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This study examines biomass valorization through thermochemical conversion

by an integrated catalytic fast pyrolysis process with liquid fractionation using a

free-fall reactor, g-alumina, as a catalyst and methanol for direct quenching. The

novelty lies within the process intensification (i.e., a single-step conversion and

fractionation pathway) to improve pyrolysis oil yield and quality. In particular, the

conversion bioprocess utilizes in situ or ex situ catalytic free-fall fast pyrolysis

reactors at 550°C and 10–15 psi to produce pyrolysis oil and char (bio-oil and

biochar) from pinewood feedstocks. The results from the gas chromatography–

mass spectrometry show that the main volatile fractions of bio-oil compounds

are levoglucosan, furfural, hydroxy acetone, methyl acetate, and catechol. The

electrospray ionization–mass spectrometry results determine the average molar

mass, revealing improved cracking, thermal treatment, and fraction stabilization.

The Fourier transform infrared spectroscopy and thermal aging provide insight

into the change in functional groups in relation to experimental parameters. The

outcomes indicate that g-alumina successfully decreased acidic compounds and

increased esters and phenolic content in the bio-oil. The bio-oil produced from

the ex situ catalytic pyrolysis also shows the highest liquid yield (~41%), high

phenolic content, and thermally stable properties. The in situ catalytic pyrolysis

exhibits lower yields but favors high ketone formation. Fractions condensed in

methanol exhibit the highest thermal stability and esterification potential;

however, they still possess relatively high amounts of acidic compounds. It is

concluded that ex situ catalytic pyrolysis, using g-alumina catalyst and

fractionation with methanol, can improve conversion reactions, particularly

bio-oil quality, yield, and thermal stability.
KEYWORDS

biomass, bio-oil, catalytic pyrolysis, characterization, thermochemical conversion,
thermal stability
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1 Introduction

Among renewable energy sources in the United States (US),

biomass contributed the largest portion (38%) to bioenergy

product ion in 2022 (U.S . DOE Energy Informat ion

Administration, 2023). Producing renewable energy using

available renewable resources (e.g., biomass feedstocks) is a

promising alternative to offset reliance on non-renewable

resources (e.g., fossil fuels) (Myllyviita et al., 2012). Many

conversion processes can provide potential routes for converting

raw biomass to chemicals, heat, fuels, and power (Alizadeh et al.,

2020). However, the costs of current technologies for biomass

pretreatment, conversion, and upgrading make biofuel production

economically impractical (Mirkouei et al., 2017). Evaluating

biomass conversion pathway technologies is critical to identifying

optimal processes and producing valorized energy products

(Venderbosch, 2015). Of these processes, thermochemical

decomposition of biomass by fast pyrolysis (FP) has shown to be

simple and comparatively cost-effective in producing a liquid

product with higher energy content than the raw materials

(Mirkouei et al., 2016). Pyrolysis-oil (often called "bio-oil") is the

liquid product from the pyrolysis of lignocellulosic materials that

can be used as a heating source in its raw form (Easterly, 2002).

Conversely, some of bio-oil's quality attributes, such as low heating

value, corrosivity, and thermal instability, make it inequivalent to

existing petroleum-based transportation fuels (e.g., gasoline and

diesel). The lower heating value of bio-oil is associated with the high

oxygen and water content as well as the low hydrogen-to-carbon

(H/C) ratio and high oxygen-to-carbon (O/C) ratio (Jacobson et al.,

2013). Some other unwanted bio-oil characteristics (e.g., viscosity

and acidity) preclude many other potential applications as well

(Ramirez-Corredores and Sanchez, 2012). Biofuels and bio-

blendstocks produced from bio-oils have been considered as a

potential source of renewable transportation fuels (Li et al., 2015).

However, the corrosivity of an acidic fuel ruins boiler, turbines, and

engine components (Brady et al., 2014), while storage and thermal

instability limit processing and prevent long-term storage necessary

for distribution at the commercial level (Yang et al., 2015).

Therefore, upgrading treatments (before storage and distribution)

attempts to address bio-oil quality issues and improve usability

and applicability.

The addition of catalysts to the pyrolysis process improves key

chemical reactions, such as cracking, hydrogenation,

decarbonylation, and decarboxylation (Zhang et al., 2007).

Furthermore, the addition of hydrogen gas with catalyst can lead

to hydrocracking, hydrogenation, and hydrodeoxygenation

(Fermoso et al., 2017). The goal of catalysis is to produce a bio-

oil with fewer oxygenated compounds and increased hydrocarbon

and short chain molecule content. Solid acid catalysts (e.g., zeolite)

have been shown to possess superior cracking and dehydration

activity, making them preferable for catalytic pyrolysis (Dickerson

and Soria, 2013). However, due to the microporous structure and

acidity of zeolite, pore blockage from polymerization and

polycondensation reactions results in a low bio-oil yield and rapid

catalyst deactivation from coke formation (Imran et al., 2018).

While not as effective as zeolites, other catalysts have merit in
Frontiers in Industrial Microbiology 02
being used for catalytic pyrolysis, such as g-alumina, due to lower

costs and desirable characteristics (i.e., surface area, pore volume,

and pore size distribution) (Trueba and Trasatti, 2005). g-Alumina

is a solid acid catalyst and exhibits high activity due to a large

number of Lewis acid sites on its surface (Mosallanejad et al., 2018).

The effectiveness of g-alumina can also be increased by using it as a

catalyst support. Depending on the results of the bio-oil

composition, undesirable functional groups for fuel product may

be identified and targeted in further experiments by decorating the

g-alumina with metals (e.g., Ni, Mo, Co, and Fe), increasing active

sites for cracking and reforming reactions (Zhang et al., 2018).

Gupta and Mondal (2021) performed pyrolysis on pine needles

using g-alumina and nickel-doped g-alumina (Gupta and Mondal,

2021). The results showed that the catalyst caused a considerable

reduction in activation energy and improved reaction rate. The

catalyst also increased the phenolic content in the bio-oil and

reduced the oxygen content. Other studies have shown that using

reactive distillation with an alcohol and an acid catalyst resulted in

bio-oil esterification and improved fuel qualities (Mahfud et al.,

2007; Junming et al., 2008).

Another technique that can be integrated into a pyrolysis unit

to increase bio-oil yield and quality is the utilization of direct

quenching columns (e.g., spray towers and impingers). Pyrolysis

units commonly utilize these columns due to the physical and

chemical condensation interactions between the quenching fluid

and pyrolysis vapors. Condensation achieved in this way can

capture lighter-weight molecules and mitigate undesirable

reactions (Bridgwater, 2012). Earlier studies investigated

various quenching fluids, such as water (Vasalos et al., 2016),

paraffin oil (Park et al., 2016), liquid nitrogen (Dalluge et al.,

2019), reused bio-oil (Cai and Liu, 2016), immiscible

hydrocarbon solvents (Papari and Hawboldt, 2018), alcohols

(Dufour et al., 2007), and dichloromethane (Sotoudehnia et al.,

2021). Methanol is particularly interesting since it is relatively

inexpensive and very effective at decreasing the aging rate of

bio-oil (Diebold and Czernik, 1997; Oasmaa et al., 2004;

Wenting et al., 2014). Suggested reactions that occur between

bio-oil compounds and methanol include esterification and

acetalization, resulting in a simple, economically feasible

upgrading approach (Oasmaa and Czernik, 1999).

This research utilizes a free-fall reactor configuration for the fast

pyrolysis of pinewood particles. The rationales behind the free-fall

pyrolysis reactor lie in the simple conversion pathway design, efficient

control, high liquid yield, and minimal use of sweep gas as well as

convenient control of the kinetic parameters, mass balance, and

residence time (Lehto, 2007; Ellens and Brown, 2012; Punsuwan

and Tangsathitkulchai, 2014). The focus of this research is on

evaluating the effect of in situ and ex situ free-fall catalytic fast

pyrolysis (CFP). While CFP is commonly practiced, to the best of our

knowledge, there is no study on a free-fall CFP reactor. This study

also integrates a direct quenching column in the form of a methanol

impinger to both increase the bio-oil yield capture and assess the

quenching fluid's effects on condensed products. Comparisons of

liquid fractions will be made to a previous study utilizing the same

reactor (Struhs et al., 2022). Table 1 presents an overview of earlier

similar studies and the main differences between them and this study.
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This study proposes a mixed catalytic fast pyrolysis process with

liquid fractionation using a free-fall reactor, g-alumina, as a catalyst

andmethanol for direct quenching. The novelty lies within the process

intensification, a single-step conversion and fractionation pathway, to

improve pyrolysis oil yield and quality. This study compares the

advantages and deficiencies of the proposed conversion pathways with

prior studies, along with the potential of g-alumina in CFP, and the

efficiency and effect of methanol as a direct quenching fluid. This

study attempts to address stable bio-oil production from biomass and

improve usability and applicability. To do so, the effectiveness of ex

situ and in situ CFP is examined and compared. The physicochemical

properties of methanol as a quenching fluid and stabilizing agent are

also assessed. The key research impacts of this study are as follows: (a)

assisting in defining the basic principles that guide the production of

stable bio-oil and (b) explaining the resulting phenomena occurring in

the catalysis and direct quenching of pyrolysis vapors.
Frontiers in Industrial Microbiology 03
2 Materials and methods

2.1 Materials

Biomass: Pinewood flour (PWF) was used as the sole biomass

feedstock in this study, sourced from American Wood Fibers

(Table 2). PWF was dried to a moisture content of below 10%

and screened (between 60 and 120 standard mesh) to a particle size

between 125 and 250 μm. The moisture content of the feedstock was

accounted for by mass difference before and after drying in the oven

at 105°C for 12 h.

Catalyst: The catalyst used in this study has a hollow cylinder

(Raschig ring) structure and is composed of g-alumina (GH New

Material). This structure was chosen to eliminate char blockage

when performing in situ catalysis. The g-alumina possessed a BET

surface area of 231 m2/g and pore volume of 0.66 cm3/g.
TABLE 1 Recent pyrolysis studies utilizing g-alumina and/or direct quenching methods.

Study Catalyst
Condensing
method

Reactor Feedstock Focus Benefits

Matsuoka
et al., 2006

g-Al2O3 In situ Cold trap Fluidized bed Oak sawdust Water–gas
shift reaction

Tar capture, high
mechanical strength

Dufour
et al., 2007

– – Methanol impinger,
SPA tubes

Semi batch Spruce chips Condensing method
effect on product

–

Quirino
et al., 2009

(SnO)2(Al2O3)8,
(SnO)1(ZnO)1
(Al2O3),
(ZnO)2(Al2O3)8

In situ Glass condenser Semi batch Soybean oil Effects of catalyst on
products'
composition

Deoxygenating
effects

Ates ̧ and
Işıkdağ, 2009

Al2O3 In situ Ice bath Semi batch Corncob Liquid
composition, yields

Decreased reaction
temperature and
oxygenated
compounds

Du et al., 2014 ZSM-5,
Al2O3–SiO2

In situ Methanol impinger Spouted
bed reactor

Miscanthus Operating
conditions,
product distribution

Monocyclic aromatic
hydrocarbons
production, activity

Chen et al., 2017 ZSM-5,
g-Al2O3

In situ Impinger Semi batch Castor meal Effects of catalyst on
products'
composition

Decreased reaction
temperature,
enhanced secondary
reactions,
deoxygenation,
decreased
liquid viscosity

Jia et al., 2017 H-ZSM-5
and derivative

In situ Cold trap, propanol
N2 impinger

Micro-fluidized
bed reactor

Oak sawdust Effect of different
zeolite catalysts
on products

Increased selectivity
of monoaromatics

Ghorbannezhad
et al., 2020

Na2CO3/g-Al2O3,
HZSM-5

Ex situ – Tandem
microreactor

Sugarcane
bagasse/PET

Effects of catalyst on
products'
composition

Deoxygenation,
reduced
coke formation

Gupta and
Mondal, 2021

g-Al2O3,

Ni/g-Al2O3

In situ Water/ice baths Semi batch Pine needles Thermal
degradation, kinetics

Reduced activation
energy, increased
rection
rate, deoxygenation

This study g-Al2O3 In situ,
ex situ

Shell and tube/
methanol impinger

Continuous free-
fall reactor

Pinewood
particles

Effects of catalyst on
product
composition,
process
configuration
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Experimental setup: The thermochemical conversion of

pinewood was achieved using a free-fall fast pyrolysis reactor

(Figure 1). The free-fall reactor is a gas–solid co-current

downflow cylindrical reactor (inner diameter of 2.09 cm and

length of 107 cm). Biomass was continuously fed into the reactor

using a motorized auger feed system, located at the top of the

reactor, at 10 g/min over a span of 5 min. The system pressure was

monitored and varied between 0 and 48 kPag. Temperature was set

at 550°C with an approximated biomass residence time of 0.7–1 s.

The reactor was heated using external tape heaters and an internal

heating cartridge, which were controlled using programmable logic

controllers. Thermocouples were attached to the reactor wall and

the heating cartridge to monitor temperature at multiple points

along the unit. For in situ catalytic fast pyrolysis (I-CFP), a catalyst

bed was placed in the bottom of the free-fall reactor, giving the

biomass sufficient time to pyrolyze before the vapors and char
Frontiers in Industrial Microbiology 04
passed through the catalyst. A catalyst bed was placed directly after

the cyclone for ex situ catalytic fast pyrolysis (E-CFP). Our previous

experiments performed on PWF used the free-fall reactor without

incorporating catalysts or direct quenching (Struhs et al., 2022).

The solid biochar was separated from the pyrolysis vapors via a

cyclone. A custom impinger-type direct quencher was fabricated and

placed in series with a shell and tube condenser directly after the

cyclone. For the catalytic experiments, the impinger was placed after

the shell and tube condenser. Additional experiments were performed

where the impinger was placed first in series (FPQ) to examine the

effect on bio-oil fractions; however, no catalyst was used in these

experiments. The indirect condenser was cooled using a chiller filled

with a mix of water and ethylene glycol at 0°C. The pyrolysis vapors

were rapidly cooled and condensed by the impinger using a known

amount of methanol (100 mL) kept at 0°C by internal coils connected

to the chiller. Bio-oil fractions were condensed inside both columns

and analyzed separately. After the experiment, the bio-oil and

methanol were collected and stored in a refrigerator at 5°C to

mitigate the change in composition due to potential bio-oil

instability. Bio-oil and char yield were determined gravimetrically,

and gas was calculated by difference. The experiments under different

conditions were performed in triplicate.
2.2 Product characterization

Bio-oil samples were characterized using bomb calorimetry, gas

chromatography–mass spectrometry (GC–MS), electrospray

ionization–mass spectrometry (ESI–MS), Fourier transform

infrared (FTIR), and thermal stability aging as well as proximate

analysis for biochar characterization as detailed below:

Proximate analysis: Higher heating values (HHV) of the biochar

and bio-oil (dried over anhydrous sodium sulfate prior to analysis)

samples were obtained by bomb calorimetry (Parr Instruments model

1261) according to ASTM D5865-04 and calibrated with benzoic acid.

GC–MS: The semi-volatile composition of the bio-oil was

determined by GC–MS analyses and carried out in duplicate

(Trace 1300-ISQ, ThermoScientific). GC–MS samples were

prepared by mixing 1 mg bio-oil with 1 mL CH2Cl2 containing

trichlorobenzene (100 μg/mL) as an internal standard. A ZB-5

capillary column (30 m × 0.25 mm, Phenomenex) was used to

separate the bio-oil compounds using a temperature program of

40°C (1 min) to 250°C (10 min) at 5°C/min and an injector

temperature of 255°C. Peaks on the chromatogram were

identified using authentic standards from the literature and the

NIST 2017 MS library (Faix et al., 1990a, b, 1991).

ESI–MS: Molar mass, monomer/oligomer ratios, and

predominant compounds of the bio-oil samples were determined

using spectral mass distribution obtained from a Finnigan LCQ-

Deca mass spectrometer (ThermoQuest) (Sotoudehnia et al., 2020).
TABLE 2 Characterization of raw PWF (US Department of Energy, Idaho National Laboratory, 2016).

Feedstock
Volatile

matter (%)
Ash (%) Fixed carbon (%)

Moisture
content (%)

Particle size (µm)

Pine 84.50 ± 4.23 1.08 ± 0.05 14.41 ± 0.72 7.3 ± 0.37 125–250
FIGURE 1

Diagram of CFP reactor unit used for pyrolysis experiments.
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The ESI–MS samples were made by dissolving bio-oil (1 mg/mL) in

99% methanol/1% acetic acid solution before being injected and

exposed to negative ion ESI–MS (m/z 100–2,000) at a flow rate of 10

mL/min. The temperature was set to 275°C, with capillary and ion

source voltages set to 4.5 kV and 50 V, respectively. Equations 1 and

2 were used to calculate the molar masses as the number-average

(Mn) and weight-average (Mw), where Ni is the intensity of ions and

Mi is the ion mass (Sotoudehniakarani et al., 2019; Sotoudehnia

et al., 2020).

Mn =oNiMi=oNi (1)

Mw =oNiM
2
i =oNiMi (2)

FTIR: Major functional groups and compounds were identified by

FTIR spectra of bio-oil samples. Spectra were obtained in duplicate

using a ZnSe-attenuated total reflection (iD5 ATR) accessory of a

Thermo-Nicolet iS5 spectrometer. The (Thermo-Nicolet) Omnic v9

software was used for baseline correction, averaging the FTIR spectra,

and for identifying functional group frequencies.

Thermal stability: The thermal stability test was performed by

rapidly aging the bio-oil at a moderate temperature and measuring

the change in viscosity (NDJ-9S viscometer, spindle 2 at 60 rpm)

over time. When undergoing accelerated aging, bio-oil shows a

decrease in total molecules but an increase in molecular weight,

indicating condensation reactions and water formation (Oasmaa

and Kuoppala, 2003; Elliott et al., 2012). Methods for the thermal

stability test and obtaining the stability parameter (SP) can be found

in our previously published study (Struhs et al., 2022). Equation 3

was used to calculate the SP values:

SP =  
∂ (Viscosity)
∂ (time)

  cp=h (3)
3 Results and discussion

3.1 Product yield results

Bio-oil yield is represented by the average and standard

deviation of the sum of oil collected from the condenser and

impinger over three experiments. Table 3 shows the yields of

products collected.

I-CFP resulted in higher solids (char and coke) and gas yields

than E-CFP, while ex situ had higher liquid yields. Through a t-test,
Frontiers in Industrial Microbiology 05
it was found that the difference in the means of liquid yield barely

fails to reject the null hypothesis (p = 0.05). Without a moisture

content measurement, the significance of the quality of the yield

difference is also hard to determine. Prior comparison studies of in

situ and ex situ pyrolysis generally find higher liquid yields from ex

situ pyrolysis (Wang et al., 2014; Luo and Resende, 2016). Earlier

published studies examining free-fall FP reveal yields of 35–45%

for bio-oil, though none incorporates a catalyst (Li et al., 2004;

Pattiya et al., 2012; Ngo and Kim, 2014). Other studies that looked

into the catalytic effects of g-alumina revealed liquid yields between

22% and 49% (Ates ̧ and Is ̧ıkdağ, 2009; Chen et al., 2017; Gupta and

Mondal, 2021). Liquid yields were higher and solid yields were

lower in comparison to data produced for pyrolysis of PWF with no

catalyst, which may be attributed to an increase in heat transfer

efficiency inside the reactor and the incorporation of the impinger.

The impinger was responsible for capturing 6%–14% of the total

bio-oil yield during catalytic pyrolysis experiments. Further bio-oil

yields could potentially be achieved through reducing char and gas

byproducts by increasing the operating temperature, minimizing

the initial biomass moisture content, and increasing the biomass

heating rates (Akhtar and Saidina Amin, 2012).
3.2 Bio-oil heating value results

HHV values fall within 16–23 MJ/kg found for other bio-oil

samples in prior studies with the exception of I-CFP (Kang et al.,

2006; Hassan et al., 2009). Figure 2 compares the HHV of

commercial fuels or solvents with liquid samples collected in this

study. FPQ produced bio-oils with the highest HHV, close to that of

methanol. Physicochemical interactions during the condensation of

vapors may contribute to this result. Traces of methanol may also

have evaporated and recondensed in the second condenser. I-CFP

samples performed the worst, indicating undesirable cracking

reactions when considering product fuel quality. The addition of

10 wt% methanol increased the HHV for E-CFP samples by an

average of 17% while showing a slight change in FPQ samples. An

insufficient I-CFP sample led to inconclusive results when adding

methanol. Still the HHV of the samples falls well short of
TABLE 3 Liquid yield of free-fall FP from different
reactor configurations.

Process Bio-oil (%)

FP 23.3 ± 1.2

E-CFP 41.1 ± 4.3

I-CFP 31.9 ± 1.5

FPQ 38.5 ± 3.2
FP, fast pyrolysis; E-CFP, ex situ catalytic pyrolysis; I-CFP, in situ catalytic pyrolysis; FPQ, fast
pyrolysis with direct quenching.
FIGURE 2

Energy densities of bio-oil samples compared with commercial fuels
and solvents.
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conventional fuels by 40%–50% due to the large presence of

oxygenated compounds. This is generally the case with biomass-

derived bio-oil and can be remedied through post-processing of the

pyrolysis liquid. While heating value alone would not be enough to

determine the fuel blending potential, further treatment of bio-oil

(e.g., fluid catalytic cracking, hydrotreating, distillation, and

electrochemical) would be required if a pathway for fuel

production was desired (Zhang et al., 2007). Such treatment

processes have been used to decrease the energy density gap and

produce biofuels (Botella et al., 2018; Hita et al., 2020).
3.3 Bio-oil thermal stability results

The results of bio-oil viscosity show a relative linear correlation,

given by R2 values close to 1 (Figure 3).

The initial viscosities before the addition of alcohol ranged

between 20 and 30 cP. The SP values were determined using data

obtained from the thermal aging experiments and ranged between

0.1 and 0.2 cP/h for methanol-added bio-oils and between 0.7 and

1.3 cP/h for the bio-oils (Table 4). Other stability studies covering

the addition of methanol give SP values from 0.5 to 11 cP/h, backing

the results of this study (Czernik et al., 1994; Oasmaa and Kuoppala,

2003). Methanol addition decreased the viscosity and reduced the

rate of increasing viscosity of bio-oils. Bio-oils produced during E-

CFP had slightly higher initial viscosities and SP values, while those

produced from FPQ had both the lowest initial viscosities and SP

values. The low viscosity values for the FPQ samples could be

attributed to a decrease in acidic compounds due to the catalytic

effects of g-alumina (Trueba and Trasatti, 2005). The FPQ liquid

samples were collected in the second condenser following the

impinger, resulting in a bio-oil that shows the least change in

viscosity over time. This could be the result of some interaction with

the vapor initially passing through the methanol or trace amounts

of methanol vaporizing and condensing in the second condenser,

increasing the stability of the fraction (Diebold and Czernik, 1997).

Viscosity increases show that the addition of solvent does not

completely stop thermal degradation and that condensation

reactions still occur. Studies show that long-term storage of
Frontiers in Industrial Microbiology 06
blends could potentially decrease viscosity and total acid number,

but with an increase in water content (Zhang and Wu, 2014).

Blending could be a short-term stabilization and storage solution

before further catalytic upgrading. Further characterization analysis

during each step of the aging process would be beneficial in

determining the specific stabilizing reactions and the impact on

functional groups. The SP results show that the use of g-alumina as

a catalyst for fast pyrolysis has a significant positive effect on bio-

oil stability.
3.4 Gas chromatography–mass
spectrometry results

3.4.1 Shell and tube condenser
GC–MS was used to examine the volatile compounds in the bio-

oil produced by the different pyrolysis unit configurations (Figure 4)

(Khuenkaeo and Tippayawong, 2020; Zhang et al., 2021).

Chemical compounds identified in the chromatograms were

diverse in structure (e.g., phenolics, sugar derivatives, furans,

ketones, alcohols, aldehydes, and acids), with carbon atoms

ranging from C2 to C20 (Lyu et al., 2015). The results show a high

amount of phenolic compounds with methoxy-substitutes and

benzenediols phenols, which are attributed to high amounts of

guaiacyl and syringyl units in the lignin fraction of PWF (Poletto,

2018). The presence of syringyl units is likely from hardwood

species present in the PWF. The complexity and variety of

phenolics indicate that recombination reactions occurred among

intermediates after primary decomposition reactions.

Levoglucosan is the primary compound in the E-CFP and FPQ

bio-oil samples while also being predominant in I-CFP samples

(Table 5). I-CFP seemed to favor the production of ketones, namely,

hydroxy acetone. This results from the cracking of anhydro-sugars

by dehydration and decarbonylation reactions favored in the I-CFP

configuration (Hu et al., 2019). It is also speculated that a longer

residence time caused by the integration of a catalyst bed in the

reactor and a low feed/gas flow rate contributed to the ketonization

of carboxylic acids, producing ketones, water, and carbon dioxide

(Isahak et al., 2012; Pham et al., 2013). The additional water
FIGURE 3

Bio-oil viscosity changes over time.
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formation could explain the decrease in HHV for the I-CFP samples

examined earlier.

Figure 5 reveals the relative abundance of functional groups

among the volatile compounds identified through GC–MS. I-CFP

and E-CFP samples show a slightly decreased content of sugar-

derived compounds caused by the catalyst via decarbonylation,

decarboxylation, dehydration, and cracking reactions, leading to the

formation of alcohols, furans, and ketones. These compounds then

can also undergo further conversion, resulting in phenols (Hu et al.,

2022). There is only a small change in alcohol, aldehyde, furan, and

ketone content after catalytic reactions in E-CFP due to the secondary

reactions. E-CFP samples have the highest phenolic content. This can

be attributed to the cracking properties of the catalyst transforming

lignin-derived compounds into phenols through the cleavage of C–O
Frontiers in Industrial Microbiology 07
and C–C bonds (Hu et al., 2022). Lewis acid sites on the surface of the

catalyst also allow for rehydroxylation reactions, permitting water to

be converted into hydroxy groups (Trueba and Trasatti, 2005). FPQ

samples also exhibited high amounts of phenolic content. With no

catalyst used, it is assumed that the methanol reacted with the

pyrolysis vapors, increasing alkylated phenols and aromatics

(Horne et al., 1995). Methanol also shows a stabilizing effect on the

second fraction, resulting in fewer condensation reactions and

leading to a higher content of lighter molecules. The phenolic

content in bio-oil has industrial significance for resin, adhesive,

dye, pharmaceutical, and food additive production (Kim and Park,

2020). Other studies showed that the use of g-alumina significantly

increases the amount of phenol and phenolics (Chen et al., 2017;

Gupta and Mondal, 2021). Appropriate analysis and extraction
TABLE 4 SP values for bio-oil samples.

FP E-CFP I-CFP FPQ E-CFP 10% MeOH I-CFP 10% MeOH FPQ 10% MeOH

SP (cP/h) 1.33 1.06 0.96 0.73 0.20 0.16 0.10

R2 0.98 0.99 0.99 0.99 0.99 0.98 0.99
B

C

A

FIGURE 4

GC–MS chromatograms of bio-oil collected from (A) E-CFP, (B) I-CFP, and (C) FPQ experiments.
frontiersin.org

https://doi.org/10.3389/finmi.2024.1426067
https://www.frontiersin.org/journals/industrial-microbiology
https://www.frontiersin.org


Struhs et al. 10.3389/finmi.2024.1426067
techniques (e.g., solvent extraction, column chromatography, and

distillation) should be examined to pursue this application pathway

(Kim, 2015; Mantilla et al., 2015). Both E-CFP and I-CFP showed a

noticeable decrease in acidic compounds, leading to reduced

corrosivity and improved thermal stability, as shown previously. All

configurations resulted in a certain amount of ester formation,
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particularly FPQ, where the interaction between organic acids and

alcohols produces esters (Grioui et al., 2014). It has been reported that

the ester reactions during pyrolysis of biomass are promoted by acidic

catalysts, such as g-alumina (Zhang et al., 2006). These catalysts

convert acidic compounds into esters through catalytic esterification.

FPQ samples had the highest amount of ester content. This can be
TABLE 5 High-concentration compounds identified by GC–MS in bio-oil samples.

Compound M+ Formula
Residence

time

FP E-CFP I-CFP FPQ

µg/mg

Acetic acid 60 C2H4O2 3.67 4.44 – – –

Hydroxyacetone 74 C3H6O2 4.33 0.35 5.13 9.36 6.37

Succindialdehyde 86 C4H6O2 4.56 0.76 2.53 4.43 1.48

Dihydro-4-hydroxy-2(3H)-furanone 102 C4H6O3 4.71 – 3.40 4.03 –

3-Methyl-butanal 86 C5H10O 4.83 1.06 – – –

Furfural 96 C5H4O2 5.65 3.62 2.62 1.52 1.32

Tetrahydro-2,5-dimethoxy-furan 132 C6H12O3 7.19 0.32 2.45 0.98 2.50

2(5H)-Furanone 84 C4H4O2 7.81 2.43 2.56 2.14 2.17

2-Hydroxy-2-cyclopenten-1-one 98 C5H6O2 8.00 1.81 3.82 2.74 3.78

2-Methyl-1,2-hexanediol 132 C7H16O2 9.08 – – 2.17 –

Phenol 94 C6H6O 9.63 1.36 1.85 1.01 1.57

3-Methyl-1,2-cyclopentanedione 112 C6H8O2 10.99 1.3 1.49 1.10 1.60

Guaiacol 124 C7H8O2 12.81 2.78 3.34 1.81 3.77

1,2-Cyclopentanediol 102 C5H10O2 13.03 – – 0.86 1.08

Creosol 138 C8H10O2 15.82 2.6 3.20 1.62 4.15

Catechol 110 C6H6O2 16.07 1.94 3.49 2.38 4.69

1,4:3,6-Dianhydro-a-
d-glucopyranose

144 C6H8O4 16.37 – 0.32 0.83 –

5-Hydroxymethylfurfural 126 C6H6O3 17.10 0.53 1.07 0.76 1.54

4-Methylcatechol 124 C7H8O2 18.60 1.62 2.79 1.57 2.73

Vinyl guaiacol 150 C9H10O2 19.20 0.34 2.61 1.31 0.45

Eugenol 164 C10H12O2 20.34 1.05 1.64 1.76 2.12

Geraniol 154 C10H18O 21.18 – – 0.62 0.56

Vanillin 152 C8H8O3 21.53 2.43 2.51 1.16 2.77

Isoeugenol 164 C10H12O2 22.73 4.48 6.25 2.25 6.49

Propyl-guaiacol 166 C10H14O2 23.04 0.36 0.84 0.25 4.17

Methyl syringol 168 C9H12O3 23.06 2.8 – – –

Apocynin 166 C9H10O3 23.71 – 1.29 1.44 –

Levoglucosan 162 C6H10O5 24.31 13.2 8.57 5.05 15.99

Syringaldehyde 182 C9H10O4 28.17 1.15 – – –

Coniferyl aldehyde 178 C10H10O3 29.41 – 2.28 0.70 8.19

Acetosyringone 196 C10H12O4 29.77 2.93 – – –

5-Hydroxy-7-methoxyflavanone 270 C16H14O4 42.11 1.17 – – –
The – symbol is to facilitate that the compound was not detected in the sample.
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attributed to esterification that occurs when the vapors interact with

the methanol in the impinger (Oasmaa and Czernik, 1999). FPQ still

has relatively the same acid content as noncatalytic pyrolysis,

emphasizing the effect g-alumina has on acid conversion.

Fewer samples were captured in the methanol impingers during

catalytic pyrolysis. Prominent compounds included oleic acid,

methyl palmitate, glyceraldehyde, dodecyl acrylate, and other

methyl esters. As the impinger was used as the primary

condenser during FPQ, the compounds are more diverse but

similar to the first fractions condensed during the catalytic

experiments. Esterification of acids is recognized by the high

presence of methyl acetate and isobutyl propionate (Liu et al.,

2006). However, the carboxylic acid content was still high with

the presence of pyruvic acid and higher-molecular-weight acids

(e.g., homovanillic acid, 2-undecenoic acid, 9-hexadecenoic acid,

and oleic acid) mostly found in the second bio-oil fraction.
3.5 Electrospray ionization–mass
spectrometry results

ESI–MS analysis was used to determine the molar mass

distribution of bio-oil (Figure 6) (Sotoudehniakarani et al., 2019;

Sotoudehnia et al., 2020). Peaks generally spanned over the m/z

range of 100−1,200 (Jarvis et al., 2012; Miettinen et al., 2015,

2017). The more noticeable [M-H]- ions were credited at m/z 161

to levoglucosan, m/z 109 to catechol, m/z 123 to guaiacol, and m/z

123 to coniferyl aldehyde. Subfractions of lignin-derived

compounds, such as anhydro-sugars and phenolics, appear as

peaks between m/z 300 and 350 (Jarvis et al., 2012; Liu et al., 2012;

Miettinen et al., 2015). The GC–MS results verify the volatile

compounds identified. Further mass analysis and equivalent

homologue series are required to thoroughly identify
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compounds. Peaks produced through ESI–MS reveal higher-

molecular-weight compounds than the volatiles identified by

GC–MS, allowing for mass calculations.

Molar masses (Mw and Mn) of bio-oil samples were

determined using prior studies on negative ion ESI–MS

(Table 6). The spectra revealed bimodal distribution seen mostly

in the condenser samples centered on m/z 250 and 450, indicating

monomers and oligomers, respectively. Due to the bimodal

distribution, the ion intensity ratio of m/z 100–300/m/z 301–

2,000 was used to calculate the ratio of monomers to oligomers.

The highest monomer/oligomer ratio belonged to fractions

produced during FPQ, being significantly higher than any other

sample and all methods being higher than FP, which indicates

improved thermal breaking caused by both catalysis and direct

quenching. Generally, because of thermal instability, bio-oil

undergoes oligomerization during storage, resulting in the

average molecular mass to increase between the time of

pyrolysis and ESI–MS measurements. FPQ proved to have the

best results because of methanol's stabilizing effects which

decreased oligomerization. Earlier studies reported average

molecular weights of around 300–800, complementing the

results of this study (Liu et al., 2012; Harman-Ware et al., 2020).

These results are also consistent with the thermal stability of the

samples analyzed earlier. The most stable bio-oils in descending

order were obtained during FPQ, I-CFP, E-CFP, and FP. I-CFP

samples have the widest variance in molecular mass but ultimately

seem very comparable in molecular weight to E-CFP. Samples

collected in the second fraction tend to have lower molecular

weights, proving the successful capture of some of the more

volatile compounds that are entrained in the incondensable gas.

Compared to FP, the effect of catalytic cracking seems to remedy

the high average molecular weight and molar mass from

previous experiments.
FIGURE 5

Abundance of functional groups identified in volatiles analyzed in bio-oil samples.
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3.6 Fourier transform infrared
spectroscopy results

FTIR analysis was used to verify the functional groups in the

bio-oil samples (Figure 7).

Spectra were averaged taken for each experiment configuration

and averaged before analysis. Band assignments for the bio-oils were

acquired from the earlier published studies and labeled appropriately

(Table 7) (Faix, 1992; Le et al., 2017). In the IR spectra, strong O–H

stretching vibrations in all the samples around 3,365 cm-1 were

indicative of phenols, acids, alcohols, and water (Cai et al., 2019).

C–H stretching absorptions were seen at around 2,935 cm-1, revealing

the presence of possible aliphatic hydrocarbons (Xu et al., 2011). C=O

stretching seen by absorption at 1,715 cm-1 suggests the presence of
Frontiers in Industrial Microbiology 10
open-chain ketones and aryl aldehydes but was generally more

suggestive of aliphatic and fatty acids (Tsai et al., 2006). At 1,515

cm-1, the C=C–C stretching vibrations signify aromatics with various

substitutions (Xu et al., 2018). Aromatic C–H and C–O stretching

were related to the absorption at 1,032 cm-1, revealing primary

alcohols and guaiacyl compounds. At 813 cm-1, aldehydes were

identified by the aromatic C–H out of plane bending in lignin

(Zhang et al., 2022). I-CFP seemed to have a prominent band at

around 1,035 cm-1 relating to C–O and C–C–O of lignin and cellulose

constituents (Chen et al., 2010). However, bands between 1,035 and

1,716 cm-1 were significantly lower than the other samples, showing

lower C=C–C aromatic ring stretching and C–H bending and

stretching. E-CFP has a noticeably large band at 1,716 cm-1, which

confirms the large number of phenolics/aromatics seen in the other
B1

C1

A1

B2

C2

A2

FIGURE 6

Negative-ion ESI–MS spectra of bio-oil produced from (A1) E-CFP condenser, (A2) E-CFP impinger, (B1) I-CFP condenser, (B2) I-CFP impinger,
(C1) FPQ condenser, and (C2) FPQ impinger.
TABLE 6 Weight- (Mw) and number-average molar mass (Mn) of bio-oil samples determined from negative ion ESI–MS data.

Configuration Fraction Mn Mw Monomer/oligomer

FP Condenser 564 ± 28 816 ± 41 0.45 ± 0.17

E-CFP
Condenser 387 ± 11 697 ± 20 1.66 ± 0.20

Impinger 321 ± 117 603 ± 229 1.55 ± 0.94

I-CFP
Condenser 410 ± 61 726 ± 83 1.49 ± 0.92

Impinger 514 ± 234 776 ± 292 0.56 ± 0.37

FPQ
Condenser 261 ± 10 453 ± 18 5.11 ± 0.89

Impinger 264 ± 119 461 ± 199 5.06 ± 4.31
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analyses. The FTIR results for E-CFP show the greatest improvement

in bio-oil quality compared to the other configurations. The overview

of sample functionalization FTIR band and IR spectra provide a quick

insight into chemical shifts that occur when changing

experiment methodologies.

In order to better understand the valorization of biomass and

improve the free-fall CFP conversion bioprocess, especially bio-oil

quality and thermal stability, future studies can focus on the

following directions:
B

C

A

FIGURE 7

FTIR spectra of pyrolysis liquid collected from the condenser after (A) E-CFP, (B) I-CFP, and (C) FPQ.
TABLE 7 FTIR analysis results for E-CFP, I-CFP, and FPQ bio-oil samples.

Assignment/components
E-
CFP

I-
CFP FPQ

O–H stretching (cellulose, hemicellulose, lignin) 3,359 3,367 3,374

C–H stretching (cellulose, hemicellulose, lignin) 2,930 2,935 2,936

C=O stretching (hemicellulose, lignin) 1,715 1,715 1,715

Aromatic skeletal vibration, C=O stretching,
adsorbed O–H (hemicellulose, lignin)

1,597 1,604 1,597

C=C–C aromatic ring stretching and
vibration (lignin) 1,514 1,515 1,514

C–H deformation (in methyl and
methylene) (lignin) 1,454 1,429 1,454

C–H bending, C–H stretching in CH3 (cellulose,
hemicellulose, lignin) 1,362 1,362 1,362

H–C–H stretching methylene 1,268 1,268 1,270

C–O stretching of guaiacyl unit (lignin) 1,128 1,125 1,120

(Continued)
TABLE 7 Continued

Assignment/components
E-
CFP

I-
CFP FPQ

C–O stretching, aromatic C–H in plane deformation 1,032 1,035 1,032

–C–H bending vibration; aldehydes 883 878 888

Aromatic C–H out of plane bending (lignin) 813 813 813

C–H bending out of plane peaks (furfural) 755 753 755
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Fron
➢ Exploration of several inexpensive hydrodeoxygenation

catalysts in the ex situ CFP configuration.

➢ Examination of the effects of catalytic loading ratio and

physical parameters on pyrolysis liquid product

composition and yield.

➢ Exploration of direct quenching with varying solvents and

their physicochemical effects on the liquid product.

➢ Investigation of solvent promoting fractionation and

reactive distillation integrated with CFP.
4 Conclusion

The effects of g-alumina as a catalyst for in situ and ex situ

catalytic fast pyrolysis of pinewood in a customized free-fall

reactor were successfully studied. The physicochemical effects of

methanol as a direct quenching agent were also examined. All

three pyrolysis process configurations had higher liquid and gas

yields and greater thermal stability than the prior FP experiments.

g-Alumina had a significant positive effect on bio-oil thermal

stability. The addition of 10 wt% methanol to samples improved

the HHV by a visible amount. g-Alumina, as an inexpensive

catalyst support for hydrodeoxygenating catalysts (e.g., Ni, Mo,

Fe, and Co), could remedy the insufficiencies of g-alumina as a

catalyst. Methanol was successful as a direct quenching agent for

the first liquid fraction, converting much of the carboxylic acid

content into fatty acid methyl esters, producing high phenolic

content, and thermally stabilizing the fraction upon collection,

resulting in a low-molecular-weight bio-oil fraction. The fraction

did, however, still possess a visible amount of acidic compounds.

The use of g-alumina with methanol impingers for fractionation

could potentially produce an oil high in small-chain esters and low

in acids.
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