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Nutrient supply and accessibility
in plants: effect of protein and
carbohydrates on Australian
plague locust (Chortoicetes
terminifera) preference
and performance

Jonah Brosemann1*, Rick Overson1,2, Arianne J. Cease1,2,
Sydney Millerwise1 and Marion Le Gall2

1School of Sustainability, Arizona State University, Tempe, AZ, United States, 2School of Life Sciences,
Arizona State University, Tempe, AZ, United States
In contrast to predictions from nitrogen limitation theory, recent studies have

shown that herbivorous migratory insects tend to be carbohydrate (not protein)

limited, likely due to increased energy demands, leading them to preferentially

feed on high carbohydrate plants. However, additional factors such as

mechanical and chemical defenses can also influence host plant choice and

nutrient accessibility. In this study, we investigated the effects of plant protein

and carbohydrate availability on plant selection and performance for a migratory

generalist herbivore, the Australian plague locust, Chortoicetes terminifera. We

manipulated the protein and carbohydrate content of seedling wheat (Triticum

aestivum L.) by increasing the protein:carbohydrate ratio using nitrogen (N)

fertilizer, and manipulated the physical structure of the plants by grinding and

breaking down cell walls after drying the plants. Using a full factorial design, we

ran both choice and no-choice experiments to measure preference and

performance. We confirmed locust preference for plants with a lower protein-

carbohydrate ratio (unfertilized plants). Unlike previous studies with mature wild

grass species, we found that intact plants supported better performance than

dried and ground plants, suggesting that cell wall removal may only improve

performance for tougher or more carbohydrate-rich plants. These results add to

the growing body of evidence suggesting that several migratory herbivorous

species perform better on plants with a lower protein:carbohydrate ratio.
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1 Introduction

Herbivores are often predicted to be limited by protein because

plants typically have low nitrogen and, by extension, protein content

relative to animals (1–4). However, herbivores with high energetic

demands, such as migrating locusts, prefer and perform better when

fed diets that are carbohydrate-biased (5–10). Most of these recent

studies employed the Geometric Framework for Nutrition (GFN),

which demonstrates consumers’ ability to balance dietary

macronutrients like protein and carbohydrates. This regulation is

key for maximizing performance (11). Thus, herbivores with high

energetic demands are predicted to select plants with a low protein:

carbohydrate ratio so they can meet their metabolic needs without

overconsuming protein, as protein has been shown to have

deleterious effects when consumed in high quantities (12–15).

However, other factors such as mechanical and chemical defenses

can influence host plant choice and herbivore performance. Here, we

tested the interactive effects of host plant fertilization and wheat

seedling state (intact or ground) on the preference and performance

of the Australian plague locust, Chortoicetes terminifera (Walker)

(Orthoptera: Acrididae), the most economically important and

widespread locust species in Australia.

Locusts are grasshoppers that aggregate at high density and

migrate long distances; they are also generalist herbivores (16).

Long distance flights are fueled primarily by fat stores that are

typically built via carbohydrate consumption (7, 17, 18). Indeed,

locust outbreaks are often found in areas containing low protein,

high carbohydrate plants, as has been shown in China (19),

Australia (10, 20), and West Africa (8, 9, 21). When given the

choice to balance dietary macronutrients with two complementary

artificial diets using GFN methods, field populations of locusts

select carbohydrate biased diets on which they have the highest

growth and survival: Oedaleus asiaticus in China (5, 19), Oedaleus

senegalensis in Senegal (8, 9), Schistocerca cancellata in Paraguay

(7), and Chortoicetes terminifera in Australia (10, 22). Furthermore,

Oedaleus asiaticus locusts fed their preferred protein:carbohydrate

ratio fly for longer periods of time (5, 23). This pattern holds when

eating plants. S. cancellata nymphs collected from marching bands

preferred and gained more weight when fed plants with high

carbohydrate contents (7). While O. senegalensis is found in

environments where rapidly growing plants are often protein-

rich, locusts are more numerous in fallow fields where soil

fertility is lower (21) and plants contain more carbohydrates (9).

This species preferred unfertilized over fertilized millet leaves, and

had higher survival and laid heavier eggs when kept in field cages

over unfertilized vs. fertilized millet (8). Collectively, these studies

indicate that balancing protein and carbohydrate, and especially

ensuring adequate carbohydrates, is an important factor influencing

host plant choice for locusts. However, limited studies have

investigated the interactive effects of plant nutrients and their

mechanical properties on herbivory and on herbivores themselves.

In addition to raw nutrients, plant physical attributes, cell walls in

particular, may restrict nutrient access and limit performance of

herbivores (24, 25, 2004; 26). The plant cell wall is an extracellular

matrix made of two main layers, the middle lamella and the primary
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cell wall, that encapsulate much of the plant cell’s nutritional content

(27). The primary cell wall is made of cellulose which is undigestible,

except by specialized consumers such as ruminants (28). Plant cell

walls can hinder nutrient assimilation for herbivorous insects. For

example, the Australian plague locust can only assimilate 40% of

plant carbohydrate content when the cell wall is present compared to

90% when this barrier is mechanically overcome by grinding the

plants (25). Surprisingly, insects were able to assimilate 80% of plant

protein content when cell walls were intact (29). This suggests that

carbohydrates are less accessible in some plant species than protein,

although the mechanisms behind this are poorly understood. These

studies were conducted using non-agricultural (undomesticated)

grasses common to Australia and it is unknown if this pattern of

inaccessibility holds for domesticated grass varieties that may be less

defended mechanically and typically more protein-rich (25) or across

agricultural regimes that may affect nutrient availability, such as

soil amendments.

During outbreak years, the Australian plague locust, C.

terminifera, invades rangeland and agricultural fields (30, 31), and

wheat is grown on 42% of the 19.7 million ha of crop-growing land

vulnerable to these outbreaks (32). We tested how locusts

responded to wheat that was either fresh or ground and with

different levels of nitrogen fertilizer. We predicted that

fertilization would decrease, and grinding would increase,

preference and performance by mechanically breaking down the

cell wall and making carbohydrates more accessible. Understanding

how both plant nutrient content and accessibility affect locust

choice and performance when eating key crops is strategic for

improving management programs for this serious pest.
2 Methods

2.1 Plant treatment and nutrient analysis

2.1.1 Wheat treatments
We purchased seeds of red hard winter wheat (Triticum

aestivum L.) from Sustainable Seed Company (South Salt Lake,

Utah) and stored them in a freezer at −20°C until the beginning of

the experiment. We chose this variety because of its hardiness and

popular use as both a crop and as a dietary staple for lab-reared

locust colonies. Wheat was grown hydroponically in a greenhouse

at temperatures ranging from 20–22° C from November to January

(light cycle 10.5 light hr:13.5 dark hr).

Seeds were first soaked for 18–24 hours in a cool dark area to

initiate germination. We then placed 700–730 seeds in perforated

containers (food-safe plastic, 16 × 13 × 4 cm) and covered them for

two days. Once germinated, we placed those perforated containers

in flood trays (Active Aqua AALR24B Low Rise Black Flood Table,

ABS plastic, 121 × 61 × 13 cm). Every eight hours, each tray was

flooded for 15 minutes. Three days after being placed into the flood

trays, using the same watering regimen, the wheat for the fertilized

treatment received 4.792 g.L−1 of urea (Greenway Biotech Inc. 46-0-

0), an optimal amount for field-crop wheat (33). We dissolved the

granulated urea in water and added to the sump of each hydroponic
frontiersin.org
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system. This fertilization period lasted three days to support optimal

nitrogen uptake (34, 35). The control treatment received water for

three weeks. For both control and fertilized treatments, we replaced

the water used to flood the wheat every 4–5 days.

Because wheat and other cereal grains are most vulnerable to

locust damage at the seedling stage, we used three-week old

seedlings. Once plants had reached the desired age of 21 days old,

we set half the wheat aside for the live-grass experiment, and cut the

remaining half of both treatments down the base and dried the

leaves at 60°C for 48 hours. Afterwards, we ground the dried wheat

to particles of< 10 m diameter (following 25) using a Retsch MM 400

ball mill at 30 Hz for 30 s. Ground leaves were then frozen at −20°C

in airtight containers until use.

2.1.2 Protein and carbohydrate analyses
Plant protein content was determined with a Bradford assay and

the non‐structural carbohydrate content using the phenol‐sulphuric

acid method on the dried and ground plant material (e.g., 22, 36).
2.2 Australian plague locust and
experimental design

2.2.1 Locusts
Our C. terminifera lab colony is hosted at Arizona State University

(Arizona, USA) and was established in 2015 from a colony originating

from The University of Sydney (New South Wales, Australia). The

Australian lab colony was started with wild locusts collected in 2005

and 2006 from Eastern andWestern Australia (37) and has since been
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supplemented with field locusts in 2017. The ASU colony is reared on

a 14 h light:10 h dark cycle with RH = 20–50%, and a 30 ± 2 °C (light)

25 ± 2 (dark) °C daily temperature cycle. Locust colonies are fed non-

fertilized hydroponically grown wheat seedlings, supplemented with

wheat bran (Tempe Feed) treated with tri-sulfa (Sigma Aldrich) for

colony health.

2.2.2 Fresh wheat: choice experiment
All experiments started when locusts molted into their last

nymphal instar (5th instar) at which point they were weighed,

sexed, and placed in an experimental enclosure. In total we used 12

wire mesh cages (45 cm long × 45 cm wide × 45 cm tall), each

containing ten individuals (five males and five females). We did this

to more accurately measure the amount of consumption as the

individual consumption measurements would be more prone to

inaccuracy due to small differences in amount consumed. The food

source needed to be cut into “patties” containing wheat sprouts still

connected to bare roots to remain turgid throughout the duration.

We fed each cage of locusts two clipped and pre-weighed wheat

patties presented in 8 × 6 cm food containers (SI, Figure 1). One

food container was filled with nitrogen-fertilized wheat and the

other with unfertilized (control) wheat. After 24 hours, locusts were

removed and weighed. The remaining wheat was dried for 48 hours

and weighed to measure consumption. This experiment used a

group because there was more than one food source and there

would have been major logistic issues with to keeping track of

individual consumption on multiple foods. We estimated dry

consumption using a regression equation linking the mass of

fresh wheat to the mass of dried wheat. For this, we recorded the
FIGURE 1

Food consumed for the choice experiments after 24 hours for the fresh wheat experiment (panel A) and for the ground wheat (panel B). There were 60
locusts per treatment for panel (A) and 13 locusts per treatment for panel (B) Different letters indicate significant differences of p<0.05 between groups.
Boxplots show medians and interquartile ranges.
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mass of 15 patties of control wheat and 15 patties of fertilized wheat,

dried them for 48 hours at 60° C, and recorded their dried mass.

The regression equation is presented in the Supporting Information

(SI, Table 1).
2.2.3 Fresh wheat: no-choice experiment
For the no-choice experiment, we used ten cages per treatment

(fertilized and control). Each cage contained six individuals (three

females and three males) that were individually marked on the

pronotum with Sharpie brand (Atlanta, Georgia) paint markers.

We used six individuals per cage for this experiment because that

number allowed us to better measure freshmass consumed of a single

plant choice. We replaced the wheat patty every day until the locusts

molted or died. We recorded locust mass and frass production (mg)

every three days, as well as development time. We recorded

consumption for days 0–3, days 0–6, and total consumption; locust

body mass change for days 0–3, days 0–6, and total locust body mass

change; development time (the duration of the locusts’ fifth stadium);

survival; total frass production; and assimilation. Assimilation was

calculated using the following formula:

Assimilation   =
 Mass   of  wheat   consumed   by   cage  −  Mass   of   frass   produced   by   cage  

Mass   of  wheat   consumed   by   cage
2.2.4 Ground wheat: choice experiment
We placed 26 freshly molted 5th instar locusts (half males and

half females) into individual 17.5 × 11.5 × 4.5 cm perforated

polystyrene cages with a perch for roosting and a water tube.

Each cage contained two pre‐weighed dishes: one filled with

fertilized and the other control (unfertilized) ground wheat. After

three days, we removed any frass present in the dish and dried the

diets for 24–36 hours at 60° C and then weighed the diets to

measure the amount of ground wheat consumed.
2.2.5 Ground wheat: no-choice experiment
The no-choice setup was identical to the choice experiment,

except that a locust received only one food dish per cage (fertilized

ground wheat or control ground wheat). We used 26 individually

housed locusts per treatment. We then removed the diet dishes after

three days, and dried, weighed and replaced the dishes with new

pre-weighed dishes. The no-choice experiment ended when the

locusts molted or died. We recorded consumption for day 0–3, day

0–6, total consumption, locust mass change for day 0–3, day 0–6,

day 0–9, total locust mass change, development time and survival,

frass production, and food assimilation.
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2.2.6 Artificial diet vs ground wheat:
no-choice experiment

This experiment was run to test if dry foods, those with a

complete lack of edible water, was to blame for high mortality and

poor molting success found in other experiments. To compare the

effects of dried, ground wheat to a dried and powdered artificial diet

containing all nutrients needed for locust growth and development,

we ran a final experiment. An experiment similar to those with

ground no-choice tests but instead of comparing the performance

of wheat treatments, we compared the performance of control

wheat to an artificial diet using ratios selected by field populations

of C. terminifera (p14:c28) (10). We used 16 locusts (8 for each

treatment; 1:1 sex ratio) and followed the same protocol as

described in previous sections.
2.3 Statistical analyses

Prior to any statistical analysis, we assessed all data collected for

normality and homoskedasticity, which we found to be true. To

compare protein and carbohydrate contents between fertilized and

control wheat, we performed a MANOVA. For all experiments, we

analyzed consumption and locust mass change using ANCOVAs

with locust initial mass as a covariate to account for size differences

and sex as a cofactor. For development time and survival, Kaplan-

Meier survival analyses were used. For both the ground and the fresh

grass experiments, we calculated frass and consumption rates (e.g.,

consumption/days in experiment) and analyzed both using

ANCOVA’s and locust initial mass as a covariate. For all analyses

besides the survival analysis, locusts that were not alive for the

duration of the interval recorded (e.g. day 0–3 or day 0–6) were

removed from the analysis. We presented the cumulative results for

standardized time periods (days 0–3 and days 0–6) as well as for the

whole experiment (day 0 to time of molt). All statistical analyses were

conducted using R studio version 1.3.1073. as well as JMP Pro 15.2.0
3 Results

3.1 Protein and carbohydrate content of
wheat plants

The fertilization treatment significantly increased the protein:

carbohydrate ratio of wheat plants expressed in %p: %c of dry mass,

from p28:c14 (control) to p29:c8 (fertilized) (Table 1) (F=72.16,

P<0.001). This pattern was driven by a decrease in carbohydrate
TABLE 1 Results from a MANOVA comparing the protein and carbohydrate contents (%) between fertilized and control (unfertilized) wheat plants.

Variable Source df F-ratio p-value

Carbohydrate & Protein content (%) Treatment 1 72.16 <0.0001*

Carbohydrate content (%) Treatment 1 109.32 <0.0001*

Protein content (%) Treatment 1 0.02 0.89

Total Macronutrient (%) Treatment 1 109.32 <0.0001*
fron
Results from ANOVAs comparing carbohydrate content (%), protein content (%), and total macronutrient content (%) between fertilized and control (unfertilized) wheat plants.
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content from 14.24% ± 1.78 SE in control plants to 7.52% ± 0.52 SE

in fertilized plants (F=109.32, P<0.001). There was no significant

effect of fertilizer on protein content; the average for across both

treatments were 28.13% ± 3.89 SE (F=0.02, P = 0.89). Fertilization

decreased total macronutrient content from 41.86% ± 8.25 SE to

36.15% ± 1.84 SE (F =109.32, P<0.001).
3.2 Choice experiments: insights
into preference

Locusts that were provided with fresh wheat consumed 1.75

times the control wheat compared to fertilized wheat, by dry mass

(Table 2, Figure 1) (F =30.45, P<0.001). Similarly, locusts placed on

the ground wheat treatments ate 2.9 times more of the control

wheat than the fertilized wheat. (Table 2, Figure 1) (F =60.08,

P<0.001). For both ground and fresh plant experiments, the locusts

selected very similar ratios of protein to carbohydrates (p28:c11

fresh vs p28p:c12 ground) (Figure 2).
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3.3 No choice experiments: insights
into performance

3.3.1 Consumption, locust mass change, frass
production, and assimilation on fresh wheat

The locusts in the control treatment consumed more wheat

than those fed fertilized wheat during the first three days and up to

six days (~400 mg more, 27% more by dry mass) (F=8.93, p= 0.02;

F=7.78, p=0.03 respectively), but there were no significant

differences for the entirety of the experiment (Table 3; Figure 3)

(F=2.52, P=0.16). Locusts from the control treatments gained more

weight in the first three days and up to six days compared to locusts

fed the on fertilized wheat (Table 3, Figure 3) (F=4.29, P= 0.04;

F=4.13, P=0.05 respectively), but there was no difference in mass

gain for the duration of the whole experiment (F=2.26, P=0.14).

Locusts produced more frass when fed wheat from the control

treatment than nitrogen-amended (fertilized) wheat (Table 3;

Figure 4) (F=31.88, P= 0.001), however assimilation was not

significant (Table 3; Figure 4) (F=5.50, P=0.06).
TABLE 2 ANCOVA results comparing the consumption (mg) between fertilized and control (unfertilized) wheat for the two choice experiments.

Variable Source df F-ratio p-value

Fresh Consumption (mg) Treatment 1 30.45 <0.0001*

Start Mass (mg) 1 7.01 0.02*

Ground Consumption (mg) Treatment 1 60.08 <0.0001*

Start Mass (mg) 1 2.00 0.16
fron
Treatment refers to the wheat (fertilized or control). Locust wet start mass was used as a covariate to adjust for size differences among insects. For the fresh wheat experiment we used 12 replicates
and 10 grasshoppers per replicate. For the ground treatment we used 26 replicates and 1 grasshopper per replicate.
FIGURE 2

Protein:carbohydrate intake (p:c intake) of locusts when presented with a choice between fertilized and control wheat in fresh (gray dashed line) and
ground (black dashed line). The dotted lines represent their p:c intakes and the triangles indicate the raw means and their standard errors of the
mean (SEM's) of the amount consumed after 24 h. The solid lines represent the p:c ratio of the fertilized and control wheat plants. There were 60
locusts per treatment for the fresh wheat experiment and 13 locusts per treatment for the ground wheat experiment. For comparison, we have
added results from separate studies showing the preferred p:c ratio from a field population (10) and a lab colony (37) measured using artificial diets
with a broad range of accessible p:c spanning 7p:35c to 35p:7c.
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3.3.2 Consumption, locust mass change, frass
production, and assimilation on ground wheat

The locusts in the control treatment, feeding on ground

unfertilized wheat, consumed more food than locusts fed the

ground fertilized wheat for the first six days; there were no

differences for days 0–3, days 0–9, or for the entire experiment

(Table 4, Figure 5). There was no difference in locust mass change

for any of the aforementioned time periods (Table 4, Figure 5).

There was also no difference between control and fertilized

treatments for frass production (Table 4), or assimilation (Table 4).

3.4 Survival and molting success of locusts
on fresh and ground wheat

There was high molting success for the locusts eating fresh

plants and meager molting success for locusts eating dried ground
Frontiers in Insect Science 06
plants (Figure 6A, B, Table 3, 4) but there was no significant

difference between the control and fertilized groups within each

experiment (fresh: F=0.44 P=0.51 dried ground: F= 0.16, P=0.69).

There were similarly no statistical differences in death rate for the

two experiments between the control and fertilized groups within

each experiment, but there was a higher death rate in those eating

dried ground grass (Figure 6C, D, Table 3, 4) (fresh: F=0.17 P=0.68

dried ground: F= 1.35, P=0.25).
3.5 Artificial vs control ground wheat:
consumption, locust mass change,
and survival

There was a significant difference in both mass consumed and

locust mass change between the two groups; the artificial diet group
TABLE 3 Results from no-choice fresh plant experiments for consumption (mg), mass gain, frass production (mg), and assimilation from ANCOVAs
with initial body mass as a covariate and sex as a cofactor.

Variable Source df F-ratio/ChiSq p-value

Consumption Day 0–3 (mg) Treatment 1 8.93 0.02*

Start Mass (mg) 1 0.003 0.96

Sex 1 13.24 0.01*

Consumption Day 0–6 (mg) Treatment 1 7.78 0.03*

Start Mass (mg) 1 0.003 0.96

Sex 1 19.00 0.005*

Consumption Rate (mg/day) Treatment 1 2.52 0.16

Start Mass (mg) 1 5.52 0.06

Sex 1 2.49 0.17

Mass Gain Day 0–3 (mg) Treatment 1 4.29 0.04*

Start Mass (mg) 1 3.59 0.06

Sex 1 68.73 <0.0001*

Mass Gain Day 0–6 (mg) Treatment 1 4.13 0.05*

Start Mass (mg) 1 19.21 <0.0001*

Sex 1 57.19 <0.0001*

Mass Gain Day 0–End (mg/day) Treatment 1 2.26 0.14

Start Mass (mg) 1 45.63 <0.0001*

Sex 1 129.89 <0.0001*

Frass Production (mg/day) Treatment 1 31.88 0.001*

Start Mass (mg) 1 1.06 0.34

Sex 1 24.36 0.003*

Assimilation (%) Treatment 1 5.50 0.06

Start Mass (mg) 1 2.37 0.17

Sex 1 0.29 0.61

Molting Rate Treatment 1 0.44 0.51

Death Rate Treatment 1 0.17 0.68
fron
Molting and survival rates were compared using Kaplan Meier survival analyses. Treatment refers to the wheat (fertilized or control). For each treatment we used 25 replicates with one
grasshopper per replicate. There were 59 locusts alive per treatment for day 0–3, and 37 locusts alive per treatment for day 0–6.
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consumed and acquired more mass for each time interval. For days 0–

3, 0–6, and from day 0–End (Table 5, Figure 7) (mass consumed:

F=10.52, P=0.01; F=9.74, P=0.01;F=2.47, P=0.03) (mass gained:

F=15.86, P=0.01; F=14.00, P=0.01; F=2.45, P=0.03). Locust mortality
Frontiers in Insect Science 07
was significantly different between treatments (molt rate:F=4.35, P=0.4;

Death rate: F=11.13, P=0.008). Locusts fed the artificial diet molted in

about 7 days and had no mortality, while those fed the control wheat

molted after about 9 days and had 60% mortality (Table 5, Figure 8).
FIGURE 3

Fresh wheat no choice experiment. Panel A, C represent average amount of food consumed by locusts for each treatment for days 0–3 (panel A)
and days 0–6 (panel C). Panel (B, D) represent the mass gain by locusts for each treatment on day 0–3 (panel B), days 0–6 (panel D). Panels (E, F)
show the consumption (panel E) or mass gain (panel F) daily rate of consumption corrected for individual’s time in experiment. For each treatment
we used 10 replicates with 6 grasshopper per replicate. There were 60 locusts in experiment for day 0–3, and 30 locusts in the experiment for day
0–6 (individuals not included either molted or died). Different letters indicate significant differences of p<0.05 between groups. Boxplots show
medians and interquartile ranges, with any outliers represented as open circles.
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4 Discussion

Growing evidence indicates that final instar locusts prefer and

perform best on diets with a lower protein to carbohydrate ratio,

whether feeding on artificial diets or plants (reviewed in 6), and

this study provides some support for that pattern. Locusts

increased consumption on control wheat treatment, which had

both a higher caloric and carbohydrate density. This increase in
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consumption corresponded with an increase in mass, likely as

lipid (7). However, besides growth, this increase in food

consumption did not improve nutrient assimilation, molting

success, or survival. In contrast to previous studies (25, 29), we

did not find that breaking down plant cell walls increased locust

performance. In fact, locusts performed better on intact wheat

than they did on dried ground wheat, which may have been due to

mechanical or nutrient differences (38, 39) in the grass species
FIGURE 4

Dried ground wheat no choice experiment. The left column (A, C, E, and G) shows food consumed and the right column (B, D, F, H) shows mass
gain over different time periods in the experiment. For each treatment we used 13 individual locusts per replicate. There were 26 locusts in the
experiment for day 0–3, and 18 locusts in experiment for day 0–6 (individuals that were removed either molted or died) and 11 for days 0–9.
Different letters indicate significant differences of p<0.05 between groups. Boxplots show medians and interquartile ranges, with any outliers
represented as open circles.
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used and/or how plants were dried. This research question could

benefit from further investigation.

When locusts are given the choice between foods differing in

macronutrient content, they will self-regulate by compensatory

feeding of each plant to strategically meet their ideal p:c ratio (6).

Locusts and swarming grasshoppers tend to select a carbohydrate-

biased p:c intake target (6). For example, final (5th) instar C.

terminifera selected 1p:1.13c in a lab population (37) and 1p:1.8c

to 1p:1.37c in field populations (10). However, protein-biased

nutritional landscapes are common in agricultural settings and

for young rapidly growing plant tissues (8, 40). Indeed, both

control and fertilized wheat in our study contained more protein

than carbohydrates: control was p1.94:c1 and fertilized was p3.81:c1

(Figure 2). Thus, locusts in our study were constrained to a protein-

biased diet for both plant choice and plant no-choice experiments.

Accordingly, the self-selected p:c ratios in the choice experiment

were both protein-biased, albeit slightly less protein-biased for the

dried ground wheat (2.42p:1c vs. p2.26:c1).

Results from all experiments indicated that locusts preferred the

control wheat over the fertilized wheat. In choice experiments,
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locusts ate about 2–3 times the amount of control relative to

fertilized wheat; in no choice experiments, locusts ate about 30–

70% more over 6 days when confined to control wheat relative to

fertilized. Locusts conferred some benefits in eating the lower p:c

wheat. In fresh wheat experiments, locusts eating control wheat had

a faster weight gain in the first 6 days, though there was not a

significant effect of fertilization on food assimilated or on molting or

death rate. Our study was conducted on a single nymphal stadium

and it is likely that longer-term experiments would show stronger

effects. For example, a long term study on caterpillars (Heliothis

virescens) showed that there is only a narrow range of p:c that

maximizes performance over the course of their lifespans (41).

Because balancing p:c intake is a primary driver of foraging behavior

and growth for insect herbivores (42), it is likely the lower p:c ratio

of control plants increased preference and growth rate. Given that

protein amounts were similar in control and fertilized wheat plants

(Table 1), our results suggest that carbohydrates may be a key factor

in this choice. Locusts may have chosen plants based on total energy

content as unfertilized plants were more macronutrient dense

(36.15% ± 1.84 SE and 41.86% ± 8.25 SE, respectively). It is also
TABLE 4 Results from the no-choice ground plant experiments for consumption (mg), mass variation (mg), frass production (mg), and assimilation
from using ANCOVAs with start mass as a covariate and sex as a cofactor.

Variable Source df F-ratio/ChiSq p-value

Consumption Day 0–3 (mg) Treatment 1 1.40 0.25

Start Mass (mg) 1 2.17 0.15

Consumption Day 0–6 (mg) Treatment 1 4.97 0.04*

Start Mass (mg) 1 0.48 0.50

Consumption Day 0–9 (mg) Treatment 1 12.2 0.004*

Start Mass (mg) 1 0.18 0.67

Consumption Day 0–End (mg/day) Treatment 1 0.18 0.67

Start Mass (mg) 1 0.13 0.72

Mass Gain Day 0–3 (mg) Treatment 1 1.76 0.20

Start Mass (mg) 1 1.72 0.20

Mass Gain Day 0–6 (mg) Treatment 1 0.59 0.46

Start Mass (mg) 1 0.94 0.34

Mass Gain Day 0–9 (mg) Treatment 1 3.49 0.09

Start Mass (mg) 1 1.29 0.27

Daily Mass Gain (mg/day) Treatment 1 1.85 0.19

Start Mass (mg) 1 3.30 0.08

Frass Production (mg/day) Treatment 1 1.71 0.22

Start Mass (mg) 1 0.18 0.67

Assimilation (%) Treatment 1 0.01 0.94

Start Mass (mg) 1 1.36 0.26

Molting Rate Treatment 1 0.16 0.69

Death Rate Treatment 1 1.35 0.25
fron
Molting and survival rates were compared using Kaplan Meier survival analyses. Treatment refers to the wheat (fertilized or control). For each treatment we used 25 replicates with one
grasshopper per replicate. There were 22 locusts alive per treatment for day 0–3, 16 locusts alive for day 0–6, and 15 locusts alive for day 0–9.
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FIGURE 5

(A, B) showing frass production of fresh plants (A) or dried ground plants (B). (C, D) showing food assimilation when locusts consumed fresh (C) or
dried ground plants (D). Different letters indicate significant differences of p<0.05 between groups. Boxplots show medians and interquartile ranges,
with any outliers represented as open circles.
FIGURE 6

(A, B) show molting success of fresh (A) and ground (B) wheat treatments respectively. (C, D) show the mortality of locusts consuming fresh (C) and ground
(D) wheat treatments respectively. Different letters indicate significant differences of p<0.05 between groups.
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possible that using a simple N fertilizer like urea decreased

micronutrients; other studies have shown (43) usage of urea can

cause a negative effect that producers may avoid by using fertilizers

with more micronutrients like aminochelates. Nevertheless, our

results corroborate other regional studies (China (5, 2012),

Australia (10, 2020), and West Africa (8, 9, 21, 44)) indicating

that late-instar locust and swarming grasshopper species prefer and

perform best on low p:c diets.

Our expectation was that grinding wheat to particles smaller

than 10mm would increase nutrient accessibility, particularly

soluble carbohydrates, and therefore increase performance.

Another study on 5th instar C. terminifera nymphs found that

grinding freeze dried Mitchell grass (Astrebla lappacea) improves

nutrient accessibility and assimilation (25). Furthermore, this same

study (25) showed that locusts were able to extract 50% more

carbohydrates when plant cell walls were removed by grinding than

when they were consuming fresh plants (25). Therefore, we

expected preference for unfertilized wheat (less protein-biased

plant) to be more pronounced when using intact plants since

carbohydrates should be harder to access. However, we found

similar preference for unfertilized plants in both fresh and dried

ground studies. Moreover, for locusts fed dried ground plants in our

study, we recorded lower food consumption, less successful molts to

adult, and lower survival.

We have identified potential factors that may explain the

differing effects of dried ground plants on locusts between

Clissold et al. (25) and our study. In the Clissold et al. (25) study,

lyophilizing (freeze drying) the plants instead of desiccating them in

a drying oven may have helped maintain nutrient and vitamin levels

that may have been degraded through the drying process in our

samples. Another potential explanation may lie in plant structure as
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leaf toughness can affect nutrient accessibility and plant choice (25,

29, 45). Here we used a seedling (3-4 weeks old) cereal crop, wheat,

which is not as thick as the wild Mitchell grass (A. lappacea) used in

the Australian study (12-14 weeks old). Thus, grinding the tough

Mitchell grass may have released more nutrients than grinding soft

wheat sprouts. Grasses (Poaceae) can contain high concentrations

of silica (46) which can wear out herbivore mandibles and decrease

consumption (47, 48). Silica has been shown to deter locusts which

prefer to eat plants with lower silica concentration (49–52). It is

possible that grinding the plants released silica structures inside the

gut of the insects, causing internal damage (51, 53), though that

would not explain higher performance in locusts eating ground

grass in the Clissold et al. (25) study. A final explanation may be

major differences in nutritional content between these two plant

species. Adult Mitchell grass contains 9.7% protein and 24.1%

carbohydrates (25) while our seedling unfertilized wheat plants

contained 27.6% protein and 14.2% carbohydrates. Thus, grinding

wheat seedlings may not have released the same amount of soluble

carbohydrates. More studies using additional combinations of plant

and grasshopper species are needed to disentangle the relative

importance of these factors.

We contrasted experiments using control dried ground plants

with dry powder artificial diets to ensure low consumption and

growth rates were not due to diets being a dry powder. Locusts

eating the artificial diet had substantially higher consumption and

growth rates than locusts eating dried ground plants. This result

may be partially due to the p:c ratio of the artificial diet (14p:28c)

being a better match to the preferred p:c of C. terminifera

populations (10, 37), which likely further supported improved

growth. However, rates for the artificial diet overlapped with

consumption and growth rates for locusts eating control fresh
TABLE 5 Results from the no-choice ground vs artificial experiments for consumption (mg), mass variation (mg), frass production (mg), and
assimilation from using ANCOVAs with start mass as a covariate.

Variable Source df F-ratio/ChiSq p-value

Mass Gain Day 0–3 (mg) Treatment 1 10.52 0.01*

Start Mass (mg) 1 0.80 0.39

Mass Gain Day 0–6 (mg) Treatment 1 9.84 0.01*

Start Mass (mg) 1 0.39 .55

Daily Mass Gain (mg/day) Treatment 1 6.12 0.03*

Start Mass (mg) 1 .05 .8243

Consumption Day 0–3 (mg) Treatment 1 15.86 <0.01*

Start Mass (mg) 1 6.96 .02*

Consumption Day 0–6 (mg) Treatment 1 14.00 <0.01*

Start Mass (mg) 1 2.68 0.13

Consumption Rate (mg/day) Treatment 1 6.02 0.03*

Start Mass (mg) 1 2.42 0.14

Molting Rate Treatment 1 4.35 0.04*

Death Rate Treatment 1 11.13 0.0008*
fron
Molting and survival rates were compared using Kaplan Meier survival analyses. Treatment refers to the food (artificial or control wheat). For each treatment we used 16 replicates with one
grasshopper per replicate.
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wheat, so there was likely a combination of nutritional and

structural factors at play.

In conclusion, we showed that fertilizing young wheat makes

it less preferred by Australian plague locusts than control wheat,

and that locusts will decrease consumption if confined to

fertilized wheat seedlings. It was important to test young

plants because seedling stages are typically more vulnerable to

locust attacks on foliage since older plants with more leaves can

better tolerate herbivory (32, 54). While seedling wheat crops

regularly sustain considerable damage from C. terminifera in
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Australia (32), we showed that their nutritional profile is far

from the optimal p:c ratio for this locust species. Our results

suggest that carbohydrate is potentially a limiting nutrient for C.

terminifera, particularly in agricultural settings where nymphal

bands attack seedling plants that may be richer in protein than

what is usually assumed for grasses. This study represents an

important step in bridging the gap between theoretical

knowledge developed using artificial diets and practical

advances that can form the basis of a nutritionally-based

management program for herbivorous pests.
FIGURE 7

Comparison of no choice experiments for locusts eating artificial diets vs control dried ground wheat grass. Left column (A, C, E) compares mass
gained, right column (B, D, F) mass consumed over different time periods in the experiment. Different letters indicate significant differences of
p<0.05 between groups. Boxplots show medians and interquartile ranges, with any outliers represented as open circles.
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letters indicate significant differences of p<0.05 between groups.
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