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Microbial-based inoculants for agricultural use consist of different strains. The

consortia production process involves growing pure cultures separately and

combining them in the appropriate ratio. However, the inclusion of multiple

strains in the formulation increases production costs. By developing co-culture

fermentations, it is possible to create consortia with the correct bacterial charge.

This study aims to develop a cost-effective co-culture approach for producing an

inoculum that includes the appropriate ratio of four Gram-negative bacteria, i.e.,

Azospirillum brasilense, Burkholderia ambifaria , Gluconacetobacter

diazotrophicus, and Herbaspirillum seropedicae. The specific growth rates of

strains were studied using the T4 medium, previously optimized for their culture.

The co-fermentation process was optimized in 500 mL flasks to attain an

equivalent density of 9.7-10 Log CFU mL-1. Then, it was successfully scaled up

to a 5 L bioreactor, obtaining an equivalent density of 9.7-9.9 CFU mL-1. This first

co-formulation of a four multistrain consortium formed by Gram-negative plant

growth-promoting bacteria pave the road for future evaluations of other

products useful for sustainable agriculture.
KEYWORDS
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Introduction

Using bacterial consortia is a sustainable and promising tool to improve the sustainability

of fertile land while achieving high production rates (Duncker et al., 2021; Seenivasagan and

Babalola, 2021). Combining two or more strains with plant growth-promoting (PGP) traits to

enhance the inoculum’s efficacy is a proven method (Deter and Lu, 2022). The bacterial

consortium consisting of Herbaspirillum seropedicae Z67, Gluconacetobacter diazotrophicus

Pal5, Azospirillum brasilense Cd, and Burkholderia ambifaria PHP7 has been shown to have

positive biostimulating effects on various crops, including tomato, carrots, hemp, Apennines

genepì, and ancient Triticum genotypes (Del Gallo et al., 2010; Botta et al., 2013; Pagnani
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et al., 2018; Pagnani et al., 2020; Pellegrini et al., 2020a; Pellegrini

et al., 2021a; Pellegrini et al., 2021b).

The favorable results achieved with this consortium are due to

the synergy of various plant-growth-promoting qualities found in

these strains. A. brasilense is a well-known species of PGPB and has

great potential for biofertilization (Bashan and De-Bashan, 2010).

Azospirillum spp. andGluconacetobacter spp. are known to enhance

plant growth through various processes. Azospirillum spp. are

involved in phytohormone synthesis, N2-fixation, mineral

mobilization, synthesis of small molecules and enzymes, root

system proliferation, increased membrane activity, and mineral

and water uptake (Bashan, 1986; James et al., 2001; Logeshwarn

et al., 2011; Brıǵido et al., 2015; Suleman et al., 2018; Silva et al.,

2019). Gluconacetobacter spp. are also linked to N2-fixation,

synthesis of siderophores and phytohormones, and the

solubilization of inorganic forms of zinc and phosphorus (James

et al., 2001). Herbaspirillum spp. and Burkholderia species assist in

plant growth by producing phytohormones, synthesizing

siderophores, and N2-fixing (Olivares et al., 1997; Tawfik et al.,

2010; Xu et al., 2020). They also reduce stressful ethylene levels

through 1-aminocyclopropane-1-carboxylate (ACC) deaminase.

Furthermore, the biocontrol potential against bacterial and fungal

phytopathogens has been documented for each strain (Zahir et al.,

2009; Djebaili et al., 2021).

The manufacturing process of this consortium involves growing

pure cultures separately and then combining them in the

appropriate ratio (Bashan et al., 2014). Researchers and

enterprises commonly use this technique. However, this

procedure increases operational and production costs by

considering multiple strains in the formulation and their

individual fermentations. Application of multi-strain fermentation

techniques has gained relevance in recent years in an effort to lower

total bioprocess costs (Jangra et al., 2016). The co-culture systems

could overcome the limitations of monocultures or consortia with

the added advantages of exploring allelopathic interactions in

several biotechnological applications due to their versatility,

robustness, and complexity (Hays et al., 2015). Furthermore,

several studies underlined how the complexity of co-culturing

fermentation could increase its resilience against contamination

(Hathi et al., 2021). By creating a co-culture fermentation, costs can

be saved by eliminating the need for several processes. Creating

multistrain inoculants with the appropriate ratios of each strain is a

complex process that requires extensive research (Hussain et al.,

2022; Sobhi et al., 2023). Previous attempts at mixed-culture

bioprocesses have utilized this technique to reduce production

costs (Kapoore et al., 2022). However, microbial strains interact

in various ways, such as mutualism, competition, parasitism,

commensalism, and predation (Wu et al., 2023). Therefore,

understanding the population dynamics and interactions between

microbial strains during growth is crucial for co-culture

fermentation development.

This work aimed to develop a biomass-producing process that

incorporates a co-culture of the four mentioned PGPB strains. The

co-fermentation was developed on the T4 medium, previously

designed to maximize the four-strain growth. The co-

fermentation procedure was studied in 500 mL flasks.
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Subsequently, the fermentation process was successfully scaled up

to a 5-L bioreactor.
Method

Microbial strains and inoculum preparation

The four bacteria studied are G. diazotrophicus strain Pal5, H.

seropedicae strain Z67, B. ambifaria gv VII strain PHP7, and A.

brasilense strain Cd. These strains are part of the collection of the

Agricultural Microbiology Laboratory of the University of L’Aquila.

The bacteria were cultured on T4 medium at 30°C previously

designed by Botta et al (Botta et al., 2013). The density of the

strain was established by Densimat Densitometer (Biomérieux).
Co-culture design

Pure cultures for each strain were obtained by adding 2% w/v of

the cell biomass to 250 mL of T4 media in 500 mL flasks and by

shaking at 130 rpm at 30°C. The growth of pure cultures was

studied for 60 hours with periodic sampling (14 samplings in total).

Samples were centrifuged for 15 minutes at 20°C at 8000 g, washed,

and resuspended in saline solution (0.9%) to establish bacterial

density. The number of colony-forming units per milliliter (CFU

mL-1) was determined using the plate counting method, with

samples being serially diluted and plated on modified Okon

medium - OK (Martinez-Drets et al., 1984), Jensen’s Nitrogen-

Fixing bacteria - J-NFb (Döbereiner, 1992), Pseudomonas cepacia,

azelaic acid, tryptamine - PCAT (Burbage and Sasser, 1982), and

Liquid Glucose Ivo Pernambuco - LGI-P (Baldani et al., 2014),

specific for A. brasilense, H. seropedicae, B. ambifaria, and G.

diazotrophicus, respectively. The results were graphically

displayed, and the growth curves were compared. Different scalar

addition times were hypothesized to inoculate the strains and tested

in 500 mL flasks. Experiment A was carried out to test the

possibility of co-culturing the same strains together for 48 hours.

Experiment B was carried out with inoculations at 0 (for G.

diazotrophicus), 24 (for A. brasilense), 48 (for H. seropedicae), and

60 hours (B. ambifaria). Experiment C was set with inoculations at

0 (for G. diazotrophicus), 24 (for A. brasilense and H. seropedicae),

and 60 hours (B. ambifaria). Experiment D was performed with

inoculations at 0 (for G. diazotrophicus), 48 (for A. brasilense andH.

seropedicae), and 60 hours (B. ambifaria). All inoculations were

performed with standardized cultures to obtain a final density of 6

Log CFU mL-1.
5 L bioreactor scale up

Batch fermentation was conducted using a 5 L bioreactor

(Biostat® B). The fermentation was obtained with an agitation

speed of 150 rpm, continuous air-sparging, and at 30°C using a T4

medium volume of 2.5 L. The pH was maintained at 6.8 ± 0.2 with

the pH controller unit of the bioreactor and NaOH and HCl 0.1 M
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solutions. A peristaltic pump was used to perform inoculations as

described in Experiment D (for which the best results were

obtained). Samples were regularly taken to evaluate CFU mL-1 as

previously described.
Statistical analysis

Trails and evaluations were repeated five times (n = 5

independent experiments) and values were expressed as mean ±

standard deviations. After collection, the dataset was analyzed for

outlier’s presence and distribution. Results of the densities obtained

from the co-culture experiments, with no normal distribution, were

analyzed by Kruskal-Wallis, followed by Conovan-Iman multiple

comparisons of the mean. 5L bioreactor data, with a normal

distribution, were analyzed by ANOVA, followed by Tukey’s

post-hoc test. Data processing was carried out using XLSTAT

2016 software.
Results

The four-strain growth behavior in the T4 medium was studied

to keep the goal of a combined process. Figure 1 displays the growth

cultures obtained for each strain. A first comparison shows that the

growth curves for A. brasilense and H. seropedicae have very similar

kinetics, whereas B. ambifaria has a more rapid growth. For G.

diazotrophicus the growth is slower. In particular, A. brasilense and

H. seropediace start the exponential phase after a lag phase of 5

hours, which lasts up to 24 hours. B. ambifaria starts the

exponential phase after 2 hours and lasts up to 12 hours. G.

diazotrophicus has a slow adaptation phase and starts the
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exponential phase after 12 hours, that lasts up to 48 hours. For all

the strains, the maximum density recorded was 10 Log CFU mL-1.

Analyzing this behavior, it was hypothesized that co-cultures

could only be grown by scalar inoculations. Therefore, three

different experiments of scalar additions were set up (Experiments

B-D). A control co-culture was established as control by adding all

strains at time 0 (Experiment A). Figure 2 shows the results

obtained for each experiment and the statistical analysis

performed for comparison. From the counts performed for each

strain, it was observed that the control culture only allowed the

growth of the B. ambifaria strain up to 9.5 Log CFU mL-1 (after 12

hours), which appeared to significantly inhibit the growth of the

other three strains (which obtained a maximum density of 107 CFU

mL-1). In Experiment B and Experiment C good densities were

obtained for G. diazotrophicus and B. ambifaria (9 Log CFU mL-1).

However, the other two strains were negatively influenced by these

set up. The best results were obtained for Experiment D and at the

end of the co-fermentation each strain obtained a final density of 10

Log CFU mL-1 on average.

Experiment D was also scaled up to a 5 L bioreactor. Figure 3

shows the strain’s densities obtained after 80 hours of co-culture

fermentation. The strains achieved a similar final density,

comparable to that obtained with the 500 mL flask scale (9.8 Log

CFU mL-1). No significant changes in the culture medium were

registered during the fermentations.
Discussion

In the first part of this work, we explored the growth behavior of

four Gram-negative bacteria. The observed growth rates are in line

with the nature of each bacteria. Studying a single fermentation

process is crucial to comprehensively characterize the strain’s
FIGURE 1

Growth curves of pure cultures of Azospirillum brasilense,
Burkholderia ambifaria, Gluconacetobacter diazotrophicus, and
Herbaspirillum seropedicae obtained in T4 medium for 60 hours.
FIGURE 2

Comparison of the strain bacterial density obtained from co-culture
experiments and established at the end of each flask
scale fermentation.
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bacteriological characteristics and metabolic demands. The strains

analyzed in this work have been the subject of numerous studies

over the years, which have determined their metabolic demands for

optimal development (Eskew et al., 1977; Baldani et al., 1986;

Stephan et al., 1991; Coenye et al., 2001; Canini et al., 2006). In

addition, Botta et al (Botta et al., 2013). developed a culture medium

suitable for all four bacteria. These findings are of great importance

for experimental research with potential industrial applications.

These aspects may influence a company’s decision to scale up a

formulation for industrial use.

After completing the initial stage, it is recommended to

carefully analyze the growth process and consider potential

bioprocesses that may help reduce production costs. This analysis

involves evaluating nutrient levels and the duration of the

bioprocess. Moreover, the possible interactions among bacteria

must be considered (Wu et al., 2023). Given the growth rates and

interactions of these strains with other living organisms, adding the

strains in a scalar manner was suggested, beginning with the slowest

strain, G. diazotrophicus, and concluding with the one with the

highest competitive potential, B. ambifaria. The slow growth of G.

diazotrophicus is usually reported. Compared with other bacteria

with similar sugar assimilation pathways, it is usually described as

slower (Restrepo et al., 2023). In fact, when the cultures were added

during G. diazotrophicus growth, this resulted in lower charges,

probably given to competition behaviors established among strains.

B. ambifaria, instead, is a fast-growing bacterium with competitive

behavior by secondary metabolites production (e.g., antibiotics and

other secondary metabolites) (Pal et al., 2022). This aspect could be

considered as one of the most relevant limits of co-culturing

fermentation, mainly related to the competition for nutrients and

the production of secondary compounds that interfere with the

growth of other organisms (Santos et al., 2014). The different trials
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showed a good compatibility of A. brasilense and H. seropedicae,

which grew together without any interference. This compatibility is

probably due to the A. brasilense ability of to easily adapt its

metabolism and organization of the cells to respond to

environmental changes (Bible et al., 2015). This ability could be

essential to facilitate the creation of effective synergism and growth

rated of the strains during the early exponential phase. Thus,

understanding the ideal combination of growth medium, culture

condition, and fermentation technique is essential for promoting

development, stability, and preservation of functional activity

through downstream procedures and storage (Rodrigues

et al., 2006).

Microorganisms interact with each other in various ways. These

interactions can be positive, negative, or neutral in simple ecological

models. Any close, long-term biological interaction between two

different biological organisms, either positive or negative, is called

symbiosis (Hector et al., 2022). In both symbioses and transitional

associations, interactions between two units can be classified as

mutualism, commensalism, amensalism, competition, and

predation/parasitism, depending on the directionality of the

interaction (Wu et al., 2023). Interactions can become more

complex and highly dynamic in systems with multiple units due

to interspecific, intraspecific, and environmental factors. As the

number of entities involved increases, community complexity also

increases due to the combined growth in the number and type of

pairwise interactions (Duncker et al., 2021). A third unit can alter

the strength or nature of a pairwise association, which a fourth unit

can further modify. These interactions, along with their types and

intensity, can significantly impact a community’s stability and can

be used to predict community composition over time (Bairey

et al., 2016).

It is widely recognized that co-culturing microorganisms with

different metabolic capabilities can have additive or synergistic

interactions, with beneficial effects on the microbial community

and, directly or indirectly, on plant growth and protection. For

example, Pagnussat et al. (2016) found that the amount of biofilm

produced by Azospirillum brasilense Sp245 significantly increased

in co-culture with Pseudomonas protegens CHA0 (Pagnussat et al.,

2016). Few authors focused on optimizing growth conditions of

PGPBs strains in co-culture. Bagheri et al. (2022) studied the

interactions between Azospirillum oryzae NBT506 and Bacillus

velezensis UTB96 in a co-culture system. Using the adjusted

population of each strain (8 Log CFU mL-1 of A. oryzae NBT506

and 6 Log CFU mL-1 of B. velezensis UTB96), they observed

the maximum growth efficiency (11 Log CFU mL-1) based

on different preculture concentrations for both strains

(Bagheri et al., 2022). Similar results were obtained by Masciarelli

and collaborators, who tested Bradyrhizobium japonicum E109

strain and Bacillus amyloliquefaciens in a co-fermentation to

enhance soybean nodulation (Masciarelli et al., 2014). These

findings underline the bacterial activity and ability to increase

their growth in an optimized co-culture bioreaction. Creating

multi-microbial formulations can be valuable, providing

economic and industrial benefits for microbial-based inoculants.

This strategy can lead to a reduction in the number of bioprocesses
FIGURE 3

Four strains bacterial density obtained from co-culture experiment
on 5-L scale bioreactor.
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required, resulting in lower material and energy costs and

increased efficiency.

The selection of a co-culture is an important factor in

optimizing economic resources for product development. It might

be useful to enhance biomass yield in several biotechnological

processes such as fermentation, biofuels, bioremediation,

nutraceutical, and chemical production (Kapoore et al., 2022).

Controlled co-culturing enables the synergistic utilization of

metabolic pathways of participating microorganisms under

industrial, reproducible, and controlled conditions. Significant

energy and resource savings can be achieved during industrial

production by defining optimal values for process parameters,

substrate, and product contents (Bader et al., 2010). The ability to

produce multiple strains in a single bioreaction process can result in

lower process waste production and limit the need for multiple

culture broths to obtain biomass. This approach can lead to less

economic effort in management and a lower environmental impact

of industrial production. By using fewer resources and producing

less waste, higher environmental sustainability for the farm can be

achieved (Rosero-Chasoy et al., 2021).

Our results provide a solid basis for developing a product that

includes these microorganisms and pave the way for further

research. As far as we know, no other studies have co-formulated

a four multistrain consortium formed by Gram-negative PGPB.

Given the large global market for these products and their

increasing use, research in this area is very important (Pellegrini

et al., 2020b; Chaudhary et al., 2023). Microbial fermentation is of

utmost importance in the development of next-generation

bioinoculants. Recent research breakthroughs have provided

effective methods for optimizing the fermentation of endophytic

microbes, from fundamental to scaling-up production. This

progress represents cutting-edge agricultural, food, and nutrition

technology, ushering in a new scientific era (Ganeshan et al., 2021).

However, there is a lack of integration between scientific results and

the industrial sector (Singh et al., 2024). Therefore, such studies

should be encouraged. This initial research report sets the stage

for future evaluations of any product on an industrial and

commercial level, including bioprocessing and technoeconomic

feasibility analysis.
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