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Predicting antimicrobial
properties of lignin derivatives
through combined data driven
and experimental approach
Ryan M. Kalinoski1*, Qing Shao2 and Jian Shi1*

1Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States,
2Department of Chemical and Materials Engineering, University of Kentucky, Lexington,
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Meta-analysis, experimental and data-driven quantitative structure–activity

relationship (QSAR) models were developed to predict the antimicrobial

properties of lignin derivatives. Five machine learning algorithms were applied

to develop QSAR models based on the ChEMBL, a public non-lignin specific

database. QSAR models were refined using ordinary-least-square regressions

with a meta-analysis dataset extracted from literature and an experimental

dataset. The minimum inhibition concentration (MIC) values of compounds in

the meta-analysis dataset correlate to classification-based descriptors and the

number of aliphatic carboxylic acid groups (R2 = 0.759). Comparatively, QSARs

derived from the experimental datasets suggest that the number of aromatic

hydroxyl groups were better predictors of Bacterial Load Difference (BLD,

R2 = 0.831) for Bacillus subtilis, while the number of alkyl aryl groups were the

strongest correlation in predicting the BLD (R2 = 0.682) of Escherichia coli. This

study provides insights into the type of descriptors that correlate to antimicrobial

activity and guides the valorization of lignin into sustainable antimicrobials for

potential applications in food preservation, fermentation, and other

industrial sectors.
KEYWORDS

quantitative structure–activity relationship, machine learning, open-source database,
meta-analysis, lignin valorization
Introduction

Due to the overuse of antibiotics in our society, there has been a renewed interest in

natural compounds for antimicrobial discovery amongst the scientific community (WHO,

2014; Harvey et al., 2015). Plant-based phenolics have a wide spectrum of antimicrobial

activity and a variety of ring structures with low ecotoxicity that makes them an promising

source of potential antimicrobial replacements (Upadhyay et al., 2014; Harvey et al., 2015).

To this end, lignin is one of the most abundant naturally occurring sources of phenolic
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polymers on earth and is currently considered a major waste

product in the paper and pulp industries and industrial

lignocellulosic biorefineries (Mathew et al., 2018). Lignin is

known to have antimicrobial properties against different

microorganisms, which is due to the phenolic subunits that

comprise lignin’s polyphenolic structure (Telysheva et al., 2005;

Cazacu et al., 2013). Lignin’s antimicrobial properties are dictated

by the source of the lignin, its extraction methods and chemical

structure (i.e., monomers, oligomers, and functional groups)

(Cazacu et al., 2013; Calvo-Flores et al., 2015). In general, it is

believed that lignin phenolics have a mode of action that centers

around their ability to increase the ion permeability of cell

membranes or by causing direct cell membrane damage resulting

in cell lysis (Barber et al., 2000; Dong et al., 2011; Espinoza-Acosta

et al., 2016; Yang et al., 2018). However, lignin’s inhomogeneity and

complex structure greatly reduces its capacity to be used in

industrial and commercial sectors.

While a variety of technical lignin (i.e., Kraft lignin and

organosolv lignin) with large undefined structures have had

notable antimicrobial properties, there remains inconsistencies in

different batches, across different lignin sources and extraction

methods (Cazacu et al., 2013; Calvo-Flores et al., 2015).

Conversely, when lignin is depolymerized into smaller more

defined structures, these smaller oligomers and phenolic

monomers have shown increased antimicrobial activity and

higher specificity (Zemek et al., 1979). Thus, to increase the

effectiveness and selectivity of lignin’s antimicrobial properties, it

is necessary to depolymerize the polyphenolic structure of technical

lignins into smaller units.

There are a plethora of lignin depolymerization techniques

including: pyrolysis, acid/base/metal catalyzed hydrolysis,

hydrogenolysis and oxidation (Pandey and Kim, 2011; Wang et al.,

2013; Sun et al., 2018). Depending on the lignin source each

depolymerization method will produce a variety of different

phenolic compounds (monomers and oligomers) with potential

antimicrobial properties in the form of a bio-oil. Pyrolysis oils,

liquid smoke and wood vinegars are derived from the liquid

fraction obtained from the incomplete combustion of wood and

other lignocellulosic materials. These products have been used

extensively in human history to preserve food by smoking and

creating a protective barrier on wood for building applications

(Lourençon et al., 2016; Sari et al., 2019). More recently,

pyroligneous acid from the slow pyrolysis of hardwood has shown

significant antimicrobial activity against multi-antibiotic resistant

strains of E. coli, Pseudomonas aeruginosa, Staphylococcus aureus,

Candida albicans and Cryptococcus neoformans, based on agar

diffusion tests (de Souza Araujo et al., 2018). The pyrolysis oil from

pine trees has also been shown to have antimicrobial properties

against the foodborne pathogens, Bacillus cereus and Listeria

monocytogenese, at concentrations ranging from 500 to 1,000 ug/ml

(Patra et al., 2015). The main antimicrobial components of these

products have been attributed to phenolics, furans, formaldehyde,

and organic acids. Wood vinegars from sapwood were found to have

significant antimicrobial activity against Ralstonia solanacearum,

Phytophthora capsici, Fusarium oxysporum, and Pythium splendens

(Hwang et al., 2005).
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While lignin bio-oils have shown promising antimicrobial

properties for a variety of industrial applications, questions

remain as to what individual compounds are responsible for their

diverse antimicrobial properties (Lourençon et al., 2016; Sari et al.,

2019). In practice, when antimicrobials are developed, they are

usually composed of a single compound or combination of a few

compounds. When considering the use of lignin-based bio-oils it

would be incredibly difficult to attribute a single compound to its

antimicrobial properties, as it is too complex of a mixture.

Therefore, methods need to be developed that can predict the

antimicrobial potential of lignin derivatives, so that the search for

lignin depolymerization products with enhanced antimicrobial

properties can be expedited.

Quantitative structure–activity relationship (QSAR) models are

an indispensable tool in drug design and discovery including

predicting antimicrobial properties. They work by finding

relationships between the variations in calculated molecular

descriptors (properties) or fingerprints (functional groups) with

the biological activity of a group of compounds, so that biological

activity of new chemical entities can be assessed more quickly

(Shahlaei, 2013). QSAR modeling for predicting antimicrobial

properties of polyphenols typically utilizes experimentally derived

datasets with a limited number of compounds (<50) and selected

descriptors for developing a predictive regression type model, such

as multiple linear regressions (MLR) (Araya-Cloutier et al., 2018;

Bouarab-Chibane et al., 2019b). While this increases the specificity

of the model to predict the identified target compounds, it

simultaneously limits the model’s ability to predict the activity of

new compounds with a wider variety of structures. One of the ways

to circumvent this issue would be to increase dataset size and

compound variability. However, due to the lengthy experimental

procedures used to measure antimicrobial activity, and the fact that

many lignin oligomers after depolymerization are currently

unidentifiable, it would be difficult to drastically increase the

number of compounds tested in an efficient manner. Given the

recent advances in machine learning and the increase in the amount

of chemical and biological activity data available in the public

domain in recent years (Camacho et al., 2018), QSAR models that

can explore a large chemical space (thousands of compounds) can

now be more widely applied (Lenselink et al., 2017).

In this context, the aim of this study was to develop and

compare QSAR models that can predict the antimicrobial

properties of lignin derivatives against representative Gram-

positive (Bacillus subtilis) and negative bacteria (Escherichia coli).

The compounds used to construct the models were selected from

1) a large public access database that were non-specific to lignin,

2) a database created from a meta-analysis of available lignin

compounds with activity measurements, and 3) an experimentally

derived dataset of lignin monomers and dimers. ChEMBL was used

as the open access database, which contains over 1.9 million distinct

bioactive molecules with drug-like properties and 16 million activity

measurements (Gaulton et al., 2012). Since minimum inhibitory

concentration (MIC) is one the most widely used antimicrobial

activity measurements (Andrews, 2001), both the ChEMBL and

meta-analyses datasets used MIC to describe the compounds

activity. For both B. subtilis and E. coli, three distinct datasets
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from ChEMBL were obtained by first choosing all the available

compounds with MIC measurements against both organisms,

selecting a subset of compounds with only C, H, and O atoms

(the only atoms present in lignin), and then an additional subset of

compounds with at least one phenolic ring. By enhancing the

quality of these datasets and making them more lignin specific to

improve the accuracy of our models we are applying a more data-

centric approach to developing our models, which has become an

emerging trend in data science (Tsai et al., 2020). Due to the large

sizes of these ChEMBL datasets, five different regression-based

machine learning algorithms were used to create their QSAR

models: support vector machine, random forest, k-nearest

neighbor, decision tree, and neural networks.

Next, a meta-analysis of the available literature with MIC

activity measurements for lignin derivatives against both B.

subtilis and E. coli was conducted. Not only was this dataset used

to develop a QSAR model using ordinary least square (OLS)

regressions, but it was also used as a validation set for

determining the ChEMBL-based model’s performance for

predicting lignin specific compounds.

Finally, a variety of commercially available lignin monomers

and dimers were screened for antimicrobial properties against B.

subtilis and a subsequent OLS regression based QSAR was

developed. The activity measurement used in the experimental set

was the Bacterial Load Difference (BLD) (percent inhibition of

growth) as it more easily measured, encompasses the low

antibacterial activity, absence of antibacterial activity, and

potential growth promoting effect sometimes observed with

phenolics compared to MIC (Bouarab-Chibane et al., 2019b). The

results from this study will provide insights into using different

types of databases (open access, meta-analysis, experimentally

derived, and lignin specific/non-specific) to develop QSAR

models with the potential to predict the antibacterial activity of

lignin derivatives.
Materials and methods

ChEMBL datasets

Antimicrobial data for both B. subtilis and E. coli, used as

representative Gram-positive and -negative bacteria, were obtained

from the ChEMBL database (version 27) (Gaulton et al., 2012).

Using the ChEMBL web server, a dataset was created for each

bacteria type by selecting minimum inhibitory concentration (MIC)

as the biological/antimicrobial activity measurement. The datasets

were then downloaded, and further filtering was performed in the

Python environment.

Firstly, compounds with ‘non standard unit for type’ or ‘outside

typical range’ in the data validity comments were removed. Then

compounds with standard relation values of ‘<’ or ‘>’ were also

removed, and duplicates based on compound ‘Molecule ChEMBL

ID’ were averaged into one value. At this point the B. subtilis dataset

had 9,828 compounds and E. coli had 21,657 compounds, which are

hereafter referred to as ‘B-All’ and ‘E-All’, respectively. Since lignin

has a chemical composition that only contains carbon (C),
Frontiers in Industrial Microbiology 03
hydrogen (H), and oxygen (O) atoms, the datasets were further

filtered by keeping compounds with only those atoms. This was

performed by searching for compounds with a canonical simplified

molecular-input line-entry system (SMILES) string with only C, H,

and O atoms (Weininger et al., 1989). The resulting filtering

produced a B. subtilis dataset with 768 compounds and an E. coli

dataset with 703 compounds, which are hereafter referred to as ‘B-

Sorted’ and ‘E-Sorted’, respectively. Finally, to increase the datasets

specificity for predicting lignin phenolics, the previously SMILE

sorted dataset was filtered for compounds with at least one phenolic

ring. This resulted in a B. subtilis dataset with 309 compounds and

an E. coli dataset with 278 compounds, which are hereafter referred

to as ‘B-Phenolic’ and ‘E-Phenolic’, respectively. Therefore, three

datasets for both B. subtilis and E. coli were created with MIC data.

Furthermore, MIC values originally determined in μg/ml were

converted to micromolar values (μM/ml) and then converted to

pMIC (i.e. -logMIC, in molar) for all datasets (Araya-Cloutier et al.,

2018). One could consider preprocessing the dataset differently for

different ML models, especially for ANN as ANN models can bear

more noise than some others. However, the purpose of this study is

to compare performance across different ML models using the same

dataset. We decided to use the same preprocessing methods across

all ML models.
Lignin monomers meta-analysis dataset

A new dataset of MIC biological activity measurements for

lignin monomers against both B. subtilis and E. coli were compiled

from published sources. Multidisciplinary databases such as

Academic OneFile, Academic Search Complete, EBSCO, and

Google Scholar for terms including combinations such as ‘lignin,’

‘antimicrobial,’ ‘phenolic,’ ‘MIC,’ ‘monomer,’ ‘antibacterial,’ as well

as authors with previous work containing appropriate data, were

used to find journal articles that contained MIC antimicrobial data

for phenolics that can be derived from lignin. In total, 16

compounds were found with MIC data for B. subtilis and 27

compounds for E. coli (listed in Section 3.2). MIC values

originally determined in μg/ml were converted to micromolar

values (μM/ml) and then converted to pMIC (i.e. -logMIC, in

molar) prior to modeling (Araya-Cloutier et al., 2018). The

resulting datasets for B. subtilis and E. coli are hereafter referred

to as ‘B-Meta’ and ‘E-Meta’, respectively.
Experimental dataset

The antibacterial activity of 25 lignin derived monomers and

three dimers were assessed by monitoring the cell growth (as

represented by the optical density at 600 nm, OD600) of B. subtilis

(NRRL B-354) and E. coli using a spectrophotometry. The full list of

compounds and subsequent antimicrobial activity measurements

are listed in Section 3.3. The monomers were of analytical quality

and purchased from either Sigma Aldrich (St. Louis, MO, USA) or

TCI America. The guaiacylglycerol-beta-guaiacyl ether dimer was

purchased from TCI America, while 2-(2-methoxyphenoxy)-1-(4-
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methoxyphenyl)ethanol and 3-hydroxy-2-(2-methoxyphenoxy)-1-

(4-methoxyphenyl)-1-propanone dimers were kindly provided by

Dr. Mark Crocker at the Center for Applied Energy, University of

Kentucky (Song et al., 2018).

Briefly, frozen cultures were first revived in liquid growth media

(LB broth, Fisher BioReagents™, BP9723) and allowed to grow at

180 rpm shaking speed for 12 h at 37°C. Afterwards the cells were

pelletized, washed, and resuspended in fresh liquid media. To test

for the antimicrobial properties, each microbe was cultivated in 96-

well plates (run in triplicate) and the OD600 was monitored for 24 h

with time points taken every 10 min. All wells were brought to an

OD600 of 0.2 prior to growth, and the phenolics were added to

treatment wells to create a final concentration of 1 g/L. To facilitate

the solubility of the phenolics in media, all cultures had a final

ethanol concentration of 5% (v/v). Two controls were used, one

having the 5% ethanol concentration, and one having just microbes

and the media. To determine how the phenolics affected microbial

growth, the percent change in OD600 of the ethanol control during

the exponential phase of growth was compared to the growth of the

phenolic treatments. This resulted in the percent decrease in growth

or Bacterial Load Difference (BLD) for each phenolic treatment

(Bouarab-Chibane et al., 2019b), with the formula described

in Equation 1:

BLD (% )

= 1 −
Max OD600 −Min OD600 with phenolic

Max OD600 −Min OD600 of Ethanol Control

� �
 �   100

(1)

After obtaining the BLD values for each phenolic, the structures

of each compound were converted to canonical SMILES strings

using PubChem for use in descriptor calculations. The final

experimental datasets for B. subtilis and E. coli are here after

referred to as ‘B-Experimental’ and ‘E-Experimental’, respectively.
Descriptor calculations and
QSAR modeling

To calculate the various molecular descriptors, all the compound’s

structures in each dataset were converted into canonical SMILES

strings (Weininger et al., 1989), if not already provided. These SMILES

were then entered into an open-access molecular descriptor calculator

software package for Python, RDKit (http://www.rdkit.org). RDKit

has a variety of calculatable descriptors that describe a molecule’s

lipophilicity (i.e., LogP, LogD), topological indices (i.e., fragment

complexity, size, polarity), connectivity indices and different

molecular fingerprints (i.e., number of hydroxyl groups, phenolic

rings, carboxylic acids etc.). A full list of descriptors and their

description is provided in Supplementary Table S1. While it is

possible to create models with all the calculatable descriptors, a

variety of descriptor selection methods were utilized to improve

model accuracy by reducing dimensionality of input space without

losing important information.
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For the B-All, E-ALL, B-Sorted, E-Sorted, B-Phenolic, and E-

Phenolic datasets 200 of RDKit’s available descriptors were

calculated. Highly correlated (|r| ≥ 0.8) and constant descriptors

were eliminated from the list for each individual dataset. To further

reduce the dimensionality of the predictors (descriptors) a principal

component analysis (PCA) was performed using scikit-learn

(Pedregosa et al., 2011). The number of new principal

components to be used was assessed by plotting the number of

components vs the percent explained variance, and the number of

components that explained 99% of the variance were chosen for

each dataset. After the optimal number of principal components

were chosen and calculated these values were used as the

independent variables for predicting the pMIC values in the

subsequent QSAR models. Before modeling, each of the above

dataset’s with pMIC and PCA data were randomly split into

training (80%) and test (20%) sets three times for cross-

validation. We compared and utilized five machine learning

algorithms to build the QSAR models for the B-All, E-ALL, B-

Sorted, E-Sorted, B-Phenolic, and E-Phenolic datasets. They were

the support vector machine (Epsilon-Support Vector Regression),

random forest regressor, k-nearest neighbors regressor, decision

tree regressor, and neural network regressor (Multi-layer

Perceptron regressor) algorithms provided by scikit-learn. The

specific settings and parameters used to build each machine

learning algorithm are provided below. QSAR models were

assessed based on their average coefficient of determination (R2)

and root mean squared error (RMSE) based on the predictions

made for the three training and test sets.

The best QSAR models constructed from the ChEMBL datasets

were further tested for prediction accuracy, by using the meta-

analysis datasets as a test set for predicting lignin-specific

compounds. Kernel density estimate (KDE) plots using the

Seaborn plugin for python were constructed to determine the

distribution of each dataset’s pMIC values. Furthermore, the

applicability domain (AD) for estimating the reliability in the

prediction of new compounds from the ChEMBL datasets were

evaluated against the meta-analysis datasets, according to previous

work (Golbraikh et al., 2003).

For the B-Meta, E-Meta, B-Experimental, and E-Experimental

datasets all 200 of RDKit’s available descriptors were calculated.

Pearson’s correlation coefficient (|r| ≥ 0.5) was used to select a fixed

subset of predictors (descriptors) best able to predict the

antimicrobial activities (either pMIC or BLD) using the ordinary

least squares (OLS) regression analysis (Hira and Gillies, 2015). The

OLS regressions were performed using Statsmodels (Seabold and

Perktold, 2010). As the number of compounds for each of these

datasets were very low (less than 30 compounds), the datasets were

not separated into training and test sets due to higher risks of

chance correlation and overfitting (Araya-Cloutier et al., 2018). For

each dataset, the selected descriptors were fed into an OLS

regression and backwards elimination was used until the

significance of each descriptor coefficient in the model (p-value)

was less than 0.05, which identified the best fitting model.
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Machine learning algorithms

All machine learning models were created using scikit-learn and

either the default hyper parameters were used or a number of

different parameters through a grid search based exploration of

model parameter space was utilized (Lenselink et al., 2017). The

final parameters used for the machine learning algorithms that used

grid search for QSAR model development are reported in Table 1.

The support vector machine (SVM) or Epsilon-Support Vector

regression is a non-linear regression that calculates an optimal

hyper-plane where the distance and error between each data points

is minimized (Mei et al., 2005). The SVM performed here used the

default parameters provided by scikit-learn. These included a radial

basis function kernel, gamma of 1/number of descriptors,

parameter cost of 1, and epsilon of 0.1.

Decision tree regressors (DT) are a non-parametric learning

method that works by creating a set of binary rules to calculate the

target value by dividing the data into subsets that contain data with

similar values (Basant et al., 2016). The DT used a grid search to

select the optimal maximum depth from 1 to 21 and minimum

number of sample leaves from 1 to 100 for each dataset, by fitting

the training set and using five cross-fold validations and RMSE to

choose the best values. All other parameters utilized the scikit-learn

default settings.

The random forest regressor (RF) is an ensemble learning

method for non-linear regression analysis, that operates by

constructing a multitude of decision trees and outputting the

mean prediction of the individual trees (Svetnik et al., 2003). We

used all the default parameters provided by scikit-learn, but the

number of estimators was increased from the default 100 to 500.

K-nearest neighbor regressions (KNN) are a non-parametric

method that stores all available cases and predicts a continuous

target based on the similarity measure (distance function) between

different features in the same neighborhood (Zheng and Tropsha,

2000). The KNN used a grid search to select the optimal number of
Frontiers in Industrial Microbiology 05
neighbors from 2 to 15 for each dataset, by fitting the training set

using five cross-fold validations and RMSE to choose the best

number of neighbors. The rest of the parameters including the

weight function and leaf size utilized scikit-learns default settings.

Neural networks (NN) are brain-inspired algorithms where

input features are fed into an input layer, and after a number of

nonlinear transformations are performed in a hidden layer, the

predictions are generated in an output layer to produce a regression

(Lenselink et al., 2017; Camacho et al., 2018; Vamathevan et al.,

2019). The ANN relied on most of the default settings provided by

scikit-learn’s MLPRegressor neural network. In order to optimize

the model’s hyper-parameters, the GridSearchCV function was

utilized, with the best parameters being selected based on the best

five cross-fold validations and RMSE score. The hyper-parameters

chosen to be optimized were the hidden layer sizes, activation type,

and learning rate. Specifically, for the hidden layers and number of

neurons in each layer was either three layers with 50–100 neurons

[(50,50,50), (50,100,50)], or the default setting of a single layer and

100 neurons (100). The activation functions used for the hidden

layers were either the rectified linear unit function ‘relu’ or the

hyperbolic tan function ‘tanh’. The learning rate schedule for weight

updates was either the constant or adaptive learning rates. For

further documentation and explanation of the other default settings

used to create this model please refer to the scikit-learn version

0.23.2 documentation.
Software used

Python (version 3.7.7) was used with the following libraries:

RDKit (version 2020.03.6) for the calculation of fingerprints and

descriptors, Scikit-learn (version 0.23.2) for all machine learning

algorithms and descriptor selection techniques, seaborn (version

0.11.0) with Matplotlib (version 3.3.2) for all figure visualizations,

and Pandas (version 1.1.2) for all dataset analysis and manipulation.
TABLE 1 Each dataset’s final number of compounds, descriptors, and hyper parameters for machine learning algorithms that used grid
search parameterization.

Dataset
Data Processing PCA

k-Nearest
Neighbor Decision Tree Neural Network

Compounds Descriptors Components Neighbors Depth
Sample
Leaves

Hidden
Layers Activation

Learning
Rate

B-All 9,828 118 80 3 14 50 (50,
100, 50)

tanh constant

B-Sort 768 62 40 3 4 50 (50,
50, 50)

relu constant

B-Phenol 309 61 40 3 3 10 (50,
100, 50)

tanh constant

E-All 21,657 114 80 3 13 20 (100) tanh constant

E-Sort 703 67 40 2 4 1 (100) tanh constant

E-Phenol 278 67 40 5 2 20 (50,
50, 50)

relu constant
The datasets denoted with ‘B’ and ‘E’ represent the data utilized from ChEMBL for B. subtilis and E. coli, respectively.
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Results and discussion

ChEMBL dataset models

The open access database, ChEMBL, was used to develop

datasets of compounds with antimicrobial activity measurements

(MIC) against both B. subtilis and E. coli. These datasets were used

alongside machine learning algorithms to develop QSAR models

with the potential to predict the antimicrobial activity of lignin

derived phenolics, from compounds that are not lignin specific.

The initial ChEMBL datasets created for B. subtilis (B-All) and

E. coli (E-All) contained 9,628 and 21,657 compounds, respectively.

These datasets were filtered into two additional subsets, that

contained compounds having more similar structures to that of

lignin derivatives. The first subset was created by selecting

compounds with only C, H, and O atoms, resulting in a B.

subtilis dataset with 768 compounds (B-Sort) and an E. coli

dataset with 703 compounds (E-Sort). By removing compounds

with nitrogenous, chlorine, or fluorine based functional groups, the

remaining compounds could have more similar chemical

characteristics to that of lignin derivatives. Then those subsets

were further filtered by selecting compounds with at least one

phenolic ring, resulting in a B. subtilis dataset with 309 compounds

(B-Phenolic) and an E. coli dataset with 278 compounds (E-

Phenolic). Lignin’s antimicrobial properties have been reported to

attribute to its phenolic structures, so it was important to include a

subset of compounds that contained only phenolic-based

structures. These were the final six datasets used for QSAR model

development from the ChEMBL database.

The QSAR models used antimicrobial activities measured in

pMIC (-log MIC, in μM/mL) values as the target and the molecular

descriptors calculated from RDKit as the variables. Supplementary

Table S1 lists the descriptors and molecular fingerprints used in this

work. These descriptors represent the lipophilicity (i.e., LogP,
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LogD), topological indices (i.e., fragment complexity, size,

polarity), connectivity indices and functional groups. They are

selected based on previous work (Speck-Planche et al., 2012;

Svensson et al., 2017; Araya-Cloutier et al., 2018; Bouarab-

Chibane et al., 2019b). Supplementary Table S2 (Additional File

2) lists the specific descriptors used for each dataset after pre-

processing. Table 1 summarizes the number of descriptors.

Principal component analysis (PCA) was used to reduce the

number of descriptors and the dimensionality of the feature space.

PCA reconstructs features of a dataset into a new set of uncorrelated

features called principal components (PCs). The optimal number of

new PCs for each dataset was selected by the number of

components that explained 99% of the variance in the dependent

variable. Figure 1 shows the number of PCs vs the percent explained

variance, and Table 1 summarizes the number that explained 99%

of the variance. Since this feature extraction technique creates new

independent variables that are less interpretable, the ability to

examine how each descriptor influences pMIC is no longer easily

obtainable. This is actually beneficial when using the ChEMBL

datasets, as we are attempting to predict the antimicrobial

properties of lignin with non-lignin based compounds from a

data driven perspective, and do not need to understand the exact

relationship between these compound’s descriptors and pMIC

values. Therefore, the QSAR models were developed from the

pMIC and PC values from each dataset using five popular

regression-based machine learning algorithms: support vector

machine (SVM), random forest (RF), k-nearest neighbor (KNN),

decision tree (DT), and neural networks (NN).

The performance summary of five machine learning QSAR

models for each ChEMBL dataset is provided in Supplementary

Tables S3–S5, respectively. Each dataset was split randomly into

three different training (80%) and test (20%) sets, with each of these

same sets being applied to the different model types. The training

sets were used to build each machine learning model and the test
FIGURE 1

Plots showing the number of components from the principal component analysis performed on each datasets descriptor set against the explained
variance (%). The ChEMBL datasets for B. subtilis are B-All (A), B-Sort (B), and B-Phenol (C), while the E. coli sets are E-All (D), E-Sort (E), and E-Phenol (F).
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sets were used for model validation. The metrics used for measuring

model performance was the average coefficient of determination

(R2) and root mean square error (RMSE) for the three training and

test sets. The better performing model is identified as having a high

R2 and low RMSE value for the average test scores and training

scores; thus, Table 2 provides a summary of the best fitting models

for each ChEMBL dataset. When comparing models, if one model

had a higher R2 and lower RMSE for the test sets, but not the

training sets, the model with better performance for the test set was

chosen, as it is ultimately the more important metric (Bengio et al.,

2017). For example, B-All’s best performing QSAR model was the

KNN algorithm (Supplementary Table S3), as it had the highest R2

of 0.69 for the test set, despite a slightly lower R2 for the training sets

(0.86) compared to the RF algorithm (0.95). Accordingly, the E-All,

B-Sort, E-Sort, B-Phenol, and E-phenol datasets had the most

robust QSAR models using the RF, NN, KNN, RF, and KNN

algorithms, respectively (Table 2). Not surprisingly the table

shows that only NN model has sensible generalization capabilities

as there is almost no difference between RMSE for training and test

set. The only similar model is E-phenol KNN but it has low

prediction quality, so this is most probably effect of high error

and low prediction capability of the model in general. The stark

difference between training and test group suggests that the model is

over-trained or has only interpolation capabilities (like B-ALL KNN

and E-ALL RF – huge differences in R2). Future work could test an

ensemble system with different techniques to get averaged

predications; a possible way to improve the model capability.

A common theme with all the models in each dataset, was that

the R2 for the test set was always lower than the training set. This

could be a sign of model overfitting or unrepresentative data

between the training and test sets (Bengio et al., 2017). However,

all the models had very low SE values when averaging the R2 values

of the three different test/train splits for cross-validation, which

would suggest compounds are not being underrepresented. The

number of independent variables (ICs) used for each dataset were

also rather large (80 or 40), which could contribute to overfitting,

but they explained 99% of the dependent variable’s variation and

when smaller numbers of ICs were used the model’s performance

drastically decreased (data not shown). Coupled with the fact that
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most models used a grid search parametrization technique to fine

tune the hyperparameters, these discrepancies may just be a

function of the data itself and not with how the models were

evaluated or fit. Furthermore, the E-Sort, B-Phenol, and E-Phenol

datasets did not have any QSAR models with a R2 > 0.6, which is

usually needed to describe a truly predictive model (Shahlaei, 2013).

Yet, since these datasets are not lignin-specific, the true measure of

these model’s performance needs to be evaluated with an additional

test set of actual lignin derived compounds.

To this end, the available literature was searched for lignin

derived monomers that had reported MIC values against B.

subtilis and E. coli. The results from this meta-analysis are

reported in Supplementary Table S6, where 16 compounds were

found with MIC data for B. subtilis (B-Meta) and 27 compounds

for E. coli (E-Meta). These two datasets were then evaluated as an

additional test set for each of the best performing QSAR models

found for each ChEMBL dataset, described above. The data is

summarized in Figure 2, where the predicted vs actual pMIC

values of the lignin monomers are plotted. It can immediately be

seen that none of the ChEMBL QSAR models could accurately

predict the lignin monomers. All the models predicted the lignin

compounds as having pMIC values roughly less than 2.5, when

they are reported as actually having pMIC values greater than 2.5.

This suggests these models are grossly underpredicting the pMIC

values for the lignin compounds, which would correlate to them

having a lower MIC and subsequently greater antimicrobial

activity. To understand this, a kernel density estimate (KDE)

plot for the ChEMBL and meta-analysis datasets were

constructed to visualize the distribution of their pMIC values

(Figure 3), and their applicability domains were evaluated

(Supplementary Tables S7, S8, respectively).

The KDE plots show that the meta-analysis datasets for both E.

coli and B. subtilis have pMIC distributions centered around 3–4,

while the ChEMBL datasets are centered between 0–2.5. Even

though the ChEMBL datasets clearly contain compounds with

pMIC values within the distribution of the meta-analysis datasets,

they did not lie within the applicability domains (AD) of the

ChEMBL datasets. The AD is a useful measure for determining

the reliability of a model’s prediction for a new set of compounds.
TABLE 2 QSAR model performance for the best fitting machine learning models for each ChEMBL dataset.

Dataset Best Fitting Model
Test Train

R2 RMSE R2 RMSE

B-All KNN 0.69 ± 0.008 0.58 ± 0.009 0.86 ± 0.001 0.39 ± 0.002

E-All RF 0.69 ± 0.004 0.62 ± 0.002 0.95 ± 0.000 0.24 ± 0.001

B-Sort NN 0.71 ± 0.014 0.49 ± 0.005 0.79 ± 0.032 0.41 ± 0.036

E-Sort KNN 0.49 ± 0.067 0.79 ± 0.017 0.69 ± 0.007 0.42 ± 0.007

B-Phenol RF 0.57 ± 0.007 0.59 ± 0.036 0.63 ± 0.005 0.42 ± 0.007

E-Phenol KNN 0.38 ± 0.019 0.75 ± 0.041 0.53 ± 0.015 0.76 ± 0.002
The datasets denoted with ‘B’ and ‘E’ represent the data utilized from ChEMBL for B. subtilis and E. coli, respectively. Measured by average coefficient of determination (R2) and root mean square
error (RMSE) for both the training and test sets, where values are mean ± SE (n=3). Each dataset was split into random test and train sets three different times to obtain the average performance
score. The number of compounds, selected descriptors, and number of principal components used to develop models can be found in Table 1 and Supplementary Table S2.
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Based on the PCA for each ChEMBL dataset, their ADs were

calculated based on the Euclidean distances among all their

compounds and a final threshold value is determined (Golbraikh

et al., 2003). Then, the same measure is calculated for each of the

compounds in the meta-analysis dataset to test if they lie within the

threshold of the ChEMBL dataset’s AD. We can see in

Supplementary Tables S7, S8 that none of the B-Meta or E-Meta

compounds fall within the AD of the ChEMBL datasets. The data

show that our data-centric approach to creating datasets of

traditional pharmacological compounds that are most similar to

potential lignin structures still cannot accurately be used to predict

the antimicrobial activity of true lignin derivates. Even though these

results are not what the authors had hoped, these data create a more

concrete conclusion that a comprehensive dataset of lignin

derivatives with antimicrobial measurements needs to be

developed. Considering this, QSAR models using actual lignin
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compounds from the meta-analysis datasets , and an

experimentally derived dataset were developed and are discussed

in the further sections.

Meta-analysis dataset models

The meta-analysis datasets, used for validating the ChEMBL

QSAR models, were applied to develop their own QSARs using

ordinary least square (OLS) regressions. Instead of using PCA as a

feature extraction technique, univariate feature selection relying on

Pearson’s correlation coefficient (r) was employed. Since OLS

regressions rely on linear relationships, it made more sense to

utilize Pearson’s correlation as it measures the strength of the

linear correlation between the independent (descriptors) and

dependent variables (pMIC). Therefore, the same 200 molecular

descriptors were calculated for the B-Meta and E-Meta datasets,
A B

FIGURE 3

Kernel density estimates describing the distribution of pMIC values for the B. subtilis (A) and E. coli (B) ChEMBL/meta-analysis datasets.
A B

D E F

C

FIGURE 2

Plots of predicted versus actual pMIC values for the B-Meta (A–C) and E-Meta (D–F) datasets by utilizing the best QSAR models developed from the
ChEMBL datasets. The ChEMBL datasets used to predict pMIC of the meta-analysis datasets for B. subtilis are B-All (A), B-Sort (B), and B-Phenol
(C), while the E. coli sets are E-All (D), E-Sort (E), and E-Phenol (F). The best QSAR models used in each prediction are as follows: RF (A), NN (B),
RF (C), RF (D), SVM (E), and KNN (F).
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and the descriptors with a r>0.5 were selected to develop the OLS

regressions. Subsequently, the selected descriptors were fed into an

OLS regression and backwards elimination was used until the

significance of each descriptor coefficient in the model (p-value)

was less than 0.05, which indicated the best fitting model. It should be

noted that this approach is biased for linear relationships and it

undercasts models that have non-linear capabilities.

No reliable QSARs using OLS was obtained for the E-Meta

dataset (results not shown). This result was not surprising

considering the pMIC distribution in E-Meta dataset had three

different centers, as shown in the KDE plot (Figure 3B). Its variable

distribution and small sample size could prevent the QSAR model

from capturing any relevant relationships in the feature space

(Bouarab-Chibane et al., 2019b). Conversely, even though the B-

Meta (16 compounds) dataset was smaller than E-Meta (27

compounds), a more successful QSAR model was developed. To

improve model capacity, one could use ANN MLP with two

regression outputs – one for E-Meta and the other for B-Meta.

Provided the intrinsic relations are not entirely different this would

increase dataset and allow training more sophisticated models.

The model for best predicting the antibacterial activity (pMIC) of

the lignin monomers in the B-Meta dataset is summarized in Table 3

and Figure 4. As observed, the selected OLS model showed good

predictive power with a R2 of 0.759. Three descriptors, SLogP_VSA3,

SLogP_VSA5, and fr_AL_COO, were used to develop the best fitting

OLS regression model. The SLogP_VSA3 and SLogP_VSA5

descriptors are Molecular Operation Environment (MOE)-type

descriptors that bin the output from other descriptor types (i.e.,

SLogP) and calculate the van der Waals (VDWs) surface area (VSA)

of atoms contributing to any specified bin of that output. Thus,

SLogP_VSA3 and SLogP_VSA5 calculate the sum of VSA

contributions to the lipophilicity measurement SLogP (partition

coefficient of compound in two immiscible solvent) within −0.2–0

and 0.1–0.15 bin ranges, respectively. While SLogP and VSA are

‘primary’ descriptors that have a more-or-less interpretable

contributions to a compounds mechanism of action, the MOE-type

descriptors are intended to be used as model predictors and are not as

interpretable (Labute, 2000). Therefore, the negative and positive

relationships SLogP_VSA3 and SLogP_VSA5 contribute to the OLS

regression, can only be used as a data driven identifier for predicting

the pMIC values of lignin compounds. On the other hand, the

fr_AL_COO descriptor represents the number of aliphatic

carboxylic acid groups in each compound and can directly be used

to infer the mechanism of action.
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Caffeic, ferulic, sinapic, and p-coumaric acid were the only

compounds with an aliphatic carboxylic acid group present in this

dataset and they had the lowest observed pMIC values (~3.3). They

also represent hydroxycinnamic acid derivatives that are known to

have increased antimicrobial properties compared to their more

polar hydroxybenzoic acid counterparts (Borges et al., 2013). This is

confirmed here by the fact that gallic and protocatechuic acids, with

aromatic carboxylic acid groups, had higher MIC values that

corresponds to lower antimicrobial activity. Previous work has

suggested that hydroxycinnamic acid’s propenoic side chain is

responsible for its increased antimicrobial properties, as it

facilitates the transport of the molecule through the cell

membrane of Gram-positive bacteria (Campos et al., 2003;

Nohynek et al., 2006; Borges et al., 2013). Therefore, this explains

why an increase in aliphatic carboxylic acid groups correlated to an

increase in antimicrobial activity (lower pMIC) for this dataset.

Nonetheless, the B-Meta dataset only represents a very small

number of lignin monomers and more compounds need to be

examined to truly understand or predict the properties that

influence their antimicrobial activity.
Experimental dataset models

The antibacterial activity of 25 lignin derived monomers and

three relevant dimers were assessed by measuring their BLD or

percent inhibition against B. subtilis and E. coli at concentrations of

1 g/L. The BLD values are presented in Table 4, and they ranged

from 2% up to 100%, indicating compounds can be completely

inhib i tory to both organi sms . The 3-hydroxy-2-(2-

methoxyphenoxy)-1-(4-methoxyphenyl)-1-propanone lignin

dimer was the only compound to show complete inhibition

against both B. subtilis and E. coli. Interestingly, the 2-(2-

methoxyphenoxy)-1-(4-methoxyphenyl)ethanol lignin dimer only

had a BLD value of 66% and 55% for both B. subtilis and E. coli, but

its chemical structure differs only by an absence of a methoxy group

on b-carbon compared to 3-hydroxy-2-(2-methoxyphenoxy)-1-(4-

methoxyphenyl)-1-propanone. Therefore, the presence of this one

methoxy group seems to increase the molecules BLD by ~34–45%.

Moreover, we can also see from Table 4 that that alkyl chains on the

phenolic subunit (4-ethylphenol) and the lignin dimers themselves

play an important role in these lignin derivatives antimicrobial

properties (i.e., higher BLD values). However, the development of a

QSAR model for both organisms will provide an actual statistical
TABLE 3 Statistical performance of the best OLS models obtained through backwards elimination of descriptors, for predicting pMIC values of lignin
phenolics against B. subtilis in the B-Meta dataset.

Dataset N R2 Descriptor Coefficient Standard Error p-value

B-Meta 16 0.759

SLogP_VSA3 −0.2951 0.108 0.041

SLogP_VSA5 0.6025 0.129 0.003

fr_AL_COO −0.2588 0.164 0.047

Intercept 3.5442 0.117 0.000
The compounds used and their pMIC values can be found in Table 1 and the descriptor meaning can be found in Supplementary Table S1. N, number of compounds; R2, coefficient
of determination.
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relationship between these molecules BLD values and descriptors

for more predictive purposes.

The same methods used to the develop the QSARmodels for the

B-Meta dataset were used for both the B-Experimental and E-

Experimental datasets. Where RDKit’s calculated descriptors were

chosen based on univariate feature selection (r>0.5) and an OLS

regression with backwards elimination was performed until all

descriptors had a p-value less than 0.05. The best fitting OLS

regressions are summarized in Table 5 and the predicted vs actual

BLD values are plotted in Figure 5. Firstly, the B-Experimental

dataset’s OLS regression had greater predictive power with a R2 of

0.831 than that of the B-Meta dataset. Four descriptors were used to

develop the best fitting OLS regression model: MinABSEStateIndex,

PEOE_VSA13, VSA_EState8, and fr_Ar_OH. As stated previously,

PEOE_VSA13 and VSA_EState8 are MOE-type descriptors that are

intended to be used as model predictors and are not as interpretable

for describing the compounds mechanism of action (Labute, 2000).

The MinABSESt a t e Index i s the min imum abso lu t e

electrotopological state (E-state) of a skeletal atom, formulated as

an intrinsic value plus a perturbation term arising from the

electronic interaction and modified by the molecular topological

environment of each atom in the molecule (Hall et al., 1991). This

descriptor, like the MOE-type descriptors, is used as more of a

classification tool for identifying similar compounds instead of

describing a feature that could relate to the compounds mode of

action. Therefore, while the MinABSEStateIndex, PEOE_VSA13

and VSA_EState8 descriptors show a positive relationship to the

lignin compound’s BLD value against B. subtilis. Comparatively,

fr_Ar_OH represents the number of aromatic hydroxyl groups

in each compound and is better at elucidating their potential

antibacterial mechanisms.

The number of aromatic hydroxyl groups can be seen to have a

negative relationship with BLD for the B. subtilis data (Table 5).

Where gallic acid, catechol, and protocatechuic acid had more than

one aromatic hydroxyl group and the lowest BLD values compared

to all the other compounds. So, with an increase in the number of

aromatic hydroxyl groups there will be a decrease in BLD,
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correlating to a decrease in the compound’s antibacterial

properties against B. subtilis. Bouarab-Chibane et al. (2019a)

found a negative relationship between the number of hydrogen

donors and the BLD of plant-based polyphenols screened against B.

subtilis. Since the number of aromatic hydroxyl groups and the

number of hydrogen donors have a direct positive relationship

(Bouarab-Chibane et al., 2019a), we can see that in general
FIGURE 4

Predicted vs actual pMIC regression from the OLS QSAR model for
the B-Meta dataset, whose parameters can be found in Table 3. The
shaded region represents the 95% confidence interval for
the regression.
TABLE 4 Experimental antimicrobial activity of lignin monomers and
dimers against B. subtilis and E. coli (BLD %), where experimental values
are mean ± SE (n=3).

Type Compound B. subtilis
(BLD %)

E. coli
(BLD %)

Monomers 2-6-dimethoxyphenol 42.44 ± 6.05 53.53 ± 5.28

4-ethyl phenol 62.43 ± 1.11 81.75 ± 1.30

4-propyl phenol 73.34 ± 0.04 100.00 ± 0.00

acetovanillone 46.13 ± 3.69 58.07 ± 0.20

coniferyl alcohol 35.74 ± 3.22 40.85 ± 2.48

coniferyl aldehyde 36.89 ± 13.35 81.76 ± 0.88

ethyl 3,4
hydroxy propionate

64.33 ± 0.60 81.03 ± 2.57

eugenol 60.77 ± 2.27 60.06 ± 2.06

ferulic acid 36.89 ± 13.35 29.86 ± 3.42

gallic acid 31.13 ± 0.54 4.75 ± 3.01

guaiacol 23.24 ± 2.10 35.18 ± 4.34

homosyringic acid 29.94 ± 3.81 3.68 ± 8.23

homovanillic acid 37.73 ± 2.09 2.13 ± 1.23

hydroquinone 35.06 ± 0.73 8.25 ± 5.05

p-coumaric acid 46.05 ± 3.60 76.88 ± 0.65

p-coumaryl alcohol 43.51 ± 5.88 71.74 ± 2.87

p-creosol 64.68 ± 3.67 84.33 ± 0.55

syringaldehyde 44.29 ± 4.75 24.07 ± 2.08

syringic acid 26.64 ± 1.88 22.27 ± 4.51

syringyl alcohol 37.86 ± 3.41 19.77 ± 4.49

syringyl propane 48.07 ± 0.43 52.14 ± 3.71

vanillic acid 43.82 ± 4.09 37.40 ± 7.46

vanillin 16.10 ± 3.86 21.02 ± 10.78

protocatechuic acid 10.08 ± 2.36 28.02 ± 2.09

Catechol 19.22 ± 6.99 16.39 ± 17.45

Dimers 2-(2-methoxyphenoxy)-1-
(4-methoxyphenyl)ethanol

66.00 ± 13.79 55.93 ± 1.08

3-hydroxy-2-(2-
methoxyphenoxy)-1-(4-
methoxyphenyl)-
1-propanone

100.00 ± 0.00 100.00 ± 0.00

Guaiacylglycerol-beta-
guaiacyl ether

30.97 ± 1.03 18.55 ± 4.12
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phenolics with higher overall polarity will have a decrease in

antimicrobial properties. This is supported by the experimental

data seen here, where highly lipophilic compounds like 4-

ethylphenol had high BLD values. However, this model does not

provide an explanation for the 3-hydroxy-2-(2-methoxyphenoxy)-

1-(4-methoxyphenyl)-1-propanone lignin dimers high BLD value

compared to the monomers, highlighting the issue QSAR models

c an hav e w i th l im i t ed da t a s i z e s and b r e ad th o f

compound variability.

When examining the OLS regression for E. coli, we can see that

the EState_VSA6, VSA_EState3, and fr_aryl_methyl descriptors

were used to create the best fitting model. Again, EState_VSA6

and VSA_EState3 are MOE type descriptors that are used for

classification-based purposes and cannot be used to infer an

influence on the molecules antimicrobial activity. Comparatively,

the fr_aryl_methyl descriptor represents the number of aryl methyl

groups or an alkyl chain (i.e., ethyl or propyl) on the molecule and it

shows a positive correlation with BLD. Thus, as the number of

methyl or alkyl chain groups on the phenolic ring increase there is

an increase in the BLD or antimicrobial activity of the compounds

against E. coli (Table 5). The compounds described by the
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fr_aryl_methyl descriptor such as 4-ethyl phenol, 4-propyl

phenol, and p-creosol are seen to have BLD values of 80–100%

for E. coli (Table 5). These compounds are also considered to be

more lipophilic given their alkyl groups on the phenolic ring, of

which, lipophilicity is already considered an important factor in

increasing antibacterial activity against E. coli in the literature

(Sikkema et al., 1995; Bouarab-Chibane et al., 2019b).

Furthermore, since Gram-negative bacteria have a substantially

higher lipid content in their cell wall compared to Gram-positive

bacteria (Salton, 1953), it makes sense that the alkylated

phenolics were seen to have greater BLD values for E. coli

compared to B. subtilis. Additionally, like the B. subtilis OLS

regression, E. coli’s model also did not provide inferences as to

why the lignin dimer 3-hydroxy-2-(2-methoxyphenoxy)-1-(4-

methoxyphenyl)-1-propanone had such a high BLD value.

Overall, when comparing the results from the QSAR models for

the meta-analysis and experimental datasets, we can see that the

presence of certain compounds and how antimicrobial activity was

measured will influence which descriptors play the most important

role in describing antimicrobial activity. We saw that the

hydroxycinnamic derivatives in the B-Meta dataset drove the
TABLE 5 Statistical performance of the best OLS models obtained through backwards elimination of descriptors, for predicting BLD (%) values of
lignin phenolics against B. subtilis in the B-Experimental dataset and E. coli in the E-Experimental dataset.

Dataset N R2 Descriptor Coefficient Standard Error p-value

B-Experimental 28 0.831

MinABSEStateIndex 24.7939 7.229 0.002

PEOE_VSA13 32.0858 11.202 0.009

VSA_EState8 25.1929 7.769 0.004

fr_Ar_OH −43.8297 10.158 0.000

Intercept 43.9883 4.545 0.000

E-Experimental 28 0.682

EState_VSA6 1.1295 0.279 0.000

VSA_EState3 −1.5204 0.567 0.013

fr_aryl_methyl 30.5588 9.770 0.005

Intercept 47.8742 11.123 0.000
The compounds used and their BLD values can be found in Table 4 and the descriptor meaning can be found in Supplementary Table S1. N, number of compounds; R2, coefficient
of determination.
A B

FIGURE 5

Predicted vs actual BLD (%) regression from the OLS QSAR model for the B-Experimental (A) and E-Experimental (B) datasets, whose parameters can
be found in Table 5. The shaded region represents the 95% confidence interval for the regression.
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negative relationship between the number of aliphatic carboxylic acid

groups and pMIC. Comparatively, a higher number of aromatic

hydroxyl groups were shown to decrease the BLD in the B-

Experimental dataset. Additionally, the E-Meta dataset did not

provide an accurate OLS regression model, while E-Experimental’s

model showed increasing alkyl groups on the phenolic ring increases

BLD values against E. coli. This emphasizes the fact that using

different measures of antimicrobial properties and different lignin

compounds to develop QSARs for predicting the antimicrobial

properties of lignin may lead to different conclusions. It is

important to understand the origin of the strains and the

cultivation parameters. Meanwhile one could introduce reference

compounds across datasets to ensure a more reproducible response.

While this is intuitive, the data here provide support for the need in

developing a comprehensive and cohesive dataset with lignin

derivatives and their antimicrobial properties. Without such a

dataset, the ability to accurately predict the antimicrobial potential

of lignin and the variety of derivatives that are produced from

depolymerization schemes for biorefinery waste stream – lignin

valorization is limited.
Conclusions

Based on meta-analysis, MOE-type descriptors and the number

of aliphatic carboxylic acid groups were the descriptors that showed

strong correlations to the pMIC values. Comparatively,

experimentally based QSAR found that MOE-type descriptors

and the number of aromatic hydroxyl groups were better

predictors of BLD for B. subtilis, while MOE-type descriptors and

the number of aryl methyl groups were predictors of BLD for E. coli.

This study represents one of the first steps towards expediting the

search for highly active lignin derivatives that can be produced from

depolymerization reactions for valorizing lignin into a sustainable

source of antimicrobial compounds.
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Zemek, J., Kosı̌ḱová, B., Augustıń, J., and Joniak, D. (1979). Antibiotic properties of
lignin components. Folia Microbiologica 24, 483–486. doi: 10.1007/BF02927180

Zheng, W., and Tropsha, A. (2000). Novel variable selection quantitative structure–
property relationship approach based on the k-nearest-neighbor principle. J. Chem. Inf.
Comput. Sci. 40, 185–194. doi: 10.1021/ci980033m
frontiersin.org

https://doi.org/10.3389/fmicb.2019.00829
https://doi.org/10.3389/fmicb.2019.00829
https://doi.org/10.1016/j.cell.2018.05.015
https://doi.org/10.1046/j.1365-2672.2003.01801.x
https://doi.org/10.1111/jam.13626
https://doi.org/10.1016/j.indcrop.2011.06.002
https://doi.org/10.15376/biores
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1023/A:1025386326946
https://doi.org/10.1021/ci00001a012
https://doi.org/10.1038/nrd4510
https://doi.org/10.1155/2015/198363
https://doi.org/10.1016/S1093-3263(00)00068-1
https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.1016/j.jaap.2016.11.004
https://doi.org/10.1007/BF03183737
https://doi.org/10.1207/s15327914nc5401_4
https://doi.org/10.1002/ceat.201000270
https://doi.org/10.1002/ceat.201000270
https://doi.org/10.1089/fpd.2014.1914
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1016/0006-3002(53)90296-0
https://doi.org/10.1088/1757-899X/543/1/012075
https://doi.org/10.25080/issn.2575-9752
https://doi.org/10.1021/cr3004339
https://doi.org/10.1021/cr3004339
https://doi.org/10.1128/mr.59.2.201-222.1995
https://doi.org/10.1128/mr.59.2.201-222.1995
https://doi.org/10.1039/C8SC03208D
https://doi.org/10.1016/j.ecoenv.2012.03.018
https://doi.org/10.1021/acs.chemrev.7b00588
https://doi.org/10.1039/C6TX00252H
https://doi.org/10.1021/ci034160g
https://doi.org/10.3389/frwa.2020.583000
https://doi.org/10.1155/2014/761741
https://doi.org/10.1155/2014/761741
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1155/2013/838645
https://doi.org/10.1021/ci00062a008
https://doi.org/10.1021/acssuschemeng.7b03782
https://doi.org/10.1021/acssuschemeng.7b03782
https://doi.org/10.1007/BF02927180
https://doi.org/10.1021/ci980033m
https://doi.org/10.3389/finmi.2024.1404729
https://www.frontiersin.org/journals/industrial-microbiology
https://www.frontiersin.org

	Predicting antimicrobial properties of lignin derivatives through combined data driven and experimental approach
	Introduction
	Materials and methods
	ChEMBL datasets
	Lignin monomers meta-analysis dataset
	Experimental dataset
	Descriptor calculations and QSAR modeling
	Machine learning algorithms
	Software used

	Results and discussion
	ChEMBL dataset models
	Meta-analysis dataset models
	Experimental dataset models

	Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


