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Oenocytes are large secretory cells present in the abdomen of insects known to

synthesize very-long-chain fatty acids to produce hydrocarbons and pheromones that

mediate courtship behavior in adult flies. In recent years, oenocytes have been implicated

in the regulation of energy metabolism. These hepatocyte-like cells accumulate lipid

droplets under starvation and can non-autonomously regulate tracheal waterproofing

and adipocyte lipid composition. Here, we summarize evidence, mostly from Drosophila,

establishing that oenocytes perform liver-like functions. We also compare the functional

differences in oenocytes and the fat body, another lipid storage tissue which also

performs liver-like functions. Lastly, we examine signaling pathways that regulate

oenocyte metabolism derived from other metabolic tissues, as well as oenocyte-derived

signals that regulate energy homeostasis.

Keywords: oenocytes, Drosophila, lipid metabolism, tissue communication, hepatocyte, adipocyte, fat body cells,

hydrocarbon

INTRODUCTION

Regulating energy utilization and storage is central to animal physiology and adaptation to
environmental challenges. Under conditions of nutrition surplus, glucose is converted to fatty
acids, which are then synthesized into triglycerides (TGs) and stored as lipid droplets. Excessive
lipid stores can be detrimental and have been associated with various metabolic diseases, such
as cardiovascular diseases (CVDs), non-alcoholic fatty liver disease (NAFLD), obesity and insulin
resistance, making understanding lipid metabolism of great importance to human health.

The liver is the major detoxifying organ of the body and plays a central role in regulating
the metabolism of carbohydrates, proteins and lipids. Moreover, the liver is the major site for
glycogen storage and very low-density lipoprotein (VLDL) secretion (1, 2). During starvation,
adipocytes undergo lipolysis to produce free fatty acids (FFAs). FFAs are processed by hepatic
oxidation to generate ketone bodies in the liver which are then used as fuels for other tissues.
If mobilization of FFAs exceeds the rate of lipid oxidation, re-esterification of surplus FFAs
to TGs occurs in the liver, leading to an increase in intrahepatic TG content, i.e., steatosis.
NAFLD, a common manifestation of the metabolic syndrome, is characterized by steatosis in
the absence of starvation. Nonalcoholic hepatic steatosis is present in approximately 25% of
the adult population worldwide, and NAFLD is the most common liver disease in Western
societies. Thus, understanding how hepatic diseases regulate cellular processes in peripheral
organs and how other organs contribute to steatosis is of interest to human metabolic diseases.
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Major metabolic and endocrine pathways are conserved in
Drosophila, making this model organism well suited to dissect
the cellular and molecular mechanisms underlying physiology
(3–5). The fly fat body is equivalent to the vertebrate white
adipose tissue (WAT), which stores excess fat as TGs. In
addition, fly oenocytes, which are similar to hepatocyte cells,
are important for mobilizing stored lipids from the fly fat
body (6). Like mammals, flies convert excess carbohydrates into
TGs through de novo lipogenesis (7, 8). In addition, excess
carbohydrates and amino acids can also be processed into
UDP-glucose, which fuels glycogen synthesis (9). Regulation
of energy storage in flies involves several signaling pathways,
including insulin/insulin-like growth factor (IGF) signaling,
which is similar to the insulin signaling in mammals (10).
However, unlike mammals, there are eight different Drosophila
insulin-like peptides (dILPs). Most of these modulate the IGF
pathway through a single insulin receptor, InR (10, 11). Under
nutrient-deprivation or energy demanding conditions, lipids
are released from the fat body through increased lipolysis
(12), and are further processed in oenocytes (6, 13). Signaling
that regulates catabolism of lipids and carbohydrates include
adipokinetic hormone (Akh), which is similar to glucagon in
mammals and ecdysone, which antagonizes insulin signaling
(14, 15).

In this review, we explore the potential of Drosophila
oenocytes as a model for hepatic diseases. We summarize
the different roles of oenocytes and the fat body in
regulating carbohydrate and lipid metabolism under
normal or starved conditions. We also discuss the
intricate interplay of oenocytes with other tissues,
including the fat body and muscles, in shaping organismal
lipid storage.

OENOCYTES AS THE LIPID
METABOLIZING CENTER

Oenocytes were originally described as wax-producing cells
because histological stains and organic extractions suggested that
they contain wax particles or other lipids (16). These unusual
cells contain abundant smooth endoplasmic reticulum (ER),
which synthesizes lipids, phospholipids, steroids and metabolizes
carbohydrates (17). In addition, oenocytes are also highly
enriched in peroxisomes (18), the major sites for metabolism
of reactive oxidative species (ROS) and β-oxidation of very-
long-chain fatty acids. Both smooth ER and peroxisomes are
highly enriched in mammalian hepatocytes, highlighting the
functional similarities between oenocytes and liver cells in
lipid metabolism.

Oenocytes in different insects have been shown to change with
the molting cycle (16), prompting investigation of the role of
oenocytes in production of the insect hormone ecdysone. The
active form of ecdysone, 20-hydroxyecdysone (20E), which is the
primary molting hormone, regulates a variety of physiological
processes, including metamorphosis, immune response, and
reproduction (19–21). In larvae, ecdysone is mainly synthesized
in the prothoracic gland from its cholesterol precursor via a

set of cytochromes P450 proteins encoded by the “Halloween
genes” (22). In adults, ecdysone is mainly but not exclusively
synthesized in ovary (23). Ecdysone is converted to 20HE in
peripheral tissues, such as the fat body, Malpighian tubules, and
midgut. These tissues express shade (shd), which encodes an E-
20-monooxygenase that mediates the hydroxylation of ecdysone
at carbon 20 (24). Interestingly, two of the ecdysone biosynthesis
genes, Phantom and Shadow, are highly expressed in adult
oenocytes (25), suggesting that oenocytes participate in ecdysone
biosynthesis. Further, manipulation of spidey, which encodes
a steroid dehydrogenase, regulates ecdysone metabolite levels
(26). Silencing or overexpression of spidey during embryonic
development results in pupal lethality, similar to what is
observed for mutations in ecdysone signaling pathway genes
(26). In addition, oenocyte-specific knockdown of spidey in
larvae results in accelerated oxidation of 20HE, while overall
20HE levels remain unchanged. Finally, overexpression of spidey
in oenocytes leads to dramatic reduction of 20HE and its
catabolic metabolites (26) (Figure 1). In further support of the
role of oenocytes in ecdysone biosynthesis, isolated oenocyte-
fat body complexes (OEFC) from adult males of the cricket
Gryllus bimaculatus have been found to secrete ecdysteroids
(32). Moreover, ecdysone has been linked to lipid metabolism
in various tissues (33–35), suggesting that oenocytes regulate
lipid metabolism by modulating ecdysone levels. It remains
to be elucidated whether oenoytes contribute to ecdysone
synthesis during adult or larval stages, a question that could be
addressed using genetic ablation of the oenocytes. Furthermore,
the functional significance of ecdysone in oenocytes physiology
and metabolism is of interest.

In line with the central role in lipid metabolism, oenocytes
are also the major sites for VLCFAs synthesis, which are
constituents of cellular lipids such as sphingolipids and cuticular
hydrocarbons. Oenocyte ablation during larval stages using the
GAL4/UAS-reaper system leads to compromised tracheal air-
filling and the larvae exhibit hypoxia-induced phenotypes in
larvae. Strikingly, oenocyte ablation or knockdown in larvae
of genes encoding VLCFA metabolizing enzymes (ACC, KAR,
elongase) result in severe tracheal defects, with the tracheal tubes
filled with an aqueous solution (31). Interestingly, the spiracle
ducts, which are connected to the trachea and correspond to
the respiratory openings found on the thorax and abdomen
of larvae, are no longer filled with Oil Red O-staining in
oenocyte-ablated or Acc mutant larvae (31), suggesting that
larval oenocytes might provide VLCFAs that coat the trachea.
Alternatively, VLCFAs, which are synthesized from oenocytes,
can signal non-autonomously to control lipid metabolism in
spiracles, which have been proposed to obtain waterproofing
lipids from specialized spiracular gland cells (Figure 1) (16).

In adult flies, cuticular hydrocarbons have been found to
provide protection from desiccation and to act as pheromones
for sexual communication and modulate longevity (16, 36, 37).
Previous studies have suggested that cytoplasmic projections
from the oenocytes contact the epidermis and that these cell-to-
cell contacts facilitate lipid or lipoprotein transfer from oenocytes
to the epidermis (38–42). Adult male and female flies in which
oenocytes have been ablated using the GAL4/UAS system, show
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FIGURE 1 | Roles of oenocytes in modulating metabolism and responding to nutritional signal. Muscle derived PDGF- and VEGF-related factor 1 (Pvf1) signals to

PDGF- and VEGF-receptor related (PvR) in oenocytes to inhibit lipid accumulation and lipogenesis in adult flies (27). Elevated levels of circulating fats can promote

oenocyte steatosis and inhibit very long chain fatty acid biosynthesis (28). Knockdown of target of rapamycin (TOR) or slimfast (slif ) in the larval fat body increase

steatosis in oenocytes (6). During fasting, the adult fat body produces Insulin-like peptide 6 (Ilp6) which activates the Insulin-like receptor (InR) in oenocytes to promote

lipid accumulation and mobilization (13). The nuclear receptors Hepatocyte nuclear factor 4 (Hnf4) and seven up (svp) in adult oenocytes regulate very long chain fatty

acid (VLCFA) biosynthesis (26, 29). Knockdown of svp in oenocytes impairs vitellogenesis in ovaries, possibly by reducing hydrocarbon production (30). Spidey in

oenocytes can metabolize 20-hydroxyecdysone (20HE) and promotes oenocyte proliferation (26). Larval oenocyte-derived hydrocarbon can waterproof the trachea

(31). The VLCFA biosynthesis pathway is depicted with Drosophila genes (in blue) (29). Abbreviations in the pathway: ACC, Acetyl-CoA carboxylase; FASN1-3, Fatty

acid synthase 1-3; TER, HACD and Elongase are each encoded by multiple genes; FarO, Fatty acyl-CoA reductase in oenocytes; Cyp4g1, cytochrome P450 4g1;

Cpr, Cytochrome P450 reductase. Figure is created with BioRender.com.

reduced levels of most of the cuticular hydrocarbons (36).
Oenocyte-specific knockdown of genes regulating hydrocarbon
production, such as CYP4g1, leads to reduced desiccation
resistance (43). Further, mutations in the nuclear receptor Hnf4,
which is strongly expressed in oenocytes (6), show reduced
expression of genes involved in VLCFA biosynthesis, including
KAR, CYP4g1, Cpr and genes encoding elongases; reduced
levels of hydrocarbons; and decreased dry starvation resistance
(Figure 1) (29). Interestingly, mouse hepatocytes isolated from
mice with a mutation in HNF4α, the mammalian ortholog
of Hnf4, also show markedly decreased expression of genes
that encode elongases, i.e., Elovl3 or Elovl5. Mice mutant for
Elovl1 and Elovl4 die shortly after birth from acute dehydration
and loss of epidermal hydrophobic barrier function (44, 45),
suggesting that the regulation of VLCFA biosynthesis by HNF4
is evolutionarily conserved.

DROSOPHILA OENOCYTES AS AN
EMERGING MODEL FOR LIVER FUNCTION

Studies of oenocytes focused on their role in hydrocarbon
synthesis until Gutierrez et al. showed that larval oenocytes can
store and process lipids under starvation, a function analogous
to what occurs in the mammalian liver. Under fed conditions,
Drosophila larvae store lipids in themidgut epithelial cells and the
fat body (6, 46). However, after 14 h of fasting, lipid droplets can
no longer be detected in the fat body and the midgut, but intense
Oil Red O staining persists in the oenocytes (6). Observation of
this starvation induced steatosis suggested that larval oenocytes
have hepatocyte-like functions. Further, although the progenitors
of larval and adult oenocytes are different (16), Chatterjee et al.
showed that like larval oenocytes, adult oenocytes also exhibits
starvation-induced steatosis and that this process is mediated by
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fat body secreted Drosophila insulin-like peptide 6 (dILP6) (13).
Under acute fasting response, adult female flies accumulate lipid
droplets in the oenocytes, although the level of this steatosis is
mild and more heterogenous as compared to what is observed
in larvae. In starvation conditions, several genes with catabolic
and gluconeogenic functions in hepatocytes are also highly
induced in oenocytes, including amylase proximal (amy-P) and
phosphoenolpyruvate carboxykinase (pepck), which catalyzes the
rate-limiting step in gluconeogenesis (13).

In addition to gluconeogenic genes, which are induced
in oenocytes in response to starvation response, oenocytes
are also enriched with genes involved in ketogenesis, long-
chain fatty acid metabolism, and peroxisomal function, all of
which are also enriched in the mammalian liver. Huang et al.
performed oenocyte-specific translatomic profiling using the
RiboTag sequencing approach to explore this. By comparing
oenocyte RiboTag data with previously published fly whole body
transcriptome datasets, these authors identified genes enriched
in adult oenocytes (25). Further, by comparing these genes to
genes enriched inmammalian liver, Huang et al. identified several
commonly enriched genes. One of them is HMG-CoA synthase
(Hmgs in flies and HMGCS1/2 in humans), which encodes the
key enzyme involved in ketogenesis and cholesterol biosynthesis.
Others include HMG-CoA lyase (CG10399 in flies and HMGCL
in humans) and D-β-hydroxybutyrate dehydrogenase (shroud in
flies and BDH1 in humans), which encode key enzymes involved
in ketogenesis. These observations suggest that oenocytes may
be the primary site for ketogenesis in flies. Our current
understanding of ketone body metabolism in insects is limited
to locusts. Bailey et al. showed that the hemolymph of
the locust Schistocerca gregaria contains appreciable levels of
acetoacetate and at least a small amount of 3-hydroxybutyrate
(47). The levels of acetoacetate, but not of 3-hydroxybutyrate,
increase during starvation and flight. This is different from
mammals, in which 3-hydroxybutyrate is the dominating ketone
body. It seems possible that Drosophila oenocytes produce
alternative ketone bodies, including acetoacetate, under flight or
starved condition.

Genes involved in the synthesis of VLCFAs and microsomal
fatty acid elongation are also highly enriched in oenocytes
and the liver (25). These include very-long-chain 3-ketoacyl-
coA synthase (CG18609 in flies and ELOVL2 in humans),
which catalyzes the first step of VLCFA synthesis in smooth
ER (25), and several key genes involved in the production of
cuticular hydrocarbons, such as Cyp4g1, Cpr, FarO (16, 28, 29,
41). Notably, the role of the mammalian liver in synthesizing
hydrocarbons is unclear, although it has been shown that
VLCFA genes (ELOVL2 and ELOVL6) are enriched in this
organ. Fibroblast growth factor 21 (branchless in fly and FGF21
in human), is also a key hormonal factor that is enriched
in both oenocytes and the liver (25). FGF21 is an important
metabolic regulator that has anti-diabetic properties in humans
(48). Several studies have shown that FGF21 stimulates fatty
acids oxidation, ketone body production and inhibits lipogenesis
(49, 50). Interestingly, exogenously provided FGF21 increases
longevity and stress tolerance in female silkworms (Bombyx
mori), possibly through activated AMPK, FoxO, and sirtuins

TABLE 1 | Summary of liver function compared with fat body and oenocytes.

Liver Fat body Oenocyte References

Lipoprotein production Yes ? (51)

Glycogen metabolism Yes ? (52)

Starvation induced steatosis No Yes (6, 13)

Ketogenesis ? ? (25, 46)

Innate immune response (25)

Detoxification of chemicals Yes Yes (25, 53–56)

Amino acid metabolism Yes ? (54–57)

Clotting regulation ? ?

Bile acid production ? ?

Cholesterol metabolism ? ?

(51), suggesting that insects can be used as animal models for
evaluating the pharmaceutical effects of FGF21. The role of
FGF21 in fly oenocytes remains to be characterized and may
provide an excellent model to further decipher the role of FGF21
in oenocyte/liver function.

COMPARISON OF THE ROLES OF
OENOCYTES AND THE FAT BODY WITH
LIVER FUNCTIONS

In addition to oenocytes, the fat body has also been regarded
as a liver-like tissue in Drosophila, given its roles in nutrient
sensing, glycogen storage, detoxification, the immune response,
and lipid storage (3). Interestingly, comparison of oenocyte-
and fat body-enriched genes revealed that there was very little
overlap between these two tissues (25), suggesting that they
perform distinct biological functions. Indeed, Gene Ontology
(GO) analysis revealed an enrichment of genes involved in
carboxylic acid and amino acid metabolism in the fat body,
whereas oenocytes showed an enrichment for genes involved in
fatty acid elongation, biosynthesis, xenobiotic metabolism and
peroxisomal function (25). See a summary of comparison of liver
function with the fat body and the oenocyte in Table 1.

In mammals, the liver and gut are the two primary organs
for the secretion of lipoproteins, which deliver lipids and sterols
to peripheral tissues. Apolipoprotein B (ApoB) is the primary
apolipoprotein that scaffolds chylomicrons and very low-density
lipoproteins (VLDL), which are secreted by the gut and
liver, respectively. In Drosophila and other insects, lipophorins
(Lpp) are the major lipoproteins similar to apoB-containing
lipoproteins in mammals (58). Lpp scaffolding apolipoproteins
are the highly conserved apolipophorins (apoLpp) (59). In
addition, the two Drosophila lipoprotein receptors (LpR1 and
LpR2), homologous to LDL receptors in mammals (60, 61),
can promote Lpp uptake. A BLAST search against human apoB
yields four Drosophila genes: apolipophorin (apolpp), microsomal
triacylglycerol transfer protein (Mtp), apolipoprotein lipid transfer
particle (Apoltp) and crossveinless d (cv-d) (58). Drosophila larvae
hemolymph contains three circulating lipoproteins: Lpp, LTP,
and Cv-d. Among them, Lpp is the major lipid carrier as
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more than 95% of hemolymph lipids co-fractionate with it (58).
Interestingly, the larval fat body is the primary tissue that secretes
Lpp, as fat body-specific Lpp knockdown strongly reduces the
level of circulating Lpp and LTP in the hemolymph. Based
on this, the fat body performs liver-like function regulating
lipid transport through secreted lipoproteins. It remains to be
determined whether and how oenocytes regulate lipoprotein
circulation in the hemolymph, as four apoB genes are also
expressed in oenocytes. In addition, oenocyte-specific over-
expression of the lipogenic genes fatty acid synthase 1 and 3
(fasn1 and fasn3) can increase lipid droplet size in the fat body,
suggesting that lipids generated from oenocytes are transported
to the fat body, possibly through lipoproteins (27).

The key liver-like characteristic of the fat body is glycogen
storage and utilization. In humans, glycogen is primarily stored
in the liver (∼100 g) and in skeletal muscles (∼500 g). However,
human muscles do not show major decreases in glycogen during
fasting (52, 62), and only liver stored glycogen contributes
to the release of glucose into the blood, specifically during
fasting. Thus, the liver is viewed as a “glucostat” that maintains
circulating sugar levels (63). Net hepatic glycogen synthesis is
one of the major direct effects of insulin on hepatocytes and
an important mechanism for suppression of hepatic glucose
production (64). During fasting, the pancreas secretes glucagon
to initiate a cascade of kinase activity that leads to release of
glucose from stored glycogen via glycogenolysis. Similarly, in fly
larvae, glycogen metabolism in the fat body plays a crucial role in
the maintenance of circulating sugars under fasting conditions.
One difference is that inDrosophila, glycogen from the fat body is
converted to glucose, as well as trehalose, a form of nonreducing
disaccharide primarily present in the insect hemolymph (65).
The concentration of circulating trehalose concentration in third
instar larvae is ∼25 ug/ul, vs. ∼0.1 ug/ul of glucose (66). In
flies, excess energy from food, can result from feeding of flies
on a high sugar diet, induces the expression of glycogen synthase
(glyS), which promotes glycogen levels (10). Interestingly, unlike
the action of glucagon in the mammalian liver, fasting-induced
glycogen breakdown in the fly fat body is not regulated by
AKH (Glucagon-like homolog in flies) (65). Instead, glycogen
mobilization in the fat body is regulated by a decrease in sugar
availability (65) and depends on glycogen phosphorylase (GlyP)
(9), which increases in activity during larval development and
remains high during pupal-adult development. In addition to
GlyP, glycogen autophagy is also involved in glycogen breakdown
in larval muscles (53). In adult flies, glycogen is stored mostly in
the flight muscles, the fat body and oocytes. Whether oenocytes
contribute to glycogen storage and mobilization is currently
unclear and deserves further investigation.

Detoxification of toxic substances from the human body is
mainly carried out by the liver. Detoxification are performed
by phase I and phase II drug metabolizing enzymes (DMEs),
as well as phase III transporters (54). Phase I DMEs consist
of the cytochrome P450 (CYP) microsomal enzymes which
are abundant in the liver, gastrointestinal tract, lung, and
kidney. Phase II metabolizing and conjugating enzymes
consist of superfamily of enzymes, including glutathione S-
transferases (GSTs) (55–57). Interestingly, RiboTag analysis

revealed that the microsomal GST Mgstl is highly enriched
in Drosophila oenocytes (25). Further, transcriptome analysis
in the yellow fever mosquito Aedes aegypti also showed that
pupal oenocytes highly express cytochrome P450 genes (67),
suggesting that oenocytes are responsible for detoxifications
in insects. In addition to oenocytes, the fat body can also
perform detoxification. For example, phenobarbital (present in
insecticides) administration induced Cyp6a2 expression in the
Drosophila midgut and the pericuticular fat bodies (68). Also,
biochemical analysis demonstrated that the fat body of the black
swallowtail capillaries can metabolize linear furanocoumarins
bergapten and xanthotoxin (69). Altogether, these data indicate
that insect fat body and oenocytes can perform detoxification,
analogous to the mammalian liver.

The liver, along with small intestines, kidneys and muscle
are important organs for amino acid metabolism. The liver
is the primary organ responsible for amino acids catabolism
with the exception of branched amino acids. The amine group
is separated and converted into urea, which is released into
the blood and the remaining carbon group can be used
for gluconeogenesis and ketogenesis (70). In honeybee (Apis
mellifera) larvae, amino acids are synthesized into Hexamerins,
which are storage proteins secreted by the fat body made of six
polypeptide subunits. Hexamerins provide amino acids to other
tissues during development and disappear during adulthood
(71). In Drosophila larval storage proteins (Lsp) play a similar
role (72). The fat body is also an important sensor for amino
acids. Dietary amino acids are sensed by target of rapamycin
(TOR)/regulatory associated protein of TOR (RAPTOR) in the
Drosophila larval fat body, which can remotely control dILP
release from the brain, thereby regulating systemic growth (73).
In addition, an amino acid transporter, slimfast, can regulate
TOR signaling in the fat body and regulates phosphatidyl-inositol
3-kinase (PI3K) signaling in peripheral tissues (74). Together,
these results suggest that the insect fat body functions as a
sensor and regulator that couples nutritional status to growth,
through a humoral mechanism. However, whether insect fat
body or oenocytes participate in amino acid catabolism and
how they contribute to glycogen or carbohydrate metabolism
remains unclear.

REGULATION OF FAT BODY AND
OENOCYTES METABOLISM UNDER
STARVATION

Perhaps the most distinct feature of oenocytes is their ability
to accumulate lipids under starvation (6). Oenocytes are also
important for the survival of the adult flies, as flies lacking
oenocytes have increased sensitivity to starvation (13). Thus,
oenocytes may process lipids or carbohydrates generated from
the fat body to provide energy under starvation. In line with
this, oenocyte ablation in larvae blocks fat body TAG depletion
following starvation, suggesting a defect in lipid mobilization (6).
Chatterjee et al. performed RNA-seq profiling under starvation
conditions and showed that oenocytes containing carcasses
had elevated gene expression in carbohydrate metabolism, the
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oxidation-reduction process, and amine metabolism. In contrast,
the expression of genes involved in the defense response,
chorion-containing eggshell formation, and proteolysis was
increased in the fat body (13). Consistent with these observations,
the classic catabolic and gluconeogenic genes amylase proximal
(amy-p) and phosphoenolpyruvate carboxykinase (pepck) are
induced in starved oenocytes. In addition, lipophorin receptor
2 (lpr2), which is responsible for capturing lipids in the
hemolymph, was also induced in oenocytes but not in the fat
body (13). Altogether, these observations suggest that oenocytes
and the fat body have different physiological response and
that oenocytes might process lipids released from fat bodies
under starvation.

ROLES OF THE FAT BODY AND
OENOCYTES IN IMMUNE RESPONSES

Hepatocytes play an important role in controlling innate
immunity via production of pattern-recognition receptors
(PRRs) and pathogen associated molecular patterns (PAMPs)
(75). As is the case for the mammalian liver, fly fat body
and oenocytes express genes involved in immunity (25).
Interestingly, the two innate immunity pathways (Toll and
Imd) are differentially enriched in oenocytes vs. the fat body.
Specifically, genes in the Imd pathway are enriched in oenocytes
whereas Toll pathway genes are enriched in the fat body. The Toll
pathway controls resistance to Gram-positive bacterial infections
and fungal infections, and the Imd pathway controls resistance
to Gram-negative bacterial infections (76). Downstream of
Toll signaling are the NF-κB transcription factors: dorsal
and DIF, whose immune-regulated functions are conserved in
mammals (76). Relish, another NF-κB protein, is regulated by
the Imd pathway and controls the expression of most of the
Drosophila antimicrobial peptides (AMPs) (77). Further, many
downstream effectors of Relish are highly enriched in oenocytes,
including DptA, DptB, CecC, Dro and MTK. On the other
hand, genes regulated by Toll signaling, including Tl, PGRP-
SA, GNBP3 and modSP, are preferentially expressed in the fat
body (25).

NUTRIENTS AND TISSUES REGULATING
LIPID METABOLISM IN OENOCYTES

Emerging evidence suggests that there is a close interaction
between the fat body and the oenocytes in both larvae and
adults. In larvae, the fat body consists of free-floating fat
cells that are physically associated with the oenocytes (6,
78). In adults, fat body cells are tightly attached to the
oenocytes (79). The fat body was the first tissue described
to non-autonomously regulate oenocyte metabolism, as lipid
accumulation in oenocytes depends on fat body nutritional
sensors (6). Knockdown of slimfast, a fat body-specific amino
acid transporter, causes lipid droplet accumulation in the
oenocytes. Further, inhibition of TOR activity, following
overexpression of TSC1 and TSC2 in the fat body, leads
to a marked increase of steatosis in oenocytes. Similarly,

inhibiting the phosphatidylinositol-3 kinase pathway through
overexpression of PTEN also leads to severe steatosis in
oenocytes, suggesting that oenocytes are regulated by the fat body
nutritional status, either in response to fluctuating amino acid
levels or through a TOR-dependent signaling peptide secreted
by the fat body or by an intermediate tissue such as the intestine
(Figure 1).

In addition to amino acids, oenocytes also respond to dietary
lipids and fatty acids. When fed under high dietary lipids during
larval stages, adult flies produce less pheromones (28), indicating
that oenocytes VLCFA biosynthesis function is hindered in
response to an increased level of circulating lipid (Figure 1).
Further, overexpression of the Brummer (Bmm) lipase in the
fat body induces steatosis in oenocytes under fed conditions.
Conversely, overexpression of Lsd2 in the fat body under starved
conditions reduces steatosis in oenocytes (6). Altogether, these
results suggest that oenocytes develop steatosis when circulating
levels of FFAs increase, which happens during starvation or
under high fat diet treatment. This is consistent with what is
observed in in vertebrates, in which either high fat diet or high
levels of lipid uptake in hepatocytes all contributes to NAFLD
pathogenesis (80–82).

In addition to nutritional signals, oenocytes are also regulated
–by ligands received from other tissues under various conditions.
The expression of unpaired 2 (upd2), which encodes the first
adipokine discovered in response to nutrients, is induced by
dietary sugar and nutrients (83). Interestingly, oenocytes show
abnormal steatosis in fed upd2 mutants (83), suggesting that
oenocytes might be regulated by fat-body derived upd2 in
response to dietary nutrients. Unlike other tissues, such as
the fat body, oenocytes exhibit increased levels of insulin
activity when starved, as detected by the increased membrane
localization of a PI3Kinase reporter (13, 84). Under starvation,
the level of dILP6 is elevated in the adult fat body (85),
and overexpression of dILP6 in the fat body can induce
oenocyte insulin/IGF signaling (IIS) and steatosis in adult
females (13). To the contrary, fat body-specific knockdown
of dILP6 reduces the level of starvation-induced steatosis
in oenocytes (13). Altogether, these data suggest that under
starvation, the fat body signals to the oenocytes to increase
lipid mobilization and carbohydrate metabolism via dILP6
(Figure 1).

Oenocyte metabolism can also be regulated by a
PDGF/VEGF-like ligand from the muscle. Ghosh et al.
demonstrated that muscle-specific knockdown of pvf1
leads to severe lipid accumulation in adipose tissue and
oenocytes by increasing de novo lipogenesis (27). Single-nuclei
RNA-sequencing (snRNA-seq) revealed that PDGF- and VEGF-
receptor related (Pvr), which encodes the PVf1 receptor, is highly
enriched in oenocytes. Further, this muscle-to-oenocyte signaling
was found to inhibit rapid lipid expansion in newly eclosed flies.
Altogether, these analyses suggest that Pvf1 acts as a myokine
that suppresses oenocyte lipid synthesis (Figure 1). Interestingly,
in vertebrates, VEGF-A and VEGF-B have been shown to be
stored and released by muscles (86, 87). Furthermore, it has
also been demonstrated that VEGF levels are lower in NAFLD
patients than in healthy controls (88), and that a variety of
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myokines can reduce insulin resistance and fat accumulation
in the liver (89). Thus, the Drosophila muscle-to-oenocyte
model might be useful for discovery of new therapeutics for
treating NAFLD.

CROSSTALK OF OENOCYTES WITH
OTHER TISSUES IN SHAPING
ORGANISMAL METABOLISM

Considering the role of oenocytes in metabolism, it is not
surprising that many studies in which the function of oenocytes
has been perturbed report observing defects in the metabolism
of other tissues. For example, loss of oenocytes cytochrome
P450, Cyp4g1, leads to an elevated oleic acid/stearic acid ratio,
that is specific to TGs and not phospholipids, suggesting
an altered fat body lipid composition and metabolism (6).
Additionally, oenocyte-specific inhibition of TOR, following
overexpression of TSC1 and TSC2 can induce lipogenesis
and increase lipid storage in the fat body (27). Further,
oenocyte ablation or knockdown of genes encoding VLCFA
metabolizing enzymes in larvae leads to severe tracheal defects
and altered spiracle lipid metabolism (31). In addition, in a
genome-wide RNAi screen in Drosophila for obesity-causing
genes, many genes were identified that regulate whole-body
fat content in an oenocyte-dependent manner (90). Interesting
targets included inflammation-related genes and genes regulating
ubiquitination, including TNF-receptor-associated factor 4
(Traf4), the interleukin enhancer-binding factor (ILF2), and the
ubiquitin-conjugating enzyme (UBE2N) (90). These data suggest
a role for immune regulatory networks and the ubiquitination
in regulating fat storage in oenocytes. Oenocytes can also
regulate vitellogenesis during oogenesis, as oenocyte-specific
knock down of the seven up (svp), which encodes a nuclear
receptor, can increase vitellogenic follicle egg chamber death (30).
Moreover, svp is a known oenocyte-specific modulator of cuticle
lipids, raising the possibility that female oenocytes regulate
vitellogenic follicles through the production of hydrocarbons
(Figure 1).

CONCLUSIONS

Major advances have been made in recent years in understanding
the role of insect oenocytes in metabolism and physiology, and
many fascinating research areas remain unexplored. One largely
ignored yet important area is to delineate the differences and
similarities between oenocyte function in Drosophila larvae and
adults. Understanding such differences will be important for
choosing the most appropriate stage to model a specific human
disease. Another area of interest is the synthesis of VLCFAs and
their derivatives in oenocytes, as this in turn affects not only
hydrocarbon synthesis but also lipid metabolism in trachea, fat
body and oocytes. Such non-autonomous regulation remains
largely obscure and may be mediated through metabolites or
signaling pathway activities. Finally, it is highly likely that
additional oenocyte functions and crosstalk with additional
tissues remain to be identified. For example, the role of oenocytes
in immunity and bacterial defense, as suggested by the expression
of IMD signaling pathway genes, need to be clarified. The
role of oenocytes in drug detoxification as well as amino acids
metabolism remains elusive. In addition, whether oenocyte
metabolic functions regulate aspects of fly behavior, other than
mating, remains to be explored.
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