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Honeybees and wild bees are among the most important pollinators of both wild and

cultivated landscapes. In recent years, however, a significant decline in these pollinators

has been recorded. This decrease can have many causes including the heavy use

of biocidal plant protection products in agriculture. The most frequent residues in

bee products originate from fungicides, while neonicotinoids and, to a lesser extent,

pyrethroids are among the most popular insecticides detected in bee products. There

is abundant evidence of toxic side effects on honeybees and wild bees produced by

neonicotinoids, but only few studies have investigated side effects of fungicides, because

they are generally regarded as not being harmful for bees. In the field, a variety of

substances are taken up by bees including mixtures of insecticides and fungicides,

and their combinations can be lethal for these pollinators, depending on the specific

group of insecticide or fungicide. This review discusses the different combinations of

major insecticide and fungicide classes and their effects on honeybees and wild bees.

Fungicides inhibiting the sterol biosynthesis pathway can strongly increase the toxicity of

neonicotinoids and pyrethroids. Other fungicides, in contrast, do not appear to enhance

toxicity when combined with neonicotinoid or pyrethroid insecticides. But the knowledge

on possible interactions of fungicides not inhibiting the sterol biosynthesis pathway and

insecticides is poor, particularly in wild bees, emphasizing the need for further studies on

possible effects of insecticide-fungicide interactions in bees.
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INTRODUCTION

Insect pollination is one of the most essential ecosystem services, with more than 75% of all
crops being pollinated by insects (1, 2). Honeybees and wild bees, in particular, are indispensable
pollinators of agricultural crops and natural ecosystems worldwide (3–5). The economic value of
insect pollination in Europe and the United States alone is estimated at several hundred billion
Dollars per year (6). In addition to climate change, habitat loss due to agricultural intensification
and invasive species, the major factor in their decline is the intensive use of agrochemical plant
protection products (PPPs) (5, 7). Within the group of PPPs, there are several subgroups such as
fungicides, rodenticides, herbicides or insecticides. All of these products are biocidal formulations
used to protect plants from pests, weeds and other diseases (8). The looming pollination crisis (9)
has stimulated a general debate on the safety of PPPs and intense studies on unwanted side effects
of agrochemicals on beneficial insects.
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Currently, more than 1,100 PPPs (mostly fungicides,
insecticides and herbicides) are marketed in European countries
alone (10). They pose a continuous damage to ecosystems,
because many PPPs applied do not reach the target species (11)
or accidentally target beneficial insects like pollinators or even
aquatic invertebrates (12). While analysis of PPP residues in
wild bees is in its infancy, honeybee colonies provide many
opportunities to detect plant protection residues in stored
pollen (“beebread”) or honey. Residues of agrochemicals are
frequent in pollen and honey stores. In the annual German bee
monitoring analysis of 2017-20191 (13), for example, 96.1% of
the 129 beebread samples contained PPPs. In these samples, 90
different PPPs were detected, with fungicides, herbicides and
insecticides being registered in almost every second sample.
Worldwide, more than 160 different PPPs have been detected
in honeybee colonies (7). Again, insecticides and fungicides
were the dominant PPPs (14). This demonstrates that bees are
chronically exposed to a cocktail of PPPs both during larval
development and as adults (14, 15).

A major route of exposure is through oral contact with
contaminated pollen, nectar and guttation droplets produced by
plants. Importantly, the PPPs are not only present in flowers
in high concentrations directly after spraying but also after
systemic treatments, for example when applied as seed coating
(16, 17). The PPPs are absorbed by the plant via the xylem and
are transported through plant tissues into pollen, nectar and
guttation droplets (18). Because most PPPs are highly persistent
in soil and soil water, they can accumulate in pollen and nectar
through this path, such as has been demonstrated for wildflowers
near crops (14, 19). In addition, PPP residues can accumulate in
irrigation waters, rivers, wetlands and puddles (20). Honeybees
and wild bees drink from the contaminated water, thereby taking
the PPPs in (8).

Honeybees and some wild bees forage over long distances
(21, 22) or inmixed landscapes, encountering numerous different
PPPs even within one foraging bout. But they can also encounter
a cocktail of PPPs within the same flower (23) or in one
puddle they drink from (20). Both honeybees and wild bees can
accumulate dozens of different PPPs in varying concentrations,
depending on the landscape composition in the environment
of the nest. These cocktails are either taken up directly by the
foragers or are fed to the brood or hive mates (14, 24). Despite the
high probability of exposure to a mixture of pesticides, honeybees
and wild bees have hardly been tested for unwanted effects of PPP
combinations. The combination of insecticides and fungicides is
a very realistic scenario since both are frequently applied onto the
same crops sequentially or in a tank mixture.

In addition, there are other knowledge gaps on side
effects of PPPs on non-target organisms. The majority of
studies investigate PPP action under artificial conditions in the
laboratory but not in the field. The focus of the studies is on the
honeybee and we lack details on PPP action on wild bees. Most

Abbreviations: ACh, acetylcholine; nAChR, nicotinic acetylcholine receptor;
P450, cytochrome P450 monooxygenase; PPP, plant protection product; SBI
fungicide, sterol biosynthesis inhibiting fungicide.
1https://bienenmonitoring.uni-hohenheim.de (accessed October 20, 2021).

investigations study lethal doses and mortality, while sublethal
effects are insufficiently studied. Closing these knowledge gaps is
urgent, because these factors most likely have a large share in the
decline of bees and other pollinators (25–28).

The comparison of effects on honeybees and wild bees is
not trivial. There are several differences between honeybees and
some wild bees that need to be taken into consideration. For
example, wild bees frequently show a different activity window
compared to honeybees, both during the day and throughout
the year (29), leading to different PPP uptakes. Most wild bees
have a smaller body size than honeybees (30). A dose that is not
toxic for honeybees might still induce severe effects in wild bees.
The life cycle of some wild bees can also lead to dose-dependent
differences. Most wild bees are solitary insects—in contrast
to honeybees. While in a honeybee hive conspecifics might
compensate for possible side effects of PPPs, this is impossible
in solitary wild bees (30). This illustrates that the comparison
between honeybees and solitary wild bees is difficult. However,
the comparison between honeybees and bumblebees is easier to
make, and bumblebees are among the predominant pollinating
wild bees in agriculture, especially in greenhouse crops (31). Both
bees display a social lifestyle and have a comparable body size
(30, 32).

INSECTICIDES

Neonicotinoids
The insecticides which have attracted most attention with respect
to adverse side effects on beneficial insects are the neonicotinoids
(14, 24, 33, 34). They are structurally similar to nicotine and
target postsynaptic excitatory nicotinic acetylcholine receptors
(nAChRs) of insects, causing paralysis due to overstimulation
of neurons (Figures 1A,B) (7, 36, 47, 48). When bees consume
neonicotinoids, they can have severe problems in motor
behaviors (49), in orientation and flight performance (34, 50–
53) and display severe learning deficits (54–56), among other
adverse effects. It is astonishing that neonicotinoids are still
considered as relatively safe for non-target organisms, given that
numerous negative effects have been reported for a variety of
organisms including birds and mammals. The neonicotinoid
acetamiprid, for example, was shown to induce a cytotoxic
effect on mammalian cells (57). Imidacloprid, thiamethoxam,
and clothianidin led to reduced food intake and associated weight
loss in eared doves and it was shown that the increased use of
neonicotinoids in general reduced bird biodiversity (58, 59). The
neonicotinoids imidacloprid and thiamethoxam can even lead to
cyto- and genotoxic effects in plants (60). Neonicotinoids are not
a uniform chemical group. Structurally, they can be distinguished
in two types: nitroguanidine and cyanoamidine neonicotinoids.
Those of the first group containN-nitro-groups in their structure,
which contain oxygen atoms, making them more polar and
reactive. Imidacloprid, clothianidin and thiamethoxam belong
to this group. They are generally more toxic to bees than
neonicotinoids of the second group, which comprise acetamiprid
and thiacloprid. These contain cyanoamidine groups in their
particles instead of the nitro group. Since the cyanoamidine
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FIGURE 1 | Simplified illustration of the process at the nicotinic acetylcholine receptor (nAChR) (A). Normal scenario at the nAChR. When acetylcholine (ACh) is

released into the synaptic cleft, it binds to the postsynaptic nAChR, thereby initiating the opening of the channel and the induction of a sodium influx, which ensures

stimulus transmission. ACh is then cleaved by acetylcholinesterase (AChE) into choline and acetic acid and removed from the synaptic cleft (35, 38, 42, 47). (B)

Scenario in the presence of a neonicotinoid. Neonicotinoids are agonists of postsynaptic nAChRs. The neonicotinoid blocks the receptor, preventing ACh

accumulation. Since the AChE cannot bind to the neonicotinoid, the channel remains open and stimulus transmission is interrupted. In the optimal case, however,

detoxification enzymes such as cytochrome P450 monooxygenase (P450) are able to degrade the toxic substances (36–42). (The detoxification mechanism is a

complex process that has been simplified here by using only P450 for illustration purposes.) (C) Scenario in the presence of a neonicotinoid and a sterol biosynthesis

inhibitor (SBI) fungicide. After the blockade of the receptor by the neonicotinoid, the channel remains open because the fungicide inhibits the detoxification enzyme

P450 by modifying the active center. The permanent opening can lead to serious effects for insects. The direct effect of a fungicide on an insect is still largely

unknown. However, such interactions that can lead to synergistic effects have already been described (39, 44–46). The illustrations were partly built using Servier

Medical Art images [Servier Medical Art by Servier (https://smart.servier.com/)2. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0

Unported License] (43).

group does not include oxygen atoms, they are less reactive and
therefore less toxic (44, 61).

While the first three neonicotinoids were restricted in use in
2013 (62)3 and completely banned from field use in the EU in
2018 (63–65)4−6 , the less toxic cyanoamidine neonicotinoids
were in use up to recently. But compelling evidence of aversive

2https://smart.servier.com (accessed November 25, 2021).
3https://eur-lex.europa.eu/eli/reg_impl/2013/485/oj (accessed October 28, 2021).
4https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0783
(accessed October 28, 2021).
5https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0784
(accessed October 28, 2021).
6https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0785
(accessed October 28, 2021).

effects of thiacloprid (51, 55, 66) has meanwhile led to a
European ban of this insecticide in greenhouse and field
(67)7. Nevertheless, in 2020, the neonicotinoids imidacloprid,
clothianidin, thiamethoxam and thiacloprid received emergency
authorisations for sugarbeet cultivation in several European
countries (68)8. Such emergency authorisations can lead to
persistent residues in the field. In Germany, thiacloprid has
been detected in beebread in 30% of samples analyzed in 2020
(69) (see text footnote 1). Thiamethoxam and clothianidin have
been detected in pollen even more frequently (86.7%) and in

7https://eur-lex.europa.eu/eli/reg_impl/2020/23/oj (accessed October 28, 2021).
8https://www.efsa.europa.eu/de/news/pesticides-efsa-examine-emergency-use-
neonicotinoids (accessed October 28, 2021).
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almost all nectar samples (98.6%)—although mostly at very
low concentrations (70). Acetamiprid and thiacloprid have been
detected in 20% of beebread samples in Poland (71). However,
a significant proportion of the food consumed worldwide is
grown in Asia and the Americas (72)9. In these places, PPPs
like neonicotinoids can still be detected frequently in alarming
concentrations. In the US, clothianidin has been detected in all
agricultural areas studied and imidacloprid has been found in
almost every urban water (73). More detailed studies in New
York State and California showed that contamination of aquatic
systems with neonicotinoids continues to increase (74). Studies
in Northern Belize found neonicotinoids in 68% of soil samples
and 47% of sediment samples (75). In China, neonicotinoids
like imidacloprid and thiamethoxam have been detected in river
systems (76) and 40% of honey samples studied contained at least
one neonicotinoid (77). Imidacloprid has also been detected in
Japan in harmful concentrations for aquatic invertebrates (78).
In fact, 86% of all samples tested in North America and 80%
of samples in Asia were contaminated with neonicotinoids in a
recent investigation by Mitchell et al. (24).

Some PPPs containing the neonicotinoid acetamiprid must
no longer be sprayed into open rape flowers, at least in some
European countries [e.g., Germany (79)]10 due to its toxicity
for bees (80, 81). However, acetamiprid can still be used as
systemic PPP, leading to residues in pollen, nectar and guttation
droplets. In addition, some residues will still reach open rapeseed
flowers even though the neonicotinoid should only be sprayed
on plants prior to full bloom, because a rapeseed field does not
bloom evenly.

In addition to these exceptions to the ban of neonicotinoids,
novel substitutes for neonicotinoids such as flupyradifurone or
sulfoxaflor have reached the market (82–85). These bind to the
same neurotransmitter receptors in the brain of insects and
even though they generally appear to be less toxic to honeybees,
in Germany they can only be used in greenhouses to protect
honeybees and wild bees (86)11. Evidence is accumulating that
these substances, too, can have adverse effects on bees (82–84, 87,
88).

Pyrethroids
Pyrethroids are the second most important insecticide class.
Synthetic pyrethroids are derived from one of six natural
pyrethrins, i.e., cinerin I, of the pyrethrum flower, Tanacetum
cinerariifolium (89). They act on voltage-gated sodium channels
in the membranes of nervous cells (37, 90, 91), leading to a
permanent depolarization of the axon membrane. Application
of pyrethroids leads to hyperexcitatory symptoms (92), paralysis
and ultimately to a knockout (93, 94). Since pyrethroids
are rapidly metabolized in insects by the cytochrome P450
detoxification pathway, they are generally considered not

9https://www.fao.org/faostat/en/#data/TCL (accessed November 23, 2021).
10https://www.bvl.bund.de/SharedDocs/Fachmeldungen/
04_pflanzenschutzmittel/2021/2021_03_12_Fa_Mospilan_SG_verkuerzte_AW_Raps.
html (accessed October 20, 2021).
11https://www.bvl.bund.de/SharedDocs/Fachmeldungen/
04_pflanzenschutzmittel/2020/2020_04_09_Fa_Zulassung_Sivanto_Gewaechshaus.
html (accessed August 10, 2021).

to pose a high risk for bees (37). On the other hand, they
have relatively higher LD50 values for insects compared
to neonicotinoids and share similar sub-lethal effects on
bees (95, 96). Typical pyrethroid insecticides include tau-
fluvalinate, cyfluthrin, allethrin, permethrin, deltamethrin,
lamda-cyhalothrin, and alpha-cypermethrin.

Since the ban of most neonicotinoids from field use, many
farmers have switched to pyrethroids along with alternative
pest control methods (97). In Germany, tau-fluvalinate can be
considered as the second most frequent insecticide in beebread,
followed by deltamethrin (69) (see text footnote 1). In recent
years, lamda-cyhalothrin has been used on 43% of oilseed rape
fields in the UK (98). In France, tau-fluvalinate belonged to the
substances that were found most frequently in beeswax (61.9%
of all samples tested). The pyrethroid cypermethrin has been
detected in 21.9% of samples, while deltamethrin appears to be
used less frequently (2.4% of samples) (99). In North America,
Thailand and Taiwan the pyrethroid fluvalinate was detected in
concentrations of 2,670 µg/kg (15), 47 µg/kg (100) and 16,260
µg/kg (101) bee pollen respectively. Permethrin (70 µg/kg) was
found in bee pollen in Brazil (102) and lamda-cyhalothrin was
detected in Chinese bee pollen in high concentrations (12,476
µg/kg) (103).

FUNGICIDES

Fungal diseases are the greatest threat to crops worldwide.
Thus, it is not surprising that the use of fungicides has been
increasing constantly over the last decades (104–106). They
are often applied during bloom (107), so that bees have direct
contact with them during foraging (69) (see text footnote 1).
But fungicides are also among the most common agrochemical
contaminants found in beeswax and pollen reserves of honeybee
hives, indicating that colony exposure likely extends beyond
the bloom period (15). Of the large number of fungicides,
boscalid is one of the most frequently detected fungicides
in bee products in Germany and Poland (69, 71) (see text
footnote 1). Other frequent fungicides in beebread studied
from German honeybee colonies are azoxystrobin, tebuconazole,
prothioconazole and dimoxystrobin. The same trend can be
observed in the United States with boscalid and azoxystrobin
residues being detected frequently (108) and in other European
countries showing similar frequencies of these two fungicides
(109). Furthermore, azoxystrobin was detected in Uruguay (5.5
µg/kg bee pollen) and propiconazole was found in the USA (17
µg/kg bee pollen) (110, 111).

Fungicides are generally considered harmless for bees based
on short-term toxicity tests (112) and the fact that oral and
contact LD50s for fungicides measured in individual bees
are usually at least four orders of magnitude greater than
concentrations found in honeybee food stores (113). However,
standard toxicity tests often disregard sublethal effects (114).
Sublethal fungicide effects, however, may cause severe stress to
bees (115). Fungicide exposure, for example, can lead to negative
effects on food consumption, immune response and metabolism
of insect pollinators (116). A recent study by DesJardins et al.

Frontiers in Insect Science | www.frontiersin.org 4 January 2022 | Volume 1 | Article 808335

https://www.fao.org/faostat/en/#data/TCL
https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2021/2021_03_12_Fa_Mospilan_SG_verkuerzte_AW_Raps.html
https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2021/2021_03_12_Fa_Mospilan_SG_verkuerzte_AW_Raps.html
https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2021/2021_03_12_Fa_Mospilan_SG_verkuerzte_AW_Raps.html
https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2020/2020_04_09_Fa_Zulassung_Sivanto_Gewaechshaus.html
https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2020/2020_04_09_Fa_Zulassung_Sivanto_Gewaechshaus.html
https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2020/2020_04_09_Fa_Zulassung_Sivanto_Gewaechshaus.html
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/insect-science#articles


Schuhmann et al. Insecticides, Fungicides and Bees

(117) demonstrates that the fungicide Pristine R© with the active
ingredients boscalid (25%) and pyraclostrobin (13%) can have a
severe impact on honeybee cognition. The same PPP reduced life
span and led to an earlier onset of foraging in another study (118).
These examples suggest that fungicides can have similar sublethal
effects on bees as neonicotinoids, although their mode of action is
completely different and they are still considered as harmless for
insects. In addition, fungicides might exert even further effects
on bees. For example, some bee species live in a mutualistic
relationship with a fungus that is essential for the development
of their larvae. Fungicides could damage their essential fungus
(119). Furthermore, it is known that some fungicides such as
boscalid interfere with the respiratory chain of fungi which
results in a disruption (38, 120). Thus, another possibility of
how fungicides could affect pollinators is that they disrupt the
respiratory chain in insects. This could result in insufficient
energy provisioning for various activities, resulting in sublethal
effects. Moreover, fungicides can influence the microbiome of
some organisms like mice or soil animals (121–123). Presumably,
fungicides can also affect the microbiome of honeybees, thereby
influencing their immune system.

These findings underpin the urgent need for more controlled
studies on the effects of fungicides on pollinators.

COMBINATIONS OF NEONICOTINOIDS
WITH STEROL BIOSYNTHESIS INHIBITING
FUNGICIDES

While we still lack information about possible side effects
of the majority of fungicides on honeybees and wild bees,
evidence is accumulating that some fungicides can have special
additive or synergistic effects on bees when co-applied with
neonicotinoids (124, 125). An additive effect occurs when the
cumulative effect of a fungicide and of an insecticide equals
the sum of the individual effects of each substance, while a
synergistic effect indicates a significantly larger effect than that
of the sum of individual effects (124, 125). Crops are usually
treated frequently against diverse pests, so that there is a good
chance of fungicides and insecticides being applied together in a
tank mixture or with only a short time interval in between (23,
126). One critical combination is the mixture of neonicotinoids
or pyrethroids with azole fungicides, because the latter inhibit
the sterol biosynthesis pathway (“sterol biosynthesis inhibiting
fungicides,” hereafter: SBI fungicides) (127, 128). SBI fungicides
inhibit the cytochrome P450 mediated ergosterol synthesis,
which is essential for cell membrane functioning in fungi (39,
44). However, they are also capable of inhibiting the enzyme
cytochrome P450 monooxygenase (P450) of honeybees and wild
bees, thereby disrupting their detoxification pathway (45, 46).
Since cytochrome P450 enzymes in bees are responsible for
both the detoxification of naturally occurring phytochemicals
(129) and the detoxification of different insecticides (130),
the combination of SBI fungicides with some insecticides can
trigger synergistic effects and thus increase their toxicity to bees
(Figure 1C) (40, 44). Although bees also have other metabolic

pathways, many toxins are metabolized via the cytochrome P450
degradation pathway.

Intriguingly, the probability for synergistic toxic effects of a
neonicotinoid-SBI fungicide combination appears to depend on
the class of neonicotinoids. Joint application of the cyanoamidine
neonicotinoids acetamiprid or thiacloprid, which themselves
have a relatively low toxicity for bees, with the SBI fungicides
triflumizole or propiconazole increased the acute contact toxicity
in bees several hundred-fold. A combination of thiacloprid and
triflumizole even led to a 1,141-fold increase in toxicity (44)!
Similar results were demonstrated for a combined application of
acetamiprid and the SBI fungicide propiconazole (131). Chronic
exposure to these two substances caused synergistic negative
effects on the mortality and weight of Asian honeybees (Apis
cerana) (17).

Imidacloprid, which belongs to the nitroguanidine
neonicotinoids, in contrast, only showed a weak increase in
toxicity when combined with the SBI fungicides triflumizole
or propiconazole (44), although it belongs to the group of
neonicotinoids which themselves are frequently more toxic to
bees than the cyanoamidine neonicotinoids. Another study by
Yao et al. (132) showed a similar result when co-applying the
nitroguanidine neonicotinoid clothianidin jointly with the SBI
fungicide tetraconazole.

Similar to what has been reported for honeybees,
combinations of cyanoamidine neonicotinoids with SBI
fungicides led to stronger or synergistic effects on wild bees
compared to combinations of nitroguanidine neonicotinoids.
The cyanoamidine neonicotinoid acetamiprid and the SBI
fungicide fenbuconazole, for example, showed significantly
negative synergistic effects on the acute toxicity of the horned-
face bee Osmia cornifrons, while the effects of the nitroguanidine
neonicotinoid imidacloprid in combination with the SBI
fungicide only led to slight effects (133). Co-application of
imidacloprid and the SBI fungicide imazalil to bumblebee
(Bombus terrestris) workers also did not reveal any effect on
acute oral toxicity or feeding rate (127). However, there are
some exceptions. Studies exposing Bombus terrestris workers to
a mixture of the nitroguanidine neonicotinoid thiamethoxam
and the SBI fungicide imazalil showed a significant synergistic
effect on mortality but no effect on feeding (127) and joint
application of thiamethoxam and the SBI fungicide myclobutanil
increased acute toxicity in Bombus impatiens bees by the factor
2.38 (128). The nitroguanidine neonicotinoid clothianidin
induced a significantly higher mortality not only in honeybees,
but also in bumblebees (Bombus terrestris) and solitary bees
(Osmia bicornis) when co-applied orally with the SBI fungicide
propiconazole. Furthermore, the mixture led to slow ovary
maturation and decreased longevity inOsmia bicornis (134, 135).

Some of the novel substitutes for neonicotinoids have also
been tested for additive or synergistic effects in combination
with SBI fungicides. Although the novel substances such as
flupyradifurone (marketed under the name of Sivanto R©) belong
to different chemical classes as the classical neonicotinoids
(butenolides in the case of flupyradifurone), they bind to the
same nicotinic acetylcholine receptors in the nervous system of
insects (136). Not surprisingly, a combined application of the
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SBI fungicide propiconazole and flupyradifurone synergistically
increased the acute mortality of bees and led to acute synergistic
sublethal effects such as abnormal coordination, hyperactivity
and apathy (87).

COMBINATIONS OF PYRETHROIDS AND
SBI FUNGICIDES

Pyrethroid insecticides rely on the same enzyme for
detoxification processes as neonicotinoids. It is therefore
not surprising that these PPPs also show an enhanced toxicity
when applied in combination with SBI fungicides. Further,
pyrethroids are highly hydrophobic. Their toxicity is therefore
often larger by contact than by oral exposure (14). Honeybees
sprayed with sublethal doses of the pyrethroid deltamethrin
and the SBI fungicide prochloraz, for example, displayed a
synergistically enhanced acute mortality, while either compound
on its own did not show any effects on mortality (45, 137). The
combination of the same two compounds or of deltamethrin
and the SBI fungicide difenoconazole caused an acute synergistic
hypothermia in an experiment investigating thermoregulation
(138). Studies on semi-isolated hearts of honeybees further
showed a synergistic cardiotoxic effect of deltamethrin in
combination with prochloraz (139). The pyrethroid lambda-
cyhalothrin similarly showed synergistic effects on the acute
mortality of honeybees in combination with the SBI fungicides
prochloraz, propiconazole, imazalil and others (41, 46). Of these,
the strongest synergistic effect was found in combination with
propiconazole, with a synergistic ratio of 16.2. Furthermore,
lamda-cyhalothrin showed an increased acute toxicity when
applied to honeybees in combination with the SBI fungicides
flusilazole, difenoconazole, tebuconazole, prochloraz and
propiconazole. The strongest effect was detected in combination
with prochloraz. Furthermore, the oral combinations of
the pyrethroid alpha-cypermethrin and the SBI fungicides
prochloraz and propiconazole led to an increase in acute
toxicity, with the most pronounced effects induced by prochloraz
(126). The difference in the study design was that Pilling and
Jepson (46) applied the PPPs via contact, while Thompson
and Wilkins (126) used oral exposure. Wernecke et al. (140)
showed synergistic toxic effects with mortality rates up to 100%
when they applied lambda-cyhalothrin in combination with
the SBI fungicide tebuconazole. The pyrethroid cypermethrin
showed a significant synergistic effect in combination with
the SBI fungicide imazalil in acute mortality tests using the
bumblebee Bombus terrestris. The foraging rate, however, was
unaffected (127). A combination of the pyrethroid bifenthrin
with the SBI fungicide difenoconazole slightly enhanced
mortality in bumblebees, while a combination with the SBI
fungicide myclobutanil enhanced mortality by the synergy ratio
of 11 (128).

The above studies and others have likely contributed to
political decisions in the EU, which strongly restrict the use of
neonicotinoid insecticides (62, 67) (see text footnote 3,7), thereby
leading to the expiration of approval of most neonicotinoids by
the end of 2020. The only exception is acetamiprid. To the best of

our knowledge, Germany is the only country within the EUwhich
went as far as prohibiting the combination of neonicotinoids and
SBI fungicides and of pyrethroids and SBI fungicides on plants
that are visited by bees (141–144)12−15. The combination of
pyrethroids, the neonicotinoid acetamiprid or of new substitute
products for neonicotinoids and SBI fungicides is therefore still
likely to occur in many countries within the EU and outside,
putting honeybees and wild bees at risk.

COMBINATIONS OF NEONICOTINOIDS
AND NON-SBI FUNGICIDES

Diverse insecticides and fungicides have frequently been detected
in beebread, honey and wax (14, 145). Even though many
fungicides and insecticides may not be sprayed together in a
tank mixture, at least in some countries, they can be applied
sequentially, so that bees will still consume them together while
collecting pollen or nectar. Sometimes, the neonicotinoid may
be present in guttation drops after systemic application while
the fungicide has been sprayed on the flowers, so that a bee
collecting both water and pollen might come into contact
with both substances within one foraging bout (23, 126).
Therefore, the question remains whether a combined application
of neonicotinoids and non-SBI fungicides has any negative effects
on honeybees and wild bees. Studies on these combinations
and their effects on pollinators are relatively new and
still rare.

One study of the neonicotinoid thiamethoxam in combination
with the non-SBI fungicide carbendazol showed an effect on
sugar responsiveness and orientation behavior of honeybees.
However, thiamethoxam showed this effect in the solo
application too, thus it cannot be concluded that there is a
synergistic effect of the interaction between thiamethoxam
and carbendazol and the effects on orientation and sugar
responsiveness was recovered in all bees 1 week after exposure
to the PPPs (52). The same applies to the combination of
the neonicotinoid thiamethoxam and the non-SBI fungicide
picoxystrobin. They show a chronic toxicity effect on newly
emerged honeybees and an overload of the hepato-nephrocitic
system when applied in combination (146). Again, the two toxins
showed this effect in the solo application, too. Schmuck et al.
(40) showed that the neonicotinoid thiacloprid displayed no
negative synergistic effects when applied jointly with non-SBI
fungicides (tolylfluanid, mancozeb, azoxystrobin). The only
exception was cyprodinil with a small additive effect. Wernecke
et al. (140) showed that tank mixtures containing the non-SBI

12https://www.lfl.bayern.de/ips/recht/205171/index.php (accessed November 1,
2020).
13https://www.lfl.bayern.de/ips/recht/184219/index.php (accessed November 1,
2020).
14https://apps2.bvl.bund.de/psm/jsp/DatenBlatt.jsp?kennr=005655-00 (accessed
October 20, 2021).
15https://apps2.bvl.bund.de/psm/jsp/DatenBlatt.jsp?kennr=005655-60 (accessed
October 20, 2021).
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fungicides boscalid and dimoxystrobin and the neonicotinoid
thiacloprid had no effect on bee toxicity both in laboratory, semi-
field and field standard assays. Likewise Manning et al. (131)
showed that the non-SBI fungicides pyraclostrobin and boscalid
did not enhance toxicity of the neonicotinoid acetamiprid in
honeybees. However, a study of Tsvetkov et al. (147) showed
that the acute toxicity of the neonicotinoids clothianidin and
thiamethoxam was increased when they were co-applied orally
in combination with field realistic concentrations of the non-SBI
fungicide boscalid. The LD50 was significantly reduced and
both insecticides became nearly twice as toxic. Studies on
the effects of a combined application of neonicotinoids and
non-SBI fungicides in wild bees are not available. Our own
experiments analyzing the sucrose responsiveness of bumblebees
after chronic oral exposure to the neonicotinoid acetamiprid
and the non-SBI fungicides boscalid and dimoxystrobin
in sublethal concentrations did not reveal any negative
effects (Figure 2).

These experiments jointly show that the combination of
neonicotinoids and non-SBI fungicides appears not to increase
toxicity of the neonicotinoids. They support the notion that the
enhanced toxicity of neonicotinoids in combination with SBI
fungicides relies mainly on the inhibition of P450 enzymes and
not on additional factors.

FIGURE 2 | Responses to increasing concentrations of sucrose of commercial

bumblebees (Bombus terrestris) chronically treated with the neonicotinoid

Mospilan® [active ingredient: acetamiprid (2,000 ppb)], the non-SBI fungicide

Cantus® Gold [active ingredients: boscalid/dimoxystrobin (50/50%) (150 ppb

boscalid/150 ppb dimoxystrobin)], a mixture of both PPPs or a control solution

containing only sucrose and water. The bumblebees were anesthetized on ice

and harnessed in holders. After an interval for adaptation, the antennae of the

bumblebees were stimulated with several sucrose concentrations in ascending

order. It was noted if individual bumblebees showed a proboscis extension

response (PER) to the sucrose stimulus. The number of bumblebees tested is

shown in brackets for each treatment. The percentage of bumblebees

extending their probosces to the different sugar concentrations increases with

sugar concentration. Field realistic concentrations of the non-SBI fungicide,

the neonicotinoid or a combination of these had no effect on sugar

responsiveness.

COMBINATIONS OF PYRETHROIDS AND
NON-SBI FUNGICIDES

Only very few studies have been published on the combined
effects of pyrethroids and non-SBI fungicides. The non-
SBI fungicides carbendazol and iprodione+thiophanate-methyl
did not increase the toxicity of the pyrethroid insecticides
alpha-cypermethrin and lamba-cyhalothrin in honeybees, while
chlorothalonil was the only non-SBI fungicide that showed
an effect on the toxicity of alpha-cypermethrin and lambda-
cyhalothrin (126). As chlorothalonil is metabolized in mammals
via the enzyme P450 (37), it stands to reason that the
enzyme might also play a role in the detoxification of the
fungicide in honeybees. Thus, the increased toxicity could be
due to the competition for P450 between chlorothalonil and
the pyrethroids.

DISCUSSION

Honeybees and wild bees, along with other pollinators, depend
on protection in agricultural landscapes due to heavy use of
plant protection products, posing enourmous stress on bees
worldwide (2, 7, 148). Policy makers, on the other hand, rely on
independent scientific research on possible negative side effects
of PPPs for a wide range of insects and in combination with
other PPPs, because the agrochemicals, for which there is a
high demand in food production industry, are naturally only
tested for adverse side effects on beneficial insects to a small
degree during the approval process and sublethal effects are
hardly studied (25, 149, 150). Interestingly, there is a strong
positive correlation between the number of papers published on
a certain PPP and the likelyhood that it will be banned from
field use (Figures 3A–C). At least, this is highly apparent for
the main class of insecticides, the neonicotinoids. According
to our literature search in the Web of Science Core Collection
(151), the largest number of publications focusses on the three
neonicotinoids imidacloprid, thiamethoxam and clothianidin
(Figures 3A–C). They are followed by studies investigating side
effects of thiacloprid and acetamiprid, but the latter two have
been studied to a considerably lower extend. While imidacloprid,
thiamethoxam and clothianidin are meanwhile largely banned
from use in the EU (63–65) (see text footnote 4-6) the approval
of acetamiprid was renewed until 2033 (152)16. In Germany,
however, there is the restriction that some PPPs containing
acetamiprid may only be sprayed on plants just prior to
full bloom (79)17. Thiacloprid was banned from outdoor and
greenhouse use recently (67).

We can therefore expect that residues will increase for the
remaining neonicotinoids such as acetamiprid (17) and novel
insecticides such as flupyradifurone (84), sulfoxaflor (85, 153),
and cyantraniliprole (154). Some of them also bind to nicotinic

16https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0113
(accessed: October 28, 2021).
17https://www.bvl.bund.de/SharedDocs/Fachmeldungen/
04_pflanzenschutzmittel/2021/2021_03_12_Fa_Mospilan_SG_verkuerzte_AW_Raps.
html (accessed October 20, 2021).
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FIGURE 3 | Number of publications on different neonicotinoid insecticides and novel products binding to nicotinic acetylcholine receptors. The search for publications

was performed in the Web of Science Core Collection18 using the “name of the pesticide” and “honeybee” (A), “bumblebee” (B) or “wild bee” (C). The absolute

numbers of publications are given above the columns. Fully filled columns show already banned pesticides, while striped columns represent currently approved PPPs.

acetylcholine receptors like the neonicotinoids [flupyradifurone:
(136, 155)] [sulfoxaflor: (153)] or modulate the ryanodine
receptor [cyantraniliprole: (156)].

The studies of side effects of neonicotinoids on honeybees are
comparatively rich and diverse. In addition to testing effects on
mortality, they use an ample array of behavioral tests to study
in detail sublethal effects on honeybee behavior. Studies on the
effects of neonicotinoids on wild bees, in contrast, are rather rare
(Figures 3A–C). One reason is the lack of suitable and established
test procedures such as those developed for model organisms
like the honeybee (Apis mellifera). Wild bees are not as easily
available as honeybees or other social insects at different times
of the year and in adequate numbers. The bumblebee is the
only “wild” bee which has gained considerable attention in PPP
tests, not least because numerous assays originally developed
for honeybees have been adapted for bumblebees. Nevertheless,
there are some important differences between honeybees and
bumblebees concerning their physiology and life cycle (157, 158).
Honeybees, for example, store contamined pollen or nectar inside
the hive, which results in a dilution effect. Bumblebees do not
show this behavior, which could lead to higher intakes per
individual (159). Solitary wild bees are even more at danger to

18https://www.webofscience.com/wos/woscc/basic-search (accessed November
23, 2021).

suffer from intense use of PPPs for various reasons. Their solitary
lifestyle prevents compensation of possible negative effects by
conspecifics. In addition, it has been assumed that honeybee
workers are able to filter toxins before feeding the brood, which
has not been shown in solitary insects. Furthermore, many wild
bees are smaller than honeybees or bumblebees, possibly making
them more vulnerable (30, 160). Since the number of studies
on PPP effects on wild bees is very small (Figure 3C), our
knowledge on the action and interaction of neonicotinoids and
fungicides basically relies on honeybee studies and a few studies
investigating bumblebees or sometimes mason bees. Assuming
that wild bees have a higher vulnerability than larger bees
and taking into account the great loss of wild pollinators even
in national parks, we can assume that studying only model
organisms and selected bees which are commercially available
is insufficient to explain the effects of individual PPPs or their
combination on the majority of wild bees.

Our review illustrates that neonicotinoids, which are
targeted at sucking insect pests of agricultural crops (161),
are harmful to honeybees and wild bees (19, 133, 162–164).
Among the different neonicotinoids, those containing a
cyanoamidine group (cyanoamidine type) have a lower toxicity
for honeybees and wild bees than those containing a N-nitro
group (nitroguanidine type). However, in combination with
SBI fungicides, which increase the toxicity of neonicotinoids
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through inhibition of their detoxification pathway (37), the
toxicity of the two classes of neonicotinoids appears to be
inverted with nitroguanidine neonicotinoids being less toxic
than cyanoamidine neonicotinoids. Similarly, the increased
toxicity of pyrethroid insecticides when co-applied with SBI
fungicides seems to be solely related to their inhibition of the
detoxification pathway, as is the case in neonicotinoids.

The non-SBI fungicides, in contrast, appear not to impose a
higher toxicity to honeybees and wild bees when co-applied with
neonicotinoids, although only few studies have investigated this
issue. Yet, the overall results are very clear and there is no hint
that those fungicides interfere with detoxification mechanisms.
The very few studies analyzing pyrethroids in combination with
non-SBI fungicides do not suggest any additive or synergistic
effects induced by the fungicides.

It needs to be pointed out that the effects reported for
individual PPPs or their combinations sometimes differ
drastically between studies on the same species applying the
same products. Care must be taken when trying to formulate
a general statement on the toxicity of such combinations
or individual PPPs. One reason is the different application
method, which can have gross effects on toxicity. The
nitroguanidine neonicotinoid imidacloprid in combination
with tetraconazole, for example, did not evoke any negative
effects in honeybees when applied orally for 14 days in
one study (165). The same combination of PPPs led to
synergistic toxic effects when sprayed onto individuals,
leading to direct contact (166). A contact application of the
nitroguanidine neonicotinoid thiamethoxam in combination
with the SBI fungicide tebuconazole led to a synergistic
2.6-fold increase in toxicity for honeybees. However, when
applied orally to honeybees, the synergistic toxicity was much
reduced (23).

A second important point in discussing the effects of single
or combined PPP application concerns the concentrations and
amounts of active substances. Presumably, this discrepancy
between studies leads to the largest differences reported on the
same substances. It is not always straightforward to estimate a
field realistic dose of PPPs or active ingredients for different
bee species, because there are not reliable residues known
for each species. In honeybees, regular monitoring of PPP
residues in beebread (stored pollen), honey, wax and in pollen
collected from individual bees allows for a detailed analysis
(14, 15, 37, 167–169). For bumblebees, the situation is very
different with few studies having analyzed the residues of PPP
in pollen collected from individuals (170). Nevertheless, the
bumblebee Bombus terrestris is a generalist (171), i. e. the
bumblebees forage on similar plants compared to honeybees
and can come into contact with the same residues, but
nothing is known about natural exposition of solitary wild
species such as mason bees. Wildflowers near arable fields
often contain higher residue levels compared to crop plants
(172). Therefore, wild bees foraging on wildflowers may
even experience higher exposure levels than bees foraging in
agricultural crops.

In numerous studies, lethal and (less frequently) sublethal
doses are determined and used for experimental analysis of

toxicity. However, only rarely are they related to realistic
scenarios of exposure in the field. This is more difficult when
no residues have been determined, e.g., in nests of solitary
bees or in the pollen collected in the corbiculae. However,
it is questionable how far determining sublethal or lethal
dosages represent a realistic situation for a given species. It
is similarly difficult to calculate exposure concentrations from
known application rules, because a large proportion of bees
are more likely to come into contact with PPPs through
feeding from stored nectar or pollen than by direct contact
(173). In addition, a realistic scenario should either involve
a larger number of PPPs than one or two, because many
bee products accumulate up to 30 different PPPs (13) (see
text footnote 1), or it should estimate the total amount
of PPPs an individual is exposed to, e.g., by adding the
amounts of different PPPs. The varied perspectives, methods
and calculations of PPP amounts across experiments make it
very difficult to compare different studies. Nevertheless, our
abundant knowledge on PPP effects on honeybees can serve
as a good approximation for possible effects on wild bees
and other pollinators, when care is taken in comparisons
and conclusions.

Taken together, our survey suggests that the recent ban
of most neonicotinoids from field use together with the ban
on tank mixtures of neonicotinoids or pyrethroids and SBI
fungicides in Germany have been decisive measures to protect
honeybees and wild bees from adverse side effects of these
PPPs and their combinations. Nevertheless, Germany and other
European countries import a large part of their food from
other countries (175) and many PPPs like neonicotinoids
are exported from Europe to these countries, where their
application is still possible (174, 175)19. This is because the
application regulations and safety standards concerning the use
of PPPs are not developed uniformly worldwide (175, 176).
Especially developing countries, often relying on food exports,
have weaker food safety regulations (177). These countries
often have a great biodiversity and a large variety of bees
and other pollinators (178). Our review suggests that their
insect diversity is severely threatened by the combined use
of neonicotinoids and SBI fungicides. Further, it should be
pointed out that the PPPs such as neonicotinoids, which are
still in use in those countries, can be re-imported to Europe
via the import of fruit and vegetables, despite strict import
regulations (175).

We have no clear evidence for negative effects of
combined applications of neonicotinoids or pyrethroids
and non-SBI fungicides so far, but there have been
only few studies investigating these effects up to
now, particularly in wild bees. Our survey highlights
the importance of considering interactive effects of
PPPs in risk assessment, even though it will be a big
challenge to investigate lethal and sublethal effects of the
thousands of potential chemical combinations to which
bees are exposed in the environment. Novel computer
algorithms and machine learning might help to simulate

19https://www.fao.org/faostat/en/#data/RT (accessed November 23, 2021).
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these interactions when the mechanisms of actions of
individual PPPs are known and taken into consideration,
ultimately protecting our most important pollinators in
their environment.
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determine pesticide residues in bumblebees. Crit Rev Anal Chem. (2018)
48:447-58. doi: 10.1080/10408347.2018.1445517

171. Dafni A, Kevan P, Gross CL, Goka K. Bombus terrestris, pollinator,
invasive and pest: An assessment of problems associated with its widespread
introductions for commercial purposes. Appl Entomol Zool. (2010) 45:101–
13. doi: 10.1303/aez.2010.101

172. Botías C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill E,
et al. Neonicotinoid residues in wildflowers, a potential route of
chronic exposure for bees. Environ Sci Technol. (2015) 49:12731–
40. doi: 10.1021/acs.est.5b03459

173. Gradish AE, Van Der Steen J, Scott-Dupree CD, Cabrera AR, Cutler
GC, Goulson D, et al. Comparison of pesticide exposure in honey
bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera:
Apidae): Implications for risk assessments. Environ Entomol. (2018)
48:1–10. doi: 10.1093/ee/nvy168

174. Food and Agriculture Organization of the United Nations. FAOSTAT -

Pesticides Trade. (2019). Available online at: https://www.fao.org/faostat/
en/#data/RT (accessed November 23, 2021).

175. Handford CE, Elliott CT, Campbell K. A review of the global pesticide
legislation and the scale of challenge in reaching the global harmonization
of food safety standards. Integr Environ Assess Manag. (2015) 11:525–
36. doi: 10.1002/ieam.1635

176. Dou L, Yanagishima K, Li X, Li P, Nakagawa M. Food safety regulation and
its implication on Chinese vegetable exports. Food Policy. (2015) 57:128–
34. doi: 10.1016/j.foodpol.2015.09.007

177. Henson S, Jaffee S. Understanding developing country strategic responses
to the enhancement of food safety standards. World Econ. (2008) 31:548–
68. doi: 10.1111/j.1467-9701.2007.01034.x

178. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J.
Biodiversity hotspots for conservation priorities. Nature. (2000) 403:853–
8. doi: 10.1038/35002501

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Schuhmann, Schmid, Manzer, Schulte and Scheiner. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Insect Science | www.frontiersin.org 14 January 2022 | Volume 1 | Article 808335

https://doi.org/10.1126/science.aam7470
https://doi.org/10.1016/j.biocon.2019.01.020
https://doi.org/10.1016/j.scitotenv.2016.09.127
https://doi.org/10.1002/etc.4572
https://www.webofscience.com/wos/woscc/basic-search
https://www.webofscience.com/wos/woscc/basic-search
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0113
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0113
https://doi.org/10.1016/j.pestbp.2013.05.014
https://doi.org/10.21273/HORTTECH04853-21
https://doi.org/10.1002/anie.201302550
https://doi.org/10.3390/su13168792
https://doi.org/10.1051/apido:2001139
https://doi.org/10.1007/s10646-009-0406-2
https://doi.org/10.1023/A:1026444029579
https://doi.org/10.1038/s41559-019-0987-y
https://doi.org/10.1002/ps.1631
https://doi.org/10.1371/journal.pone.0014720
https://doi.org/10.1007/s10646-014-1189-7
https://doi.org/10.1371/journal.pone.0102725
https://doi.org/10.1371/journal.pone.0176837
https://doi.org/10.1371/journal.pone.0178421
https://doi.org/10.1007/s10661-007-9952-3
https://doi.org/10.1603/022.038.0302
https://doi.org/10.1603/EC10235
https://doi.org/10.1080/10408347.2018.1445517
https://doi.org/10.1303/aez.2010.101
https://doi.org/10.1021/acs.est.5b03459
https://doi.org/10.1093/ee/nvy168
https://www.fao.org/faostat/en/#data/RT
https://www.fao.org/faostat/en/#data/RT
https://doi.org/10.1002/ieam.1635
https://doi.org/10.1016/j.foodpol.2015.09.007
https://doi.org/10.1111/j.1467-9701.2007.01034.x
https://doi.org/10.1038/35002501
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/insect-science#articles

	Interaction of Insecticides and Fungicides in Bees
	Introduction
	INSECTICIDES
	Neonicotinoids
	Pyrethroids

	FUNGICIDES
	COMBINATIONS OF NEONICOTINOIDS WITH STEROL BIOSYNTHESIS INHIBITING FUNGICIDES
	COMBINATIONS OF PYRETHROIDS AND SBI FUNGICIDES
	Combinations of Neonicotinoids and Non-SBI Fungicides
	COMBINATIONS OF PYRETHROIDS AND NON-SBI FUNGICIDES
	DISCUSSION
	Author Contributions
	Funding
	Acknowledgments
	References


