow fever
mosquito, Aedes aegypti

Najla M. Albishi † and Subba Reddy Palli*

Department of Entomology, University of Kentucky, Lexington, KY, United States
The function of two autophagy genes, an activating molecule BECN1 regulated

autophagy (AMBRA1) and autophagy-related gene 8 (ATG8) in the midgut

remodeling of Aedes aegypti was investigated. Real-time quantitative

polymerase chain reaction (RT-qPCR) analysis of RNA samples collected from

the last instar larvae and pupae showed that these two genes are predominantly

expressed during the last 12 h and first 24 h of the last larval and pupal stages,

respectively. Stable ecdysteroid analog induced and juvenile hormone (JH) analog

suppressed these genes. RNA interference (RNAi) studies showed that the

ecdysone-induced transcription factor E93 is required for the expression of

these genes. JH-induced transcription factor krüppel homolog 1 (Kr-h1)

suppressed the expression of these genes. RNAi-mediated silencing of AMBRA1

and ATG8 blocked midgut remodeling. Histological studies of midguts from

insects at 48 h after ecdysis to the final larval stage and 12 h after ecdysis to the

pupal stage showed that ATG gene knockdown blocked midgut remodeling.

AMBRA1 and ATG8 double-stranded (dsRNA)-treated insects retained larval

midgut cells and died during the pupal stage. Together, these results

demonstrate that ecdysteroid induction of ATG genes initiates autophagy

programmed cell death during midgut remodeling. JH inhibits midgut

remodeling during metamorphosis by interfering with the expression of

ATG genes.

KEYWORDS
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1 Introduction

Metamorphosis is associated with tissue remodeling in holometabolous insects, including the

yellow fever mosquito, Aedes aegypti (1). Molting and metamorphosis are regulated by juvenile

hormone (JH) and 20-hydroxyecdysone (20E is the most active form of ecdysteroids). JH is an

anti-metamorphosis hormone essential for preventing metamorphosis (2). Steroid-induced

programmed cell death is involved in the degeneration of the larval midgut, salivary glands, fat
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body, and other tissues and has been extensively studied in

holometabolous insects (3). Programmed cell death (PCD) plays a vital

role in insect metamorphosis and development. Programmed cell death,

which includes apoptosis and autophagy, has been described only in few

insects (3). However, most of the research is focused on apoptosis.

Autophagic programmed cell death is a cellular mechanism highly

conserved from yeast to mammals and depends on the lysosomal

degradation pathway for elimination of dysfunctional cellular

components. In eukaryotic cells, autophagy is regulated by a series of

autophagy-related proteins (ATG) that function in the cellular process of

autophagy: induction, nucleation, expansion, and completion of the

autophagosome, which is followed by lysosomal fusion (4). The

protein activating molecule BECN1 regulated autophagy (AMBRA1) is

a novel regulator of autophagy that interacts with Beclin-1 (interact with

BCL-2 protein) and stimulates its binding to vacuolar protein sorting-

associated protein 34 (Vps34), which plays a role in autophagosome

formation during autophagy (5). Increasing evidence of a pivotal role of

AMBRA1 protein in autophagy and apoptosis has been reported in

vertebrate neurodevelopment in previous years (6). A mutation in the

AMBRA1 gene impairs the regulation of autophagy in mice and alters the

balance between apoptotic cell death and proliferation and resulting in

embryonic lethality (7). From yeast to mammals, two conjugation

systems are involved in the autophagosome formation process: the

formation of the ATG12-5-16 complex on the isolation membrane and

the localization of ATG8-PE to the isolation membrane. ATG12 and

ATG8, ubiquitin-like proteins, play crucial roles in phagophore

expansion and the formation of autophagosomes, which also requires

other ATG proteins such as ATG4, ATG3, ATG7, and ATG10 (4). The

ubiquitin-like protein ATG8 promotes the expansion of the isolation

membrane and autophagosome membrane formation. ATG8 remains

attached to the autophagosome until it is trafficked to the lysosome,

where ATG4 releases it after the autophagosome is fused with the

lysosome to form the autolysosome (8). Because of these reasons,

ATG8 protein has been utilized as a marker for autophagic activity

and autophagosome formation (9).

In insects, autophagy is an integral part of developmental

processes in the remodeling of larval tissues (10, 11). In the fruit

fly, Drosophila melanogaster, autophagy, and apoptosis are involved

in the degradation of larval salivary glands; the silencing of ATG genes

impairs the elimination of this organ (10). Autophagy has been

reported to be involved in larval midgut degradation. Larval midgut

degradation was delayed by inhibition of autophagy signaling in the

ATG2 mutant larvae or knockdown of ATG1 and ATG18 by RNAi

during metamorphosis. In contrast, the overexpression of ATG1

triggers premature midgut degradation (12). In lepidopteran insects,

the removal of the larval tissues requires both the canonical apoptosis

machinery and autophagy detected in the midgut (13), silk glands

(14), and fat body (15, 16) during metamorphosis. The function of

ATG, the critical regulator protein during metamorphosis, is largely

unknown in the Ae. aegypti midgut remodeling.

The induction of autophagy by 20E has been explored in the

midgut and fat body (13, 17). The PCD is promoted by 20E in the

absence of JH; the increased levels of 20E induce apoptosis and

autophagy (16, 17). In D. melanogaster, E93 influences autophagy by

regulating a subset of ATG (10, 18), and ecdysone-response genes
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(BR-C, E74, HR3, and bftz-F1). The Target-of-Rapamycin (TOR)

negatively regulates autophagy in the D. melanogaster fat body during

larval development, and 20E directly regulates autophagy by targeting

the PI3K pathway (19, 20). Here, we have examined the function of

ATG genes in the Ae. aegypti midgut remodeling. To learn insights

into autophagy’s role in Ae. aegypti midgut remodeling, we studied

two core autophagy genes, AMBRA1 and ATG8 and discovered that

the interaction between JH, 20E and autophagy plays a crucial role in

regulating autophagy-dependent midgut remodeling in Ae. aegypti.
2 Methods

2.1 Insect rearing and staging

Ae. aegypti mosquitoes from Liverpool IB12 (LVP-IB12) strain

were maintained in the laboratory at 27 ± 1°C temperature and 70-

80% relative humidity with a photoperiod of 16:8 light/dark cycle, as

previously described (1). The developmental markers were used to

identify the stages of mosquito larvae (21).
2.2 RT-qPCR

Total RNA was isolated and used to quantify mRNA levels using

gene-specific primers (Table S1) and RT-qPCR as described

previously (1). The RPS7 gene (AAEL009496) was used as a

reference gene for normalization, and the 2−DDCT method was used

to calculate the relative mRNA levels.
2.3 RNAi-mediated knockdown of
ATG genes

For dsRNA preparation, fragments of the target genes were

amplified from genomic DNA using Taq Polymerase (Taq

2XMaster Mix, NEB), Double-stranded RNA synthesis and

preparation of poly-L-lysine (PLL), epigallocatechin gallate

(EGCG),and dsRNA nanoparticles were prepared as described

previously (22). Diet pellets containing 50 µg of AMBRA1, ATG8,

E93, Kr-h1, or GFP dsRNA were made by mixing the dsRNA/PLL/

EGCG complexes with a Bovine liver powder diet and were fed to the

early third instar larvae (15 larvae per pellet) daily until they pupated

or died. The knockdown efficiency in the 4th instar larval stage was

determined using RT-qPCR.
2.4 Histology studies

For midgut morphological analysis, midgut dissected from larvae

at 48 h AEFL and pupae at 12 h AEPS were dissected, fixed, stained,

and photographed as described previously (1). The midgut sections

were cut, processed, and photographed.

Additional details on Methods used in these studies are included

in the supplementary information.
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3 Results

3.1 Expression of AMBRA1 and ATG8
during metamorphosis

RT-qPCR was used to determine mRNA levels of two autophagy-

related genes, AMBRA1 and ATG8, in the midguts collected at 6 h

intervals during the larval-pupal metamorphosis. The results showed

that AMBRA1 mRNA levels increased at the end of the final instar

larval stage and reached the maximum levels by 0 h after ecdysis into

pupal stage (AEPS), then decreased by 6 h AEPS, and remained low

during the rest of pupal stage (Figure 1A). In contrast, the ATG8

mRNA levels increased beginning at 42 h after ecdysis to final instar

larval stage and reached the maximum levels at 6 h AEPS. The mRNA

levels then decreased to reach undetectable levels by 24 h AEPS.

(Figure 1A). The mRNA levels of AMBRA1 and ATG8were measured
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in different tissues, including the brain, midgut, fat body, and

epidermis of the last instar larval and pupal stages. In general,

higher levels of AMBRA1 and ATG8 mRNAs were detected in the

midgut and fat body than in the other two tissues (Figure 1S).

Expression of both AMBRA1 and ATG8 during the last 12 h of the

last instar larval stage and early pupal stage and their expression in the

midgut of larval and pupal stages suggest their involvement in midgut

remodeling during the metamorphosis of Ae. aegypti.
3.2 Regulation of ATG genes expression by
ecdysteroids and juvenile hormone

To study the effect of hormones on the midgut remodeling, the

midguts were dissected from larvae at 48 h after ecdysis into the final

instar larval stage (AEFL), and pupae at 0 and 6 h AEPS developed from
B

A

FIGURE 1

Developmental expression and hormone response of AMBRA1 and ATG8 genes during the final instar larval and pupal stages of Aedes aegypti. (A)
Developmental expression of two autophagy genes AMBRA1 and ATG8 in the midgut of last instar larvae and pupae. Total RNA was isolated from
midguts from staged insects. The cDNA and gene specific primers (Table S1) were used in RT-qPCR to determine relative mRNA levels of AMBRA1 and
ATG8. The RPS7 gene was used as a reference gene for normalization, and the 2−DDCT method was used to calculate the relative mRNA levels. (B)
Induction of AMBRA1 and ATG8 by stable ecdysteroid analog (SEA) and their suppression by JH analog (JHA). Relative mRNA levels are shown as Mean ±
SE (n=4). The asterisks indicate significant difference at a p-value of <0.05.
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larvae exposed to JH analog (JHA)methoprene, stable ecdysteroid analog

(SEA) RH-102240 or the control larvae treated with DMSO. RT-qPCR

analysis of RNA isolated from these midguts showed that E93 and USP-

AmRNA levels increased in SEA-treated insects and Kr-h1 mRNA levels

increased in JHA-treated insects compared to their levels in control

insects, suggesting that hormone analogs are active and functioning as

expected (Figure 2S). The mRNA levels of AMBRA1 and ATG8 are

higher in SEA-treated insects and lower in JHA-treated insects compared

to their levels in control insects (Figure 1B). Similar response to SEA and

JHAwas detected for other ATG genes studied (Figure 2S). To determine

if E93 and Kr-h1 regulate the expression of ATG genes, AMBRA1 and

ATG8mRNA levels were determined inAe. aegypti larvae fed on dsKr-h1

and dsE93 nanoformulations. Due to the challenge of delivering naked

dsRNA to Ae. aegypti larvae, diet pellets containing PLL/EGCG

nanoformulated dsRNA were fed to early third instar larvae. The

dsE93 treated larvae developed to the pupal stage, but the adult

development was blocked and died during the pupal stage (Figure 2A).

The dsKr-h1 treated larvae did not undergo metamorphosis and died

during the last instar larval stage (Figure 2B). The AMBRA1 and ATG8

mRNA levels increased in insects fed on dsKr-h1 and decreased in insects

fed on dsE93 (Figures 2A, B). These results showed the antagonistic

effects of E93 and Kr-h1 on the expression of the AMBRA1 and ATG8 in

Ae. aegypti suggesting that these two transcription factors regulate the

expression of AMBRA1 and ATG8.
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3.3 Knockdown of AMBRA1 and ATG8
blocked midgut remodeling

To determine the function of AMBRA1 and ATG8, RNAi was

used to knockdown the expression of these genes. Diet pellets

containing PLL/EGCG nanoformulations of dsAMBRA1, dsATG8,

or dsGFP (as a control) were fed to early third instar larvae.

Knockdown of AMBRA1 and ATG8 resulted in defects in larval

growth and development (Figure 3A). The treated larvae were

smaller and darker when compared to control larvae fed on dsGFP.

In addition, feeding dsAMBRA1 or dsATG8 to the larvae for three

days resulted in more than 60% mortality (Figure 3B). Compared to

the control (dsGFP fed), the AMBRA1 and ATG8 mRNA levels

decreased by 70% and 74%, respectively, in dsAMBRA1 and

dsATG8 fed larvae (Figure 3C).

The midgut remodeling begins within 36 h of ecdysis to the final

larval instar (AEFL) and continues until 12 h AEPS (1). Therefore, we

examined the knockdown efficiency and effects at two developmental

time points: at 48 h AEFL and 12 h AEPS. Following dsRNA feeding,

midguts were dissected from the larvae at 48 h AEFL and pupae at

12 h AEPS. Midguts from control larvae fed on GFP reached, and the

gastric caeca began to degenerate at 48 AEFL (Figure 4A). By 12 h

AEPS, the midguts in the control larvae were thin, and the gastric

caeca degenerated (Figure 4A). The midguts dissected from larvae fed
B

A

FIGURE 2

Decreased expression of ATG genes in E93 and Kr-h1 knockdown Aedes aegypti larvae. (A) E93 is required for the 20E-dependent activation of ATG
genes. Relative mRNA levels of E93, AMBRA1, and ATG8 in dsE93 fed larvae. (B) Relative mRNA levels of Kr-h1, AMBRA1, and ATG8 in the dsKr-h1 fed
larvae. Data shown as Mean ± SE (n=4). The scale bar is 1000 µm. The asterisks indicate significant difference at a p-value of <0.05.
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on dsAMBRA1 and dsATG8 did not show these changes in

morphology. These midguts were long and wide with intact gastric

caeca similar to those in larvae, which indicated that midgut

remodeling was blocked in these insects (Figure 4A). The sections

of the midguts were stained DAPI to detect the size of epithelial cell

nuclei. The midguts from larvae 48 h AEFL (dsGFP-treated control)

contained two types of epithelial cells: larval epithelial cells with large

polyploid nuclei (indicated with a yellow arrow) and stem cells has

small diploid nuclei (marked with a white arrow) (Figure 4B). The

pupal midgut consisted mostly of new epithelial cells with small

diploid nuclei, where the larval epithelial cells migrated toward the

lumen and formed the meconium. Midguts dissected at 12 h AEPS of

larvae fed on dsAMBR1 or dsATG8 showed mostly larval cells (large

polyploid nuclei) and a few cells with small nuclei. These data suggest

that there is a block in the degeneration of larval cells in insects fed on

dsAMBR1 and dsATG8. Together, these results demonstrate that

AMBRA1 and ATG8 are expressed in the midgut tissues and play an

important role in PCD of the larval midgut in Ae. aegypti.
4 Discussion

The studies reported here revealed a critical role for ATG genes in

the midgut remodeling of Ae. Aegypti. AMBRA1 is a novel regulator

for phagophore nucleation, and the knockout of AMBRA1 in mice
Frontiers in Insect Science 05
resulted in autophagy inhibition and embryonic lethality (5–7). ATG8

is essential for autophagic vesicle formation and has been utilized as a

marker for autophagic activity in previous studies (9). Therefore,

AMBRA1 and ATG8 have been common targets in autophagy studies.

Disruption of autophagy contributes to blocking cell death in D.

melanogaster (12), B. mori (11), and H. virescens (23) midgut and

other larval tissues in insects (15–17). Studies in Galleria mellonella

indicated that the formation of autophagosomes in the fat body cells

concomitantly with the upregulation of ATG6 and ATG8 genes were

observed during the early pupal stage (24). In the mosquito Aedes

albopictus, ATG8 was found to be expressed across all developmental

stages, and the ATG8mRNA levels are higher in female adults than in

male adults (9). Ae. aegypti females require a cascade of autophagy

cytoplasmic events for oocyte development (25). The involvement of

AMBRA1 as a regulator of autophagy and development processes has

also been reported in mouse embryos, and its loss leads to abnormal

embryonic development. AMBRA1 also regulates neurogenesis and

cancer in mammals (6), suggesting that the function of ATG genes

may be conserved.

RNAi-mediated AMBRA1 and ATG8 knockdown caused defects

in midgut remodeling and death during the pupal stage in Ae. aegypti.

Several studies have shown that inhibiting autophagy genes has a

significant impact on development. In D. melanogaster, the ATG1

mutants die before pupation (10), and in Bombyx, knockdown of

several ATG genes caused lethality during prepupal and pupal stages
B C

A

FIGURE 3

Phenotypes observed in final instar Aedes aegypti. larvae fed on dsAMBRA1 and dsATG8 (A) The larval phenotypes observed after dsAMBRA1 and dsATG8
formulated with PLL/EGCG nanoparticles were fed to third instar larvae. The control larvae were fed on PLL/EGCG/dsGFP nanoparticles. The scale bar is
1000 µm. (B) ATG gene knockdown induces mortality of Ae. aegypti larvae. Percent mean mortality is shown (n= 30/treatment). (C) The Knockdown
efficiency of dsAMBRA1 and dsATG8 in the last instar larva after three days of feeding. Relative mRNA levels are shown as Mean ± SE (n=4). The asterisks
indicate significant difference at a p-value of <0.05.
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(16), suggesting autophagy is a key player in metamorphosis.

Moreover, previous studies have demonstrated that autophagy

promotes cell death in larval midgut tissues during metamorphosis.

InD. melanogaster, knockdown of the ATG genes using RNAi delayed

midgut degeneration, and the overexpression of ATG1 resulted in

accelerated degradation of midgut tissues and contributed to pupal

death (12, 26). Additionally, ATG proteins also participate in midgut

remodeling during the larval-pupal transition in B. mori (11).

Knockdown of ATG12 in H. armigera larvae delayed pupation and

midgut PCD (13). These results support our finding that autophagy

contributes to midgut remodeling in Ae. aegypti.

JHA suppressed the expression of AMBRA1 and ATG8 genes,

while SEA upregulated their expression in the midgut. JHA repressed

the expression of ATG genes in the 4th instar larval stage, resulting in

a defect in programmed cell death, and midguts maintained their

larval cells. JH has been shown to inhibit autophagy in the fat body of

Mamestra brassicae during the last larval instar, and RNAi of the JH

receptor, methoprene tolerant had a significant effect on autophagic

activity in B. mori and causing lethality during the larval-pupal

transition (3). Studies in D. melanogaster and B. mori reported that

20E promotes both apoptosis and autophagy gene expression during

metamorphosis (13, 27). In B. mori, an increase in ATG gene

expression was observed in the fat body of larvae immediately after

injection with 20E. EcR response elements (EcRE) are present in the

ATG1 promoter, and deletion of EcRE inhibited 20E-induced

autophagy in B. mori (16). Another study demonstrated that the

expression of ATG1 and ATG8 were inhibited upon EcR RNAi, which

implies that 20E/EcR complex is involved in the regulation of ATG

genes in the fat body of Ae. aegypti (25). The detailed molecular

mechanism by which JH suppresses ATG expression requires

further investigation.
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Furthermore, these studies showed that both E93 and Kr-h1 are

involved in JH and 20E hierarchical network that regulates

autophagy. E93 has been classified as an “early” response gene of

the ecdysone signaling pathway (28). SEA treatment upregulated E93

and JHA treatment upregulated Kr-h1 expression resulting in the

suppression of ATG genes and blocking of PCD cascade in the midgut

(Figure 2). It is also possible that the JH early response gene Kr-h1

may influence the E93 and ATG expression levels in Ae. aegypti. In D.

melanogaster, E93 is induced by 20E and suppressed by JH (29) and

Kr-h1 directly represses E93 expression (30). The JH-mediated

suppression of E93 expression through Met and Kr-h1 has also

been found in several other insects (29, 31). High JH levels may

prevent the expression of E93 during larval-larval molting. Therefore,

the inhibition of midgut remodeling in JHA-treated insects is likely

caused by the lack of E93. Moreover, RNAi of E93 significantly

decreased the mRNA levels of the AMBRA1 and ATG8 (Figure 2).

RNAi experiments suggested that E93-mediated 20E signaling

activates ATG gene expression in the midgut during metamorphosis,

while JH suppresses autophagy induction through transcription factor

Kr-h1. Previous studies showed that the induction of E93 by 20E

determines a PCD response (31). In Ae. aegypti, E93 regulates

autophagic cell death and expression of ATG genes, which is similar to

what was observed in theD.melanogaster salivary gland andmidgut (18).

In B. mori E93 induces the expression of ATG1 to promote the larval-

pupal metamorphosis, and silencing of E93 by the RNAi disrupted the

steroid-programmed cell death signaling, including caspase activity,

autophagy, and cell dissociation during fat body remodeling (32). The

E93 mediates 20E-induced autophagic cell death in the midgut and

salivary glands, and a mutation in E93 reduced the expression of theATG

genes in the salivary glands (10) and the midgut (33). In summary, both

B. mori and D. melanogaster display increased expression of ATG genes
BA

FIGURE 4

The effects of AMBRA1 and ATG8 knockdown on midgut remodeling in Aedes aegypti. (A) The larval midguts were dissected from larvae at 48 h AEFL
and pupae at 12 h AEPS after feeding on dsAMBRA1 and dsATG8 and compared with the control larvae fed on dsGFP. The scale bar is 1000 µm. (B)
Cross-sections of midguts of larvae at 48 h AEFL and pupae at 12 h AEPS developed from dsAMBRA1 and dsATG8 fed larvae compared with the control
larvae. DAPI nuclear stain showed that the larval midgut epithelium contains two types of cells with small nuclei (white arrow) and large nuclei (yellow
arrow). In the control pupa, the midguts showed only small nuclei-containing cells. The midguts from ATG gene knockdown insects showed both small
and large nuclei. The scale bar is 50 mm.
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promoted by E93, whereas JH suppresses the transcription of E93,

indicating that JH plays a negative role in the induction of autophagy

through interaction with 20E signals through Kr-h1. Further studies are

required to uncover the effects of JH on the interaction of ATG, E93, and

Kr-h1 proteins in midgut remodeling. Overall, these studies revealed an

important role of autophagy genes in the degradation of larval midgut in

Ae. aegypti. Knockdown of AMBRA1 and ATG8 led to a block in midgut

remodeling and death during the pupal stage. Application of JHA to the

4th instar larvae induced Kr-h1, suppressed E93 expression and

autophagy. These data suggest that the autophagy is induced by 20E

and suppressed by JH working through Kr-h1, E93 and ATG genes.
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