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National Renewable Energy Laboratory, BioEnergy Science and Technology Center, Golden, CO,
United States
Microbes drive our complex biosphere by regulating the global ecosystem

through cycling elements and energy. Humankind has barely begun leveraging

this biotransformation capacity to impact global economies and ecologies.

Advances in genetic engineering, molecular analysis, metabolic flux modeling,

microbial consortia/biome mapping and engineering, cell-free bioproduction,

artificial intelligence/machine learning and the ever expanding -omics frontiers

have set the stage for paradigm changes to how humankind produces, uses,

transforms, and recycles carbon and energy through microbes. Harnessing this

enormous potential could drive a global bioeconomy and manage carbon at a

planetary level but requires understanding and application at a grand scale across

a broad range of science and engineering disciplines. The penultimate

manifestation of these advances is the “bio-refinery”, which is often

referenced, but is a long way from being fully developed as a global carbon

management platform. Broadening the feed stocks, processing operations, and

product portfolio to a sequential cascade optimizing the conversion as a whole

instead of limited outputs could greatly advance deployment and stability of

a bioeconomy.
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Introduction

The “bio-refinery” is envisioned as “biomass in - products out” via a sequence of

mechanical, thermochemical, and biological processes (Takkellapati et al., 2018)

(Figure 1A) over a range of feed stocks and products. Setting aside grain/sugar feed

stocks, lignocellulosic inputs dominate this landscape, often limited to one or a few closely

related materials. Residual carbon represents an untapped resource for additional products

or carbon sequestration. Proposed dedicated bio-refineries include starch (Koutinas et al.,

2007; Laufer, 2019; Parchami et al., 2021; Marzo-Gago et al., 2022; He et al., 2023),

sugarcane (Pereira et al., 2021; Valladares-Diestra et al., 2021; Deeba et al., 2022; Fernando
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Herrera Adarme et al., 2022), or wheat straw to ethanol (Kaparaju

et al., 2009), lignocellulosics to BDO (Huang et al., 2013; Li et al.,

2014; Forte et al., 2016; Hazeena et al., 2020; Rehman et al., 2021),

waste gases to ethanol (Arslan et al., 2019; De Tissera et al., 2019;

Liu et al., 2022; Tharak and Mohan, 2022), trees to paper pulp

(Huang et al., 2010; Hundt et al., 2014; Gottumukkala et al., 2016),

wet waste to biogas and fertilizer (Bhaskar et al., 2016; Dahiya et al.,

2018; Ge et al., 2018; Desmond-Le Quemener et al., 2019), biomass

to hydrocarbon fuels (Davis et al., 2020; Klein et al., 2021), and

biomass to biochar, bio-oil, or syngas (Wang et al., 2013; Sarkar

et al., 2015; Yuan and Macquarrie, 2015; Hong et al., 2017; De

Bhowmick et al., 2019a; De Tissera et al., 2019; Sun et al., 2020).

“Niche” platforms have been proposed for specific feed stocks,

conversion processes, and products. Usmani et al. published a

review of lignocellulosic bio-refineries in 2021 (Usmani et al.,

2021)and the IEA published a limited bio-refinery status in 2022,

not including the US or Canada among others (Annevelink et al.,

2022), which included “extended” pulp/paper, anaerobic digestion,

or sugar/starch-based bio-refineries and only nine convert

lignocellulosics to ethanol, most with mixed product streams.

Feed-stocks for the remaining are variable and include wood

processing waste, wet wastes, pulp and paper waste, used/primary

vegetable oils/animal fats, textile waste, seed/starch based, grasses/

ag crops/residues, and MSW/other wastes. Table 1 is a compilation

of selected lignocellulose/waste-based bio-refineries compiled from
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several websites (Ethanol biorefinery locations; Biorefineries in

Europe; Global biorefinery status report 2022; Facilities).

Lignocellulosic bio-refineries transforming the energy

landscape through renewable fuels has had numerous social,

political, and technical obstacles. Food vs. fuel, land-use, and

carbon emissions have been used as arguments against biomass

conversion. And while lack of incentives and credits are implied,

failure points are mainly technical, i.e. conversion of recalcitrant

plant polysaccharides to sugars (Yogalakshmi et al., 2023). Lignin is

a problem as is crystalline cellulose and the heterogeneity of

hemicelluloses, requiring complex processing and expensive

enzymes. Dozens of pretreatments have been tested and generally

failed, many due to focusing too tightly on a single product and

devaluing the remainder (Yogalakshmi et al., 2023). Fibrous or

woody structure requires energy to overcome and collection and

transport impose additional costs and supply issues (Saini et al.,

2020). Feedstock complexity leads to process design, construction,

and operational complexity, other points of failure (Saini et al.,

2020). A few examples speak to the primary causes. Dirty feed

stocks wreaked havoc at Beta-Renewables and Poet’s Project Liberty

had feed stock feeding and pretreatment issues. KiOR failed to scale

their facility correctly and low production could not maintain

operational capacity while the ADM/Metabolix bioplastic venture

failed due to uncertainties in design, production, and market

adoption (Saini et al., 2020). Complexity failed INEOS’ Indian
A

B

FIGURE 1

(A) Typical bio-refinery process scheme where limited feed stocks are transformed by a linear process into limited bio-products. (B) Expanded bio-
refinery concept using multiple conversion processes to transform a range of feed stocks into an array of bio-products and sequestering
untransformed carbon. RNG, Renewable Natural Gas; SAF, Sustainable Aviation Fuel.
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TABLE 1 Snapshot of global lignocellulose/waste-based bio-refineries operating at the time of this article’s development.

Name Country Feedstock Output

OCEANIA

Mackay Renewable Biocommodities Pilot
Plant

Australia lignocellulosics Bioethanol

Ethtec, Hunter Pilot Biorefinery Australia Lignocellulosic material (sugar cane bagasse, crop stubbles and forest
material)

Ethanol and xylitol

Northern Oil Advanced Biofuels Australia Sugar cane bagasse and prickly acacia. In the future: sawmill waste,
tyres, plastics, food waste, biosolids

Biofuels (bio-crude)

EUROPE

AustroCel Biorefinery - Austria Cellulose waste Bioethanol

AGRANA Biorefinery Austria Wheat, maize Bioethanol, animal feed, CO2

Lignovations - TU Wien Austria Woody residual biomass Colloidal lignin particles

AustroCel Biorefinery Austria Cellulose waste Bioethanol

Cellulonix Kajaani Finland forest residues Bioethanol

Futurol France Multifeedstock Ethanol, chemicals

Brensbach/Biowert Germany Grass and Silage Energy, material and chemical
products

UPM Leuna Germany Wood material and chemical products

Cellulac Ltd Ireland Lignocellulosic lactic acid ethyl acetate.

Cellulac Ltd. Commercial Ireland Lignocellulosic materials High enantiopurity lactic acid
and ethyl acetate.

Biochemtex-Crescentino Italy Lignocellulosic biomass Bioethanol

Versalis Biorefinery Italy Hardwood, ag residues Bioethanol, Lignin

Zambezi process Netherlands Wood (Non-food biomass) Chemicals: high-purity glucose
and lignin

BioMCN Netherlands municipal waste Biomethanol

Neste Biorefinery Netherlands Waste residues Fuels and chemicals

ChemCell Ethanol Norway sulfite spent liquor ethanol

Clariant Romania Romania agricultural residues ethanol

Domsjö Fabriker Sweden Forestry raw material Cellulose, lignin, bioethanol and
Biogas

Södra Mönsterås Liquid Forest™ Sweden Wood chip Biomethanol

SCA Obbola–Umeå Sweden Black liquor liquid biofuels and chemicals

Novamont-Terni, Sweden Local agricultural crops. Bio-lubricant and bioplastics

Biochemtex-Crescentino Sweden Lignocellulosic biomass Bioethanol

SOUTH AMERICA

GranBio Brazil Cellulosic Bagasse/straw Bioethanol

Raizen Energia Brazil Cellulosic Bagasse/straw Bioethanol

NORTH AMERICA

Tembec Chemical Group Canada spent sulphite liquor feedstock Bioethanol

Iogen Corporation Canada lignocellulosics Bioethanol

Parallel Products US (CA) Waste Sugars/Alcohol Bioethanol

Pelican Acquisition LLC US (CA) Corn/Sorghum/Cellulosic Biomass Bioethanol

(Continued)
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River facility with blame being put on wet wood, hydrogen cyanide

production, and a range of equipment and power failures.

(Investigation: INEOS failed despite $129 million in taxpayer

subsidies) Basically, lab-based processes and TEA/LCA models

failed at demonstration or commercial scale.

Dedicated bio-refineries based on localized feed stocks and

targeted bio-products and continued advancement of all

biological aspects of conversion are essential. However, a new

paradigm valorizing carbon capture, mitigation, management, and

sequestration is emerging; flexible bio-refineries using expanded

feed stocks, cascading conversion technologies, and a portfolio of

bio-products and sequestered carbon (Figure 1B). Carbon

management as income provides flexibility in processing,

obviating the constraint for high specific yields as subsequent

processes can take partially converted residuals into a new
Frontiers in Industrial Microbiology 04
production stream. Branching and cascading processes can trade

decreased yield for increased throughput, lower capital and

operating costs, and feed stock and product flexibility to fit local

or changing markets while increasing overall carbon conversion

yield through the inclusion of carbon sequestration.

A broader range of feed stocks and wider product portfolio,

requires synergy and co-development in numerous areas and

disciplines to optimize the overall system. This will include

biology and biochemistry, chemical and mechanical engineering,

thermochemical processing, chemical catalysis, techno-economic

and life cycle analyses, and even other renewable energy sources to

supply low-carbon power and electrons. A “true” bio-refinery will

operate much like a petro- refinery; where feed stock is converted

into an array of bio-products using multiple technologies optimized

holistically. This concept has had limited effort to date, primarily
TABLE 1 Continued

Name Country Feedstock Output

AVAPCO US (GA) Multiple lignocellulosics Bioethanol, sugars, nanocellulose

Quad County Corn Processors US (IA) Corn/Cellulosic Biomass Bioethanol

POET Biorefining - Shell Rock LLC US (IA) Corn/Cellulosic Biomass Bioethanol

POET Biorefining - Iowa Falls LLC US (IA) Corn/Cellulosic Biomass Bioethanol

NewEnergyBlue LLC US (IA) Cellulosic Biomass Bioethanol

Louis Dreyfus Grand Junction LLC US (IA) Corn/Cellulosic Biomass Bioethanol

PureField Ingredients LLC US (KS) Corn/Sorghum/Cellulosic Biomass Bioethanol

ELEMENT LLC US (KS) Corn/Sorghum/Cellulosic Biomass Bioethanol

Parallel Products US (KY) Waste Sugars/Alcohol Bioethanol

Red River BioRefinery LLC US (ND) Waste Sugars/Starch Bioethanol

VERBIO North America Corp. US (NV) Corn/Cellulosic Biomass Bioethanol

Dynamic Recycling LLC US (TN) Waste Sugars/Alcohol Bioethanol

Ace Ethanol LLC US (WI) Corn/Cellulosic Biomass Bioethanol

ASIA

COFCO Zhaodong Co. COFCO Demo China Lignocellulosic Bioethanol

Beijing Shougang LanzaTech New Energy
Technology Co., Ltd

China waste gasses ethanol

Longlive Bio-technology Co. Ltd. China Lignocellulosic Bioethanol

Shandong Zesheng Biotech Co. China Lignocellulosic Bioethanol

Jilin Fuel Alcohol China Lignocellulosic Bioethanol

Anhui BBCA Biochemical China Corn Stover Bioethanol

Henan Tianguan Group Henan 2 China Lignocellulosic Bioethanol

DINS Sakai Co.,Ltd. Japan Construction waste Bioethanol

PraJ industries India Cellulosic Bagasse/straw Bioethanol

Indian Oil RD 2G cellulosic India Cellulosic Bagasse/straw Bioethanol

Indian Glycol & DBT-ICT Mumbai India Cellulosic Bagasse/straw Bioethanol

Assam Bio Refinery (ABRPL) India Cellulosic Bagasse/straw Bioethanol

Indian Oil Corporation 3G plant India waste gasses ethanol
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exploration of gaseous feed stocks and the use of algae to capture

CO2 and serve as a feed stock or production system (Subhadra and

Grinson, 2011; Morais et al., 2015; Butti and Mohan, 2017; Kassim

and Meng, 2017; Wiesberg et al., 2017; De Bhowmick et al., 2019b;

North, 2019; Yadav et al., 2019; Banerjee et al., 2021), however

various social and political pressures to valorize carbon

management and sequestration will undoubtedly lead to higher

interest in more extensive carbon utilization.

While BioEnergy with Carbon Capture and Sequestration

(BECCS) is still uncertain (Jones and Albanito, 2020),

technologies such as pyrolysis to form biochar waste carbon to

concrete, plastics, and other durable materials (Arehart et al., 2021)

could be a simpler option for carbon management (Lefebvre et al.,

2020; Papageorgiou et al., 2021). The global bioeconomy is poised to

emerge and impact planetary carbon reduction, but needed

underlying science and engineering is just being developed.
Artificial intelligence and
machine learning

This new holistic approach can be further enhanced with the

use of advanced machine learning techniques and artificial

intelligence developed in the past decade allowing the exploration

of data sets from the benchtop scale to the bio-refinery scale and

pushing the boundary for real-time predictive systems that are

tailored for both microbes and feed stocks (Oruganti et al., 2023).

These data driven approaches have proven to be a powerful tool in

assisting design and understanding of biological production of fuels

and chemicals. Already studied for optimizing algae growth as a

feed stock (Oruganti et al., 2023), this approach can improve yield,

product purity, analytics, and guide genetic engineering strategies

(Yang et al., 2023) and enzyme engineering (Foroozandeh Shahraki

et al., 2021). Reducing severity, time, Capex, and Opex and

providing flexible product portfolios driven by prevailing markets

are potential areas limited by the current model emphasizing high

yields of limited products.
Feed-stocks

Starch, sugars, and lignocellulosics

Microbiology has been used for centuries to produce bio-

products and biochemicals from various biomass feed stocks

(Buchholz and Collins, 2013). Most well-known is alcoholic

fermentation by yeast, whether for beverage or fuel. Additional

yeasts and bacterial systems are being developed and production of

industrial chemicals such organic acids are heavily based in fungal

fermentation of sugars (Grewal and Kalra, 1995; Francisco et al.,

2020; Xue et al., 2021; Shikina et al., 2022; Upton et al., 2022; Chib

et al., 2023).

The U. S. Department of Energy focuses on lignocellulosic

biomass crops such as hybrid poplar, switchgrass, miscanthus,
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and other grasses and fast-growing hardwoods (Feedstock

technologies). Other lignocellulosics include agricultural residues

such as corn stover, sugarcane bagasse, and wheat, oat, and rice

straws, forestry thinnings, and wood processing residues. Proposed

feed stocks include everything from municipal solid wastes and

gases to algae. Any lignocellulosic biomass can be converted given

the right process and market conditions and the myriad of proposed

process technologies in “dedicated” bio-refineries are usually linear

and focused on optimizing yield of one or a few products from a

limited feed stock input.
Wet wastes and plastics

Food waste, manures, municipal solid waste, and sewage offer

wide opportunities for conversion processes and products. As

landfills increasingly reject organic wastes, alternative disposal

routes are needed. Bio-refining is being proposed for many

industrial food waste streams (Kumar et al., 2022) while sewage

bio-solids are limited in traditional land-application for disposal

(Collivignarelli et al., 2020). Expansion of municipal wastewater

systems is often limited by urban sprawl so faster, more efficient

options are needed (Jing et al., 2021). Manure is often concentrated

by localized high volume ranching, farming, and processing

operations. Some of these materials are used to generate biogas by

anaerobic digestion, often in co-digestion with other ag residues,

however residual digestate contains a large fraction of the original

carbon and disposal is still problematic (Chiumenti et al., 2018).

Thermochemical treatment and land filling are the primary

means of plastic disposal, however biological deconstruction for

renewable plastic generation or other bio-products are being

investigated (Bertocchini and Arias, 2023; Malik et al., 2023).

Recycling and up-cycling plastics to biodegradable plastics bio-

products are two approaches that can help restore the damage

caused by this polymer (Kochanska et al., 2022; Morici et al., 2022).

Plastics can serve as an excellent source of carbon for microbes,

provided the bonds are hydrolysable. While microorganisms

metabolize many natural recalcitrant compounds, they have not

evolved to breaking down these recently developed man-made

materials (Kim et al., 2022; Lim and Thian, 2022; Mat Yasin

et al., 2022; Crystal Thew et al., 2023; Thew et al., 2023).

The grand challenge associated with biological conversion of

plastics is multidimensional. Bio-catalysts that crack tough

chemical bonds in plastics are limited. Enzyme engineering needs

to be applied to develop enzymes for individual plastic types. Bio-

conversion research on plastics has primarily focused on PET

metabolism and research on other plastics is quite rudimentary.

Metagenomic approaches to identify novel organisms and enzymes

with plastic degrading properties must be explored to determine

naturally evolving bio-catalysts from plastic enriched microbiomes,

such as the landfills and oceans. Furthermore, integrated microbial

and chemical approaches to deconstruct and valorize plastic carbon

to bio-products will be critical to a circular bioeconomy.
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Algae

Micro- and macro-algae present a massive biological resource

for sequestering carbon and have long been proposed as bio-

refinery feed stocks and catalysts. Algae take up CO2 directly and

often have very high productivity rates. Algae’s ability to use HCO3
-

directly enables 5-7-fold higher CO2 absorption than wood (Jang et

al., 2012) and biomass productivities nearly 4-fold higher than

sugarcane (Adams et al., 2008). They can be grown without land or

freshwater and do not compete for food production resources. In

2019, over 35 million tons of algae was harvested worldwide, with

~97% by aquaculture. Over 99.8% was macroalgae and 0.16%

microalgae (Cai et al., 2021).

Microalgae are used to capture CO2 and waste nutrients for

production of bio-products and feed stock biomass. They have high

neutral lipid concentrations (up to 70%), driving interest for

biodiesel and biofuel production (Chisti, 2007; Sajjadi et al.,

2018). Microalgae accumulate other storage compounds such as

starch, which can serve for fermentative conversion to biofuels. The

flexibility of growing microalgae in open ponds and enclosed

photobioreactors under photoautotrophic, heterotrophic, or

mixotrophic conditions make them an attractive system for

bioproduct applications, though photobioreactors are generally

considered too expensive and small scale for production of

commodities such as biofuels.

Macroalgae (seaweeds) are starting to be recognized for

applications such as waste-water treatments and natural fertilizer

applications (Farghali et al., 2023). Their high carbohydrate content

(over 60%), in comparison to less than 20% in microalgae (Jung et al.,

2013; Jambo et al., 2016) and general lack of lignin and crystalline

cellulose point towards easier biological conversion than

lignocellulose, however harvest is a challenge. Their unusual

polysaccharide chemistry and sometimes high protein content offer

both challenges and opportunities. Alginates, carrageenan, fucoidan

and laminarin found in the cell walls of macroalgae are recognized for

their biological protective activities in humans, highlighting their

pharmacological importance (Praveen et al., 2019). They serve as

hydrocolloids or functional ingredients in the food industry.

Pigments in the form of carotenoids and chlorophyll can serve as

replacement for synthetic colors in the food industry (Biris-Dorhoi

et al., 2020). The macroalgae industry can impact direct CO2 removal

efficiency by sequestering carbon in the form of biochar or via a bio-

refinery approach (Farghali et al., 2023).

Most of the genetic engineering efforts have focused on

microalgae, macroalgae are only starting to get some attention

(Charrier et al., 2015; Cao et al., 2022). Significant efforts are

underway to engineer microalgae for biofuel production, despite

considerable scientific challenges resulting in several unsuccessful

commercialization attempts. Nevertheless, the field of microalgal

research has come a long way towards realizing the potential of

these photosynthetic organisms. Genetic engineering in macroalgae

is just developing, leaving a lot of scope to be explored. While

microalgae must be engineered to improve robustness and

productivity, large scale cultivation of macroalgae supported by

genetic engineering efforts must be achieved for biofuel and specific

bioproduct-based applications.
Frontiers in Industrial Microbiology 06
Cyanobacteria have properties similar to micro- and macro-

algae and show promise as an environmentally friendly feed stock

for production of fuels and plastics alternatives (Farrokh et al., 2019;

Afreen et al., 2021). They are known to produce pigments applicable

in the food and cosmetics industries, while also serving as food

supplement themselves (Zahra et al., 2020). Interesting bioactivities

of their metabolites have also been reported, suggesting clinical

importance. With smaller genome sizes, challenges associated with

improving productivity and product diversity for industrial scale

deployment can be addressed effectively using synthetic biology

approaches in comparison to the more-cumbersome higher algae.
CO2 and other gases

Bio-generated CO2 from fermentation and CH4/CO2 from

anaerobic digestion represent point-source concentrated feed

stocks for carbon capture, cycling, and utilization. Bio-conversion

routes can generate renewable natural gas and methanol as well as

ethanol which can be further upgraded to jet fuel and other

products. Microbial engineering to enhance this capture and

conversion is only now beginning. Syngas is already used as a

feed stock for biorefining with several pilot and demonstration

plants currently operating (Dahmen et al., 2019; De Bhowmick

et al., 2019b; De Tissera et al., 2019; Yadav et al., 2019). LanzaTech

uses flue gas bioconversion for ethanol and other bio-products and

subsequent upgrading to jet fuel using the LanzaJet process.

Bio-driven GHG mitigation is likely the only viable global-scale

option in the near-term and bio-refineries are primed to

contributed. Biology has been capturing CO2 since the beginning

of life at a planetary scale, the energy is sunlight, and biomass

represents high-density carbon. The key will be balancing

economical bio-products and sequestering the low-value carbon.

In contrast, Direct Air Capture using adsorbants, desorption, and

underground sequestration is too energy intensive. According to the

International Energy Agency, DAC CO2 requires between 6.5 and

10 GJ/t CO2 or 1.8 to 2.7 MWh per ton (Budinis). In simple terms,

sequestering 1 GT of CO2 using DAC would require between 1800

and 2700 TWh, roughly half of the total U.S. output in 2021 of

~4000 TWh. The largest operating DAC facility, Climeworks

ORCA plant in Iceland, sequesters 4000 MT/year, necessitating

250,000 similar plants to capture 1 GT CO2/year.
Bio-catalysts

Biocatalysis forms the core of any circular bioeconomy, bio-

refinery, or industrial biotechnology process. Biology’s ability to

rapidly catalyze biochemical reactions sequentially at low

temperature and high specificity forms the basis of industrial

biotechnology. Classical bio-catalysts such as microbes and

enzymes have been used for centuries. More recently,

immobilized cells and cell-free systems have gained attention as

means to accomplish certain biochemical pathways without

“wasting” carbon and energy maintaining viable cells. Regardless
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of form, bio-catalysts are fundamental to industrial production of

biofuels, biochemicals, and bio-products.
Microbes

Bacteria, yeast, fungi, and other whole cell bio-catalysts dominate

industrial microbiology in biofuel and biochemical production.

Examples include fungal production of organic acids and lipids

(Grewal and Kalra, 1995; Carvalho et al., 2019; Chib et al., 2023),

alcohols and lipids in yeast (Olson et al., 2004; Hull et al., 2014; Cai

et al., 2016a; Pendon et al., 2021), alcohols and biochemicals in

bacteria (Cai et al., 2016b), lipids and carotenoids in microalgae

(Lopes da Silva et al., 2019; Monte et al., 2020; Papachristou et al.,

2021; Oh et al., 2022), and a myriad of other bio-products from a

range of microbes. Advances in molecular biology have enabled rapid

and targeted metabolic engineering for increased product rate and

titer, biofunneling to increase yields, expanded substrate utilization,

redox balancing, and other cellular redesigns. Cutting edge

technologies such as high through-put sequencing and targeted

genome modification tools have opened a Pandora’s box of

opportunities in microbial metabolic engineering. The dawn of the

-omics age has extended these opportunities even further as

metabolomics, proteomics, fluxomics, genomics, transcriptomics,

lipidomics, and glycomics continue to increase our understanding

of cellular metabolism and pathways. Metagenomics, epigenomics,

microbiomics, and secretomics have led us to the edge of engineering

and directing microbial consortia in specific and targeted manner.

These data-intensive techniques are tailor-made for big data

applications of artificial intelligence and machine learning and as

this interface of biology and data science continues to expand, we

expect leaps forward in our understanding and manipulation of these

cellular processes.
Enzymes

Enzymatic bioconversion of lignocellulosic biomass in the past 40

+ years has evolved from relatively simple models of fungal cellulases

such as Cel7A from Trichoderma reesei (Taylor et al., 2018), to a

broader and more comprehensive understating of mesoscale

deconstruction mechanisms employed by multifunctional bacterial

enzymes such as CelA from Caldicellulosiruptor bescii (Brunecky

et al., 2017), synthetic multifunctional cellulases (Brunecky et al.,

2020), and megaDalton sized cellulosomal complexes utilized by CBP

organisms like Clostridium thermocellum (Hirano et al., 2016).

Moreover, the critical debranching roles of accessory enzymes

acting on xylan and other hemicelluloses (Moon et al., 2011; Barr

et al., 2012; Pryor et al., 2012; Lagaert et al., 2014; Cao et al., 2015;

Goncalves et al., 2015; Hu et al., 2015; Laothanachareon et al., 2015;

Sun et al., 2015; Yang et al., 2018; Ogunyewo et al., 2021) and the

discovery of Lytic Polysaccharide Mono-Oxygenase enzymes have

also been critical in the development of modern commercial cellulases

(Agger et al., 2014; Muller et al., 2015; Bernardi et al., 2020; Cheng

et al., 2020; Calderaro et al., 2021).

Two primary challenges will be understanding deconstruction

of lignocellulosic materials by novel enzymes and enzyme classes
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and leveraging that understanding to develop advanced commercial

enzymes. Future enzyme cocktails will apply these deconstruction

strategies to minimally pretreated lignocellulosic feed stocks in a

cost-effective manner. Facile, robust, and low-cost production of

enzymes must be developed significantly beyond the current state of

the art to be applicable at global commodity scale.

Cell-free systems

Bio-based fuels and chemicals rely on living microbial cells,

presenting challenges in engineering and optimizing metabolic

pathways for these compounds. Mass transfer and pathway

optimization are constrained by cell membranes and intracellular

processes (Lu, 2017; Wilding et al., 2018) and much of the carbon

ends up in cell biomass, reducing overall carbon efficiency. A high

carbon efficiency bioeconomy could benefit from a move toward

highly efficient cell-free synthetic biology (Sheldon and Woodley,

2018; Wilding et al., 2018). Cell-free synthetic biology is an

emerging interdisciplinary approach utilizing enzymes and

cofactor components that are engineered and optimized without

the use of living cells, allowing direct control of transcription,

translation, and metabolism in an open environment (Lu, 2017).

The primary advantages of cell free enzyme systems are facile

manipulation of substrate ratios, and careful adjustment of high

energy flux ratios that are either difficult or impossible to control in

microbial systems. Enzyme activity and temperature optima are

tuned through careful enzyme selection. In contrast, living systems

issues include metabolite competition, generation of side products,

suboptimal enzyme ratios, and variable temperature optima for the

cell (Bergquist et al., 2020) and devotes significant energy and effort

in keeping itself alive and reproducing. Unfortunately, key

problems for cell free systems remain, largely related to robust

and facile protein expression, where post translational

modifications are key. Recycling energy carriers such as NADH/

NADPH or ATP is also an problem, however there are some

approaches using whole cell lysates or redox balancing reactions

(Ullah et al., 2016). Examples of possible reactions are too many to

list, but two common substrates, glucose and glycerol can be utilized

to produce a variety of products (Bergquist et al., 2020).
Discussion

We are on the cusp of a carbon-management-based global

bioeconomy driven by reducing GHG levels, decarbonizing a

wide range of industries, and equilibrating bioenergy and bio-

products opportunities across geographical, cultural, economic,

and social barriers. The bio-refinery will play a central role in this

new paradigm and will function from niche to regional commodity

scale. Feed-stocks and products will be extremely narrow or

exceedingly broad based on local opportunities and the science

and engineering needed will vary accordingly. The social, political,

and economic factors will likely stay in flux for years, however the

underlying need to solve global carbon levels will only continue to

increase. Bio-based technologies offer the best and possibly only

opportunity to achieve this planetary effort at scale and in the
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shortest time, but developing the myriad technologies needed to

implement the solution will require constant and ongoing

dissemination of results, collaborations across disciplines, and

rigorous peer review to advance the bio-refinery to a meaningful

level to solve rising carbon levels worldwide.
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