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Intermediate conductance
Ca2+-activated potassium
channels are activated by
functional coupling with
stretch-activated nonselective
cation channels in cricket
myocytes

Tomohiro Numata1,2*, Kaori Sato-Numata1,2

and Masami Yoshino2*

1Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan,
2Department of Biology, Tokyo Gakugei University, Tokyo, Japan
Cooperative gating of localized ion channels ranges from fine-tuning

excitation–contraction coupling in muscle cells to controlling pace-making

activity in the heart. Membrane deformation resulting frommuscle contraction

activates stretch-activated (SA) cation channels. The subsequent Ca2+ influx

activates spatially localized Ca2+-sensitive K+ channels to fine-tune

spontaneous muscle contraction. To characterize endogenously expressed

intermediate conductance Ca2+-activated potassium (IK) channels and assess

the functional relevance of the extracellular Ca2+ source leading to IK channel

activity, we performed patch-clamp techniques on cricket oviduct myocytes

and recorded single-channel data. In this study, we first investigated the

identification of IK channels that could be distinguished from endogenously

expressed large-conductance Ca2+-activated potassium (BK) channels by

adding extracellular Ba2+. The single-channel conductance of the IK channel

was 62 pS, and its activity increased with increasing intracellular Ca2+

concentration but was not voltage-dependent. These results indicated that

IK channels are endogenously expressed in cricket oviduct myocytes. Second,

the Ca2+ influx pathway that activates the IK channel was investigated. The

absence of extracellular Ca2+ or the presence of Gd3+ abolished the activity of

IK channels. Finally, we investigated the proximity between SA and IK channels.

The removal of extracellular Ca2+, administration of Ca2+ to the microscopic

region in a pipette, and application of membrane stretching stimulation

increased SA channel activity, followed by IK channel activity. Membrane

stretch-induced SA and IK channel activity were positively correlated.

However, the emergence of IK channel activity and its increase in response

to membrane mechanical stretch was not observed without Ca2+ in the

pipette. These results strongly suggest that IK channels are endogenously
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expressed in cricket oviduct myocytes and that IK channel activity is regulated

by neighboring SA channel activity. In conclusion, functional coupling between

SA and IK channels may underlie the molecular basis of spontaneous

rhythmic contractions.
KEYWORDS

IK channel, mechano-sensitive channel, patch-clamp technique, cricket (Gryllus
bimaculatus), oviduct, myocyte, functional coupling
1 Introduction

Mammals and invertebrates use the combinatorial function

of numerous ion channels expressed in muscle cells to control

the electrical properties of membranes. Elucidating their

respective roles is essential to understanding the rhythmic

contraction mechanisms produced by muscle tissue.

As a model system for the investigation of these problems,

we used striated muscle cells from the oviduct of crickets,

building on previous pioneering work in insects, such as fruit

flies and locusts (1–16).

One of the critical functions of oviposition is the repeated

contraction and relaxation of the oviduct visceral muscles during

egg transport. The rhythmic contraction in oviductal muscle

cells allows the egg to pass through the oviduct (4, 7, 9, 17).

Similar rhythmic contractions occur in tubular tissues, including

the gastrointestinal and urogenital tracts of most mammals (18–

21). Although these contractile processes require the analysis of

simple systems consisting of mechanically stimulated muscle

contractions (7, 10), the molecular physiological mechanisms

still need to be fully understood.

A defined group of ion channels, including intermediate

conductance Ca2+-activated potassium (IK) channels, KCa3.1 (also

known as KCNN4, IKCa, SK4) belongs to the Ca2+-activated K+

channel (KCa) family among Ca2+-sensing proteins (22–24), are

functionally linked in mediating ion fluxes that influence the

membrane potential that produces periodicity. Moreover, it has
K, large-conductance
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long been recognized that these membrane potential changes affect

ion channel gating (25–27). In vertebrates, IK channels are highly

expressed in epithelial cells, the central nervous system, and in tumor-

type tissues, such as that of cervical cancer (28, 29). In invertebrates,

functional expression of the IK channel is only observed in the cranial

nerves of the cockroach Periplaneta americana (30), the muscle tissue

of the locust Schistocerca gregaria (31), and the body-wall muscle of

the Drosophila melanogaster (32).

Drosophila melanogaster is an important model organism

for genetics and molecular biology and has accumulated genetic

information, including KCa channels, for more than 100 years.

The KCa channel gene family consists of two groups, the BK

(dSlo, SLO2) group and the SK group (dSK), which includes IK

(33, 34).

Mutant phenotypes of BK channels are often associated with

negative regulation of ganglionic synapses, and dSlo mutants

play a role in neuronal function, abnormal circadian activity, and

locomotor disorders (35–37). In flight muscles, the mutant

disrupts the homeostatic adjustments in neural circuits at the

flight initiation (38, 39).

Mutant phenotypes of SK channels are involved in neuronal

activities such as resting membrane potential, synaptic

transmission, and synaptic plasticity, resulting in learning and

memory, visual reception, sensory and motor deficits (40–46).

Knock down of SK in class IV sensory neuron induces faster heat

avoidance behavior probably due to an alteration of firing

properties via destruction of coordination between L-type

voltage-gated Ca2+ channels and SK channels (43, 44).

The molecularphysiological importance of IK channels in

oviduct muscle provides new insights into muscle contraction

mechanisms in addition to flight and body wall muscles.

Recently, we have shown that mechanical stretching-

dependent Ca2+ influx from the plasma membrane occurs in

the development of spontaneous rhythmic contractions in the

cricket oviduct (9). Furthermore, we showed that this

contraction is closely associated with rhythmic membrane

hyperpolarization (RMH) (47). RMH involves a Gd3+-sensitive

extracellular Ca2+ influx pathway, which is consistent with the

properties of stretch-activated (SA) ion channels mentioned in

our previous report (15).
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In this study, we characterized endogenously expressed IK

channels in the cricket oviduct. Second, we investigated Ca2+-

mediated functional coupling of SA and IK channels involved in

forming rhythmic hyperpolarization.
2 Materials and methods

2.1 Insect rearing

Gryllus bimaculatus used in the experiments were sexually

mature females purchased from a local pet store as food for pet

reptiles, and thus, genetic and environmental variability in the

specimens were limited. The crickets were housed in plastic

containers with cardboard shelters until further analysis. All

crickets were bred at 27 ± 2°C, with humidity of 35–60%, in a

12:12-h light:dark cycle. Crickets were provided ad libitum access to

feed and water for insects (I, Oriental yeast CO., LTD., Kyoto, Japan).
2.2 Cell isolation

The adult female crickets were fixed in a chamber via the upper

dorsal area under CO2 anesthesia. The lateral oviducts were exposed

by removing connective tissue around the reproductive organs after

a dorsal incision in the abdomen in normal saline (in mM): 140

NaCl, 10 KCl, 1.6 CaCl2, 2 MgCl2, 44 D-glucose, and 2-[4-(2-

hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES); pH was

adjusted to 7.4 with 2-amino-2-hydroxymethyl-1,3-propanediol

(Tris(hydroxymethyl)aminomethane) (Tris). The left and right

lateral oviducts connected to the common oviduct from the

vitellarium were excised. Cell dissociation was performed

enzymatically using the protease dispersion method described

previously (15). The isolated single lateral oviduct myocytes were

maintained in fresh saline at room temperature (23-27°C) and used

within 12 h.
2.3 Electrophysiology

The cells were dropped on a glass-bottom dish containing the

experimental solution, and the adhered cells were used for

measurements. Cells were observed under an inverted microscope

(IX70: Olympus, Tokyo, Japan). Currents from cells were amplified

using Axopatch 200B (Axon Instruments/Molecular Devices,

Union. City, CA, USA) and acquired using the Digidata1440 A/D

converter (Axon Instruments/Molecular Devices). Experiments

were performed at room temperature (22–27°C) using patch-

clamp techniques for the cell-attached and excised inside-out

mode. Patch electrodes were prepared from capillary tubes

(Hemato-clad capillary; Drummond Scientific Co., Broomall, PA,

USA) with a two-stage pipette puller (PC-10 Narishige, Tokyo,

Japan) with a tip resistance of approximately 5–8 MW when filled
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with a solution for single-channel recordings. Current signals were

filtered at 5 kHz with a four-pole Bessel filter and digitized at 10 or

20 kHz. pCLAMP (version 6, 7, 10, or 11; Axon Instruments/

Molecular Devices) software was used for command pulse control,

data acquisition, and analysis. A square voltage pulse of 3 mV, 10

ms, 10 Hz was applied as a ‘test pulse’ before the current amplitude

measurement to ensure the accuracy of the measurement. A cell

membrane resistance >1 gigaohm after application of the test pulse

was considered a trial. Trials in which the current amplitude was

observed within 10 mins after forming a stable gigaohm-seal were

used for further analysis. The amplitude of single-channel currents,

number of open channels, and mean open probability (NPO) were

determined by a cursor on Clampfit, Fetchan, pStat, or using the

single-channel search mode of the pCLAMP software. Data were

also analyzed using the Origin (OriginLab Corp., Northampton,

MA, USA), Excel (Microsoft, Redmont, WA, USA), and Sigma Plot

(Systat Software, San Jose, CA, USA) software packages. For single-

channel recordings to investigate the biophysical properties of ion

channels (Figures 1, 2), the external solution used contained a high

potassium solution [(in mM) 140 KCl, 10 NaCl, 1.6 CaCl2, 2MgCl2,

2 HEPES] that maintained the resting membrane potential at zero.

The composition of the pipette solution was the same as that of the

high-potassium bath solution with or without 1 mM Ba2+ used in

experiments illustrated in Figures 1–4A, but Ca2+ was omitted for

the experiments in Figures 4B, 5. To test the K+ selectivity of isolated

myocytes, 100, 70, and 35 mM KCl solutions were prepared by

replacing KCl in the pipette solution with an equal amount of NaCl

(11). To investigate the Ca2+ dependence of IK channels, Ca2+-free

solution was obtained by omitting CaCl2 from the normal bath

solution saline and adding 1 mM ethylene glycol-bis(2-

aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA). The

intracellular solution was balanced with 5 mM EGTA to maintain

free Ca2+ concentrations between 1 nM and 10 mM. A bath solution

with Ca2+ concentration of ≥100 mM was added by adjusting the

amount of CaCl2 in normal saline. Extracellular effect of Ba2+ was

tested by application in the pipette solution using the standard

backfill method established previously (48). In brief, the tips of the

electrodes were first filled with the normal pipette solution, then

backfilled with the same solution containing a concentration of its

inhibitors; a wait period of at least 10 min was ensured before data

recording. Gd3+ was dissolved in water to prepare stock solutions,

and aliquots were added to the perfusate. All inhibitor reagents used

in the experiment were purchased from Sigma-Aldrich Corp. (St.

Louis, MO, USA). All other reagents were purchased from Wako

Pure Chemical Industries, Ltd. (Osaka, Japan).
2.4 Statistical analyses

All data are expressed as means ± standard error of mean

(SEM). We accumulated data for each condition from at least

three independent experiments. The numbers of animals, and
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trials used in each experiment are described in the figure legend.

Statistical significance was evaluated by Student’s t-test for

comparisons between two mean values to assess statistical

significance using Excel (Microsoft Corp., Redmond, WA, USA)

or Origin 8 (OriginLab Corp.) software. The data used for

statistical analysis passed the Shapiro-Wilk normality test and

the Levene equal variance test. For other correlation analyses,

least-squares linear regression was performed using Excel

(Microsoft Corp.). A P-value of <0.05 was considered significant.
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3 Results

3.1 Single-channel recording of IK
channels in isolated muscle cells

The top trace in Figure 1A shows single-channel activity

with large and medium conductance in the steady state of

oviduct myocytes. Single-channel currents in the left column

in K+-rich recording conditions are consistent with our previous

observations (11).
A

B C

FIGURE 1

Ba2+-insensitive intermediate conductance single-K+ channel currents in isolated cricket oviduct cells. (A) Two types of single K+ channel current
recordings from cell-attached patches under extracellular K+ concentration of 140 mM are shown. Representative single-channel current traces of
large conductance Ca2+-activated potassium (BK) channels (left column) and intermediate conductance Ca2+-activated K+ channel (IK) channels are
shown when held at +40 mV. Notes at the BK channel currents are sensitive to extracellular (inside the pipette) 1 mM Ba2+ (1Ba). c indicates closed
level. (B) Representative single-channel current traces at various membrane potentials (Vm) are shown in the figure. Current activity does not exhibit
voltage sensitivity. c indicates closed level. (C) Average single-channel current (i)-Vm relationship (n = 6–12). Data points for Vm from −60 mV to
+60 mV were fitted by linear regression, yielding slope conductance values of 59.7 and 61.5 pS for the control and 1Ba, respectively. Cells isolated
from a total of 153 animals were used in the experiment and 259 tests were performed for data collection.
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As shown in the upper traces of Figure 1A, both large (BK) and

intermediate-sized single-K+ channel currents (IK) were observed

either singly or multiples by trial when the membrane was held at

+40 mV. During the course of this experiment, however, we newly

found that the activity of this BK channel disappeared when 1 mM

Ba2+ was added extracellularly. Thus, the extracellular addition of

Ba2+ enabled selective recordings of the IK channels (Figure 1A,

right column). Therefore, this study performed recordings using

Ba2+ in a pipette to eliminate BK channel activity.

As shown in Figure 1B, when the membrane potential was

held at depolarizing or hyperpolarizing potentials in cell-

attached mode, the single-channel properties showed burst-

like kinetics. The channel activity did not show voltage

dependence (NPO = 0.44 ± 0.03 and 0.51 ± 0.05 at +60 and

−60 mV, respectively; n = 18). Single-channel currents recorded

at membrane potentials from −60 mV to +60 mV showed a

linear current-voltage (I-V) curve with a slope conductance of

61.5 pS (n = 12) (Figure 1C). In addition, even in the absence of

extracellular Ba2+, IK currents recorded in patch membranes not

coexisting with BK did not affect the slope conductance values

(59.7 pS, n = 6).

We investigated the effects on single-channel conductance

and reversal potential (Erev) observed in Figure 1 by varying the

extracellular K+ concentration. I-V relationships constructed

from single-channel recordings at membrane potentials from

−60 mV to +60 mV (Figure 2A) showed linear I-V relationships

under three extracellular K+ concentrations. Linear analysis of
Frontiers in Insect Science 05
the I-V relationship by least squares showed Erevs of −32.8,

−24.5, and +2.4 mV for channel currents recorded under 35-, 70-

, and 140-mM conditions, respectively. The slope of the Erev
change plotted against the change in extracellular K+

concentration was 58.4 mV per decade change in K+

concentration (Figure 2B). We next investigated the ion

selectivity of the single-channel and recorded the effect on the

Erev by changing the extracellular K+ concentration. I-V

relationships expressed from single-channel recordings at

membrane potentials from −60 mV to +60 mV showed linear

I-V relationships under three extracellular K+ concentrations.

Linear analysis of the I-V relationship by least squares showed

Erevs of −32.8, −24.5, and +2.4 mV for channel currents recorded

under 35-, 70-, and 140-mM conditions, respectively

(Figure 2A). The slope of the Erev change plotted against the

change in extracellular K+ concentration was 58.4 mV per

decade change in K+ concentration (Figure 2B).

IK channels have the unique property of being activated by

increases in [Ca2+]i (28, 49). To directly evaluate the [Ca2+]i
dependence of K+ channels, we measured single-channel

currents from excised inside-out patches of membranes to

different concentrations of Ca2+-containing bath solutions.

Single-channel currents recorded at various concentrations of

Ca2+ bath solutions at +60 mV were enhanced with increasing

[Ca2+]i (Figure 3A). The relationship between relative Po and

[Ca2+]i was then fitted to the Hill equation, yielding a k-value of

88.5 mM and Hill coefficient of 0.9 (Figure 3B).
A B

FIGURE 2

Single K+ channel I-V relationship at various extracellular K+ concentrations. (A) Mean linear current-voltage (I-V) data at various extracellular K+

concentrations ([K+]o in mM): ●, 140; ▲, 70; ○, 35, from cell-attached patches. (B) Data show a semi-logarithmic plot of [K+]o against the
difference between the reversal potential (⊿Erev) obtained at 140 mM and each K+ concentration. Reversal potential (Erev) was obtained by fitting
the i-Vm relationship for each K+ concentration in A by linear regression. The slope of the regression line was 58.37 mV/decade. Cells isolated
from a total of 53 animals were used in the experiment and 121 tests were performed for data collection.
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3.2 Functional coupling between IK and
Ca2+ sources

Activation of Ca2+-dependent IK channels in excitable cells

is critical for feedback control of both Ca2+ influx and cell

excitability (27). To investigate the effect of Ca2+ on IK

channel activity, we examined the effect of extracellular Ca2+

removal on IK channel activity.

Extracellular Ca2+ abolition suppressed IK channel activity

after consistent IK channel activity (Figure 4A). We next

investigated the pathways of extracellular Ca2+ influx and their

effects on IK channel activity. Membrane stretching-induced

extracellular Ca2+ influx pathways play a central role in

myogenic muscle contraction (50). Gd3+-sensitive- and Ca2+

permeable-nonselective cation channels activated by membrane

stretching (SA channel) during muscle contraction are

functionally expressed in cricket oviduct cells (15). In support

of these evidences, Gd3+ administration suppressed IK channel

activity (Figure 4B). We further investigated the proximity of IK

and SA channels within microdomains by observing the effect of

membrane stretch on IK channel activity.

To eliminate the possibility of Ca2+ influx from the bath

solution, the bath solution was replaced with a Ca2+-free solution

before the recording (Figure 5, lower panel). Recordings were

obtained with and without Ca2+ in the pipette. This restricted

Ca2+ access to the patch membrane only from the pipette

solution. In addition, the recording membrane voltage was

maintained at −140 mV, allowing simultaneous measurement
Frontiers in Insect Science 06
of low-conductance SA channel currents (~13 pS) (15) and IK

channel activity. As shown in Figure 5A, when Ca2+ was

contained in the pipette, SA channel activity increased in

response to membrane stretching caused by mechanical

stimulation in response to a negative pressure of −30 cm H2O

in the pipette (Figure 5A). This mechano-stimulated single-

channel activity is consistent with results in our previous report

(15). Around 30 s after SA activity was recorded, IK channel

activity was observed. It should be noted that SA and IK

channels can be observed individually due to their different

conductance and mean opening time. The conductance and

mean opening time of the SA channel were 14 pS and 5.4 ms (n =

40) and those of IK channel were 61.5 pS and 1.2 ms (n = 48),

respectively. The same SA channel activity as in Figure 5A was

observed with −30 cm H2O suction wherein Ca2+ was not

contained in the pipette (Figure 5B). Under this condition,

even if the suction was further increased to −60 cm H2O, SA

channel activity increased, but IK channel activity was not

observed (n = 12).

We analyzed the effect of membrane stretching on the activity

of SA and IK channels, as observed in Figure 5A. As shown in

Figures 6A, B channel activity increased with the strength of

membrane stretching, and positive correlation coefficients of 0.987

and 0.996 were calculated for SA and IK channels, respectively.

Furthermore, the average value at 10 cm of suction strength was

analyzed. It was revealed that SA and IK channels increased NPo

by 0.027 and 0.019, respectively, with respect to membrane

stretching strength of 1 cm H2O (Figure 6C).
A B

FIGURE 3

Intracellular Ca2+ concentration dependence of K+ channel activation. (A) Representative traces of single K+ channel currents recorded under
various intracellular Ca2+ concentration ([Ca2+]i) conditions at Vm = 60 mV from excised inside-out patches. c and o indicate closed and open
levels, respectively. (B) Average mean open probability (NPO)-[Ca

2+]i relationship of steady-state single-channel current. The data fit the Hill
equation with EC50 of 88.5 ± 7.8 mM and Hill coefficient of 0.9. Cells isolated from a total of 14 animals were used in the experiment and 41
tests were performed for data collection.
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4 Discussion

In this study, we performed patch-clamp electrophysiology

to characterize the functional expression of IK channels in

cricket oviduct cells. We demonstrated for the first time that

IK channels are endogenously expressed in this cell type. A series

of single-channel activity recordings showed these channels

as IK channels according to classification criteria such as K+

selectivity, conductance, voltage independence, and intracellular

Ca2+ sensitivity (Figures 1–3). These cumulative properties are

closely consistent with the intermediate conductance of IK

channels observed in vertebrates, including humans and mice

(22, 24, 51). Concerning Ca2+ sources that activate IK channels,

extracellular Ca2+ influx was essential for IK channel activity

(Figure 4A). Furthermore, we observed that Ca2+ influx from

Gd3+-sensitive SA channels affected IK channel activity
Frontiers in Insect Science 07
(Figures 4, 5). These observations imply that SA channel-

mediated Ca2+ influx induced by the membrane mechanical

stretch, may trigger IK activity, which leads to an increase in the

amount of Ca2+ influx through SA channels via an increase in

the driving force for Ca2+ through membrane hyperpolarization.

Indeed, in our previous muscle strength measurement study,

hyperpolarization induced by IK channels may produce a

voltage-independent driving force for Ca2+ influx in SA

channels (9, 47). Furthermore, simultaneous single-channel

current measurement of SA and IK channels in response to

membrane stretching stimulation provided evidence for the

proximity of IK and SA channels in patch membrane

microregions (Figures 5, 6).

KCa is classified into three types according to the magnitude

of conductance. Intermediate conductance calcium-activated

potassium (IK) channels have a range of 20–85 pS between BK
A

B

FIGURE 4

Effect of Ca2+ removal from the bath solution and Gd3+ application to the bath solution on IK channel activity. (A, B) (left) Representative
IKchannel currents before (control) and after Ca2+ removal from the bath solution (Ca2+-free) or after 30 mM Gd3+ application to the
bathsolution. The current was recorded from cell-attached patches at −140 mV. (A, B) (right) Average NPO of IK channel current. *Significantly
different (P < 0.05) from control values. Cells isolated from a total of 15 animals were used in the experiment and 25 tests were performed
fordata collection.
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and SK channels (22–24). BK channels have activity defined by

both voltage and intracellular Ca2+, whereas small and moderate

KCa channels are sensitive to changes in intracellular Ca2+ and

are activated in a voltage-independent manner.

Gating of IK channels is achieved by submicromolar changes

in cytosolic Ca2+ levels (KD = 0.5 µM) (52). The intracellular Ca2+

sensitivity of IK channels in cricket muscle cells showed a median

effective concentration (EC50) of 88.5 µM (Figure 3). This value

can be classified as sensitive to intracellular Ca2+ in terms of

vertebrate reports (52). Based on structural information, the

current assumption on the mechanism of IK channel activation

suggests that gating is influenced by calmodulin (CaM) when

[Ca2+]i increases (53, 54). The importance of CaM is also

supported by studies on IK activity shifts that impair function

by CaM EF hand mutations (55). Therefore, the low intracellular

Ca2+ sensitivity of IK channels presented in this study may be due

to the loss of CaM performed in the inside-out mode.
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Activation of IK channels reflects the associated

Ca2-permeable ion channel activation threshold. For example,

the Ca2+ influx pathway that activates IK is SA (56), Orai (57),

SOC (store-operated calcium) (58), CRAC (calcium release-

activated calcium channel) (59), TRP (transient receptor

potential) C1 (60), TRPV4 (61, 62), TRPV6 (29), TRPM7 (63),

and TRPA1 (64) channel show activity with hyperpolarization.

This study performed simultaneous single current

measurements of SA and IK channels with a small tip within

sub-mm of a patch pipette in cell connection mode, directly

demonstrating their proximity (Figures 5, 6). From these

observations, IK channels were sufficiently characterized to

construct microdomains in this study (27). It should be noted,

however, that a time lag of ~30 s was observed between SA

channel activity and increased IK channel activity. This delay

implies that the global Ca2+ rise in cells required for IK channel

activity involves Ca2+ release from intracellular stores.
A B

FIGURE 5

Effect of membrane stretch on IK channel activity. (A, B) Representative stretch-activated (SA) and IK channel currents were recorded at −140
mV from cell-attached mode (n = 12). Recordings were obtained after changing to a Ca2+-free bath solution. The pipette contains Ca2+ in A
[Ca2+(+)] but does not contain Ca2+ in B [Ca2+(−)]. c indicates closed level. 1–4 show enlargements in lower and upper traces. Cells isolated
from a total of 23 animals were used in the experiment and 43 tests were performed for data collection.
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A B

C

FIGURE 6

Activity relationship between SA and IK due to membrane stretch. (A) Scatter plot of NPO (SA channel activity) was recorded at −140 mV versus
membrane suction (n = 48). (B) Scatter plot of NPO (IK channel activity) recorded at −140 mV versus membrane suction (n = 40). (A, B) The
values for each relationship were obtained by fitting them with linear regression. The slopes obtained from plots A and B revealed 0.026 and
0.019 cm H2O, respectively. Relationship between NPO and suction, and analyses of the correlation function revealed values of 0.84 and 0.87
from the values of A and B, respectively, indicating a strong positive correlation. (C) Scatterplots of mean NPO versus membrane suction (n = 7)
for SA and IK, recorded in A and B, are shown. The correlation coefficient between SA and IK was 0.99. Cells isolated from a total of 83 animals
were used in the experiment and 108 tests were performed for data collection.
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For KCa and voltage-gated calcium channel (CaV), the

concept of 1:1 stoichiometry evaluates proximity due to

physical interactions. However, it has been suggested that the

stoichiometry of physical interaction and functional coupling is

not congruent (27). Figure 6 demonstrates that the activation

ratio of SA : IK channel was 3:2 when the strength of mechanical

membrane stretching exceeded 20 cm H2O. The results are the

first to demonstrate functional measurements with two single-

channel activities and provide quantitative activity ratios in

function, providing insights into computational science.

The stretch-sensitive, non-selective cation channel in this

study can be activated around 20 cm H2O and affects IK channel

activity by supplying intracellular Ca2+ (Figure 6) (15). In the

esophagus and uterus of vertebrates, membranes are stretched

due to increased blood pressure and the passage of eggs. It has

been reported that the mechanical force measured using a

manometry catheter is ~20 cm H2O under normal conditions

(20, 65, 66). Mechanical forces above 20 mmHg are applied

during peristalsis and solids outflow. According to the results of

this study, IK channel activity increased when a membrane

tension of 20 cm H2O (14.7 mmHg) was applied (Figure 5A). In

invertebrates, intraluminal pressure has not been measured.

However, physical stretching into the lumen as it passes

through the oviduct suggests that the influx of Ca2+ causes

muscle contraction, leading to initial stretching. Activation of

the IK channel increases Ca2+ influx through the Ca2+ channel

by increasing the driving force of the membrane potential, which

may be a sufficient condition to trigger myogenic peristalsis as

the egg passes. This mechanism has also been suggested for Ca2+

influx and IK channel activity occurring during crop filling and

ejection processes in hypercontractile crop muscles in the

blowfly Phormia regina (Meigen) (67).

Activation of IK channel is associated with more extended-

lasting activations, such as AVD (apoptotic volume decreases)

(68), RVD (regulatory volume decreases) (56), and cell

migration (69). BK channels, in combination with CaVs

(voltage-gated calcium channels) and NMDARs (N-methyl-D-

aspartate receptors), play a fundamental role in the short-term

regulation of depolarizing nervous system firing (27), thus,

contrasting with IK channels. Therefore, Ca2+ sources and

CaK (Ca2+-activated K+) channels may function in unique

combinations. When hypotonic mechanical stimulation is

applied to the cricket oviduct, binding functions of the SA and

IK channels are related, and it is possible that they are involved

in muscle contraction that takes seconds with hyperpolarization

(9, 47).

In conclusion, the characterization of single IK channels in

oviduct myocytes enabled us to investigate their functional

relevance to Ca2+ sources. Furthermore, IK channels

functionally coupled with rhythmic contraction-producing SA

channels form a driving force for increased Ca2+ influx with
Frontiers in Insect Science 10
periodic hyperpolarization. We propose that cricket muscle cells

are involved in spontaneous contraction via the IK and SA

channel microdomains.
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