AUTHOR=Senay Senait D. , Pardey Philip G. , Chai Yuan , Doughty Laura , Day Roger TITLE=Fall armyworm from a maize multi-peril pest risk perspective JOURNAL=Frontiers in Insect Science VOLUME=2 YEAR=2022 URL=https://www.frontiersin.org/journals/insect-science/articles/10.3389/finsc.2022.971396 DOI=10.3389/finsc.2022.971396 ISSN=2673-8600 ABSTRACT=

We assembled 3,175 geo-tagged occurrences of fall armyworm worldwide and used that data in conjunction with information about the physiological requirements of the pest to spatially assess its global climate suitability. Our analysis indicates that almost the entire African maize crop is grown in areas with climates that support seasonal infestations of the insect, while almost 92% of the maize area supports year-round growth of the pest. In contrast, rich-country maize production largely occurs in temperate areas where only 2.3% of the area may allow the pest to survive year-round, although still subject to worrisome seasonal risks. This means the African maize crop is especially susceptible to damaging infestation from fall armyworm, on par with the risk exposure to this pest faced by maize producers throughout Latin America. We show that the maize grown in Africa is also especially vulnerable to infestations from a host of other crop pests. Our multi-peril pest risk study reveals that over 95% of the African maize area deemed climate suitable for fall armyworm, can also support year-round survival of at least three or more pests. The spatial concurrence of climatically suitable locations for these pests raises the production risk for farmers well above the risks posed from fall armyworm alone. Starkly, over half (52.5%) of the African maize area deemed suitable for fall armyworm is also at risk from a further nine pests, while over a third (38.1%) of the area is susceptible to an additional 10 pests. This constitutes an exceptionally risky production environment for African maize producers, with substantive and complex implications for developing and implementing crop breeding, biological, chemical and other crop management strategies to help mitigate these multi-peril risks.