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Introduction: This study addresses the joint scheduling optimization of
continuous berths and quay cranes by proposing a time-variant quay crane
allocation method.

Methods: A coordinated optimization model is constructed that considers the
temporal dimension of quay crane scheduling and equipment collision factors to
reduce overall port operational costs. A hybrid intelligent algorithm integrating
Q-learning is innovatively designed, using a genetic algorithm as the main
framework while embedding a quay crane allocation module and dynamically
selecting genetic operators through Q-learning to achieve adaptive optimization
of the evolutionary mechanism.

Results: The module with Q-learning optimization is compared to the module
without Q-learning optimization, demonstrating that the Q-learning module can
accelerate the convergence of the algorithm and has a better ability to find the
optimal solution in large-scale cases, proving the effectiveness of the module.

Discussion: The results show that the proposed algorithm and CPLEX perform
similarly in small-scale cases, while the solution speed and capability are better
than the genetic algorithm in large-scale problems and superior to the CPLEX
algorithm with time constraints in some cases, proving the effectiveness and
superiority of the proposed algorithm.
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1 Introduction

Maritime transportation accounts for 90% of global trade (Liang et al., 2011). As the key
link between maritime trade and other modes of transportation, the operational efficiency
of ports directly affects the speed and cost of trade flows (Liu, 2020). Berths and quay cranes
are the main factors in port operation and management that enhance the core
competitiveness of container ports.

In planning berthing schedules, terminal managers must solve the problem of allocating
berths and quay cranes. The berth allocation problem (BAP) assigns ships to specific areas
along the terminal, aiming to minimize both total service time and waiting time. This is
essential for reducing vessel turnaround and increasing terminal throughput. After berths
are allocated, the quay crane allocation problem (QCAP) follows, determining the number
of quay cranes assigned to each ship, their location, and their working time. The goal of
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QCAP is to minimize the time needed to unload and load containers
while considering crane operational limits.

In the actual operation process, the berth problem and the quay
crane allocation problem have a high correlation (Zheng et al.,
2020). On the one hand, the berth problem determines the berthing
position and berthing time of a ship, which directly affect the
number of quay cranes allocated and the working time of quay
cranes. On the other hand, the departure time of the ship depends on
the number of allocated quay cranes and the working efficiency (Lu
et al., 2011). Therefore, the simultaneous planning of berth
allocation and quay crane allocation can improve the operational
efficiency of the terminal and the utilization rate of berths. The quay
crane allocation problem can be categorized into the static quay
crane allocation problem and the time-variant quay crane allocation
problem by distinguishing whether the quay cranes are moving
during the unloading and loading process of the ship (Ng and Mak,
2006). Static quay crane assignment means that the quay cranes
assigned to the same ship start working at the same time, and even if
the quay cranes complete their tasks in advance, they must wait for
the other quay cranes to complete their work before they can be
released together. Time-variant quay crane assignment means that a
quay crane can be moved to service another ship before the
designated ship completes all unloading and loading tasks.
Compared with the static allocation problem, the time-variant
allocation can better utilize the resources of the quay crane and
improve the utilization rate of the terminal resources.

This study addresses the joint problem of berth allocation and
time-variant quay crane allocation, aiming to minimize total port
costs, which include vessel costs, crane movement costs, and service
costs. Traditional metaheuristic algorithms often struggle with slow
convergence and poor optimization, as they fail to adapt solution
generation based on the current state. To resolve this, a Q-learning-
based genetic algorithm is proposed. Q-learning is used to evaluate
the current population state and guide the generation of new
solutions, improving optimization performance. Specifically, a
global search algorithm is proposed to solve the time-variant
quay crane allocation problem by considering both quay crane
allocation and berth allocation to improve the utilization of port
resources. We store the quay crane allocation as a code in the
chromosome, which is taken into consideration at the berth stage,
and use the genetic algorithm to perform a global search and the
quay crane allocation algorithm to perform the quay crane
allocation. In order to improve the search ability of the
algorithm, the Q-learning algorithm is introduced to select the
appropriate genetic operation from ten genetic operators
according to the current state of the population, and the
feedback obtained from the execution results is passed into the
Q-learning algorithm as a reward to train it and improve the search
ability of the solution. It effectively overcomes the problem of high
randomness and the tendency to fall into local optimization that
plagues traditional genetic algorithms. The scheme in this article can
achieve high utilization of berth and quay crane resources and also
provide strong technical support for port operation optimization.

The remainder of this article is organized as follows. Section 2 is
the literature review. Section 3 provides a detailed description of the
research problem and model. Section 4 presents the algorithms used
in this article. Section 5 discusses the experimental results. Section 6
offers conclusions and future directions.

2 Literature review

In this section, we summarize the current state of research on the
joint allocation of berths and quay cranes and the methods for
their solution.

Park and Kim (2003) first proposed the problem of joint
allocation of berths and quay cranes. They constructed an integer
programming model and proposed a two-stage approach to solve
the problem: the first stage determines the berth location, berthing
time, and the number of required quay cranes for a ship; the second
stage assigns specific quay cranes to the ship to provide services.
Meisel and Bierwirth (2009) discussed the problem of continuous
berthing and quay crane allocation. Based on this, they discussed the
problem of reduced efficiency of individual quay cranes due to
mutual influence on each other during the joint operation of
multiple quay cranes. They used a mixed integer linear
programming (MILP) method and two metaheuristic algorithms
for the solution. The above scholars consider the berth problem and
the quay crane allocation problem in two steps; that is, only the
number of quay cranes required by the ship is decided when the
berth is allocated, and the allocation of specific quay cranes is
considered after the ship enters the berth. Türkoğulları et al.
(2014) considered the quay cranes along with the berth
allocation, and the quay crane resources were considered during
the berth planning. They developed a cutting plane algorithm to
solve the problem and achieved a joint berth and quay crane
allocation by iteratively solving the berth allocation and quay
crane assignment (number) problems (BACAP) with additional
constraints added. Correcher et al. (2019) built on this
foundation by proposing a new quay crane allocation model and
solving the problem using a branch-and-bound approach. Most
current studies focus on the static quay crane allocation problem,
and there are few studies on the time-variant quay crane allocation
problem. Chang et al. (2010) proposed a rolling time-domain
strategy considering the working time of variable quay cranes
and constructed a feasible solution heuristic algorithm and a
parallel genetic algorithm to solve the time-variant quay crane
allocation problem. Krimi et al. (2020) proposed a mathematical
model for continuous berth and time-variant quay crane allocation
considering realistic constraints. They evaluated the feasibility of the
model using CPLEX. However, considering the issue of solution
efficiency, they designed heuristics for a general variable
neighborhood search to address the problem. The results indicate
that the designed algorithm meets the need for providing high-
quality solutions in a short period of time. Malekahmadi et al. (2020)
applied a particle swarm algorithm to solve the time-variant quay
crane allocation problem by considering tidal factors for
comparison.

Most scholars currently use metaheuristic algorithms to solve
the problem of joint allocation of berths and quay cranes. For the
static quay crane allocation problem, Ji et al. (2022) solved the static
joint berth and quay crane allocation problem by means of a rolling
horizon program and the ALNS algorithm embedded in a time-
variant consideration of unplanned vessel entries. Correcher and
Alvarez-Valdes (2017) proposed a metaheuristic approach to solve
the static BACASP problem by means of a biased stochastic key
genetic algorithm with simulated features and multiple local
search processes.
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There are two main solution methods for the time-variant quay
crane allocation problem in existing studies: 1) Calling the mixed
integer programming (MIP) model for rolling solution within a
certain time window. 2) A step-by-step solution using the MIP
method to solve the problem within the time window. For example,
Agra and Oliveira (2018) proposed an integer linear programming
model and a rolling time window solution method for the time-
variant quay cranes and berth joint scheduling problem, which is
solved by using the MIP model within the time window. Karam and
Eltawil (2016) decomposed the time-variant quay crane allocation
problem into the berth allocation problem and the quay crane
allocation problem, which are solved separately and integrated
through the ship’s demand for the number of quay cranes in a
feedback loop. Thanos et al. (2021) divided the time-variant quay
crane solution into three steps: first, determining the berthing
position of the ship, then arranging the quay cranes within the
range to serve the ship according to the berthing position of the ship,
and finally deciding the time interval that the quay cranes
serve the ship.

Through the above, it is not difficult to observe that there is no
suitable joint allocation method to solve the global search solution in
existing research. Instead, a step-by-step solution is used to address
the problem, that is, determining the location of the quay cranes and
then determining which quay cranes will provide the service.

3 Problem description and modeling

3.1 Problem description and assumption

Before a ship berths at the destination port, it needs to report the
ship type, expected arrival time, amount of cargo to be loaded and

unloaded, and expected departure time. Based on this information,
the port assigns berths and quay cranes to ships tominimize the total
port cost. The berth-quay crane allocation process can be mapped to
a two-dimensional space-time diagram. As shown in Figure 1, the
time-variant quay crane allocation allows the quay crane to leave to
serve other vessels at any time during the execution of loading and
unloading activities but not to cross other quay cranes while
working. The solid line in the figure indicates a feasible
allocation of quay cranes, and the dashed line indicates an
infeasible allocation of quay cranes. The core of time-variant
quay crane assignment is its flexibility, which allows the quay
cranes to switch service between different vessels while ensuring
safety and efficiency. For example, the No. 1 quay crane can provide
service for the No. 4 vessel when the No. 3 vessel has not yet left the
harbor; the No. 2 quay crane can connect to the unloading and
loading operation of the No. 2 vessel after the completing its tasks at
the No. 5 vessel. Such a time-variant scheduling program enables
more flexible scheduling of quay crane resources and improves the
loading and unloading efficiency of the terminal.

To achieve time-variant scheduling of quay cranes, we must
determine which quay cranes serve each ship in each time period.
We construct an integer programming model with the objective of
minimizing the total cost of ship delay cost, quay crane service cost,
and quay crane movement cost by considering the quay crane
working range and constraints on quay crane crossing. In the
model, we take the ship berthing time, berthing position, and the
serial number of the ship served by each time period of the quay
crane as decision variables. In order to better study this problem, the
following assumptions are made in the next discussion: 1) Ship
berthing is not limited by tide, water depth, mechanical failure, etc.,
2) Ship unloading and loading services are continuous and cannot be
stopped in the middle, and each ship has a range of the number of

FIGURE 1
Illustrative diagram of time-variant quay crane allocation.
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quay cranes that can be allocated; 3) Quay cranes cannot cross each
other; 4) The movement time of the quay cranes is negligible.

3.2 Mathematical formulation

For better understanding, we provide an explanation of the
notation used in the model in Table 1.

We construct an integer programming model with the objective
of minimizing the total ship delay cost, quay crane service costs, and
quay crane movement costs by taking into account the quay crane
working range, constraint limitations of quay crane crossings, and
other elements as follows:

min C � ∑
i∈S

∑
t∈T

ct
service ∑

q∈Q
ztiq + cdelayi ei − di( ) + cmove ∑

t∈T
∑
q∈Q

vtiq⎛⎝ ⎞⎠.

(1)
Equation 1 addresses the objective function, that the total cost of

the port is the lowest, and has three components: the first term is the
cost of the quay cranes service, the length of time the quay cranes
service the ship, and the cost of the quay cranes at different moments
of the service. The second is the cost of the ship’s delays; this item
will only be established if the ship’s departure time is later than the
expected time of departure; otherwise, it will be zero. The third is the
movement cost of the quay cranes, which comes from the personnel
dispatch and resource consumption caused by the stopping and
restarting of the quay cranes and is established when the quay cranes
change the service ship or serve the ship for the first time.

s.t. bi ≥ ai, ∀i ∈ S. (2)

Equation 2 ensures that each ship berths later than its arrival
time, avoiding impractical scheduling arrangements.

ei � bi + fi, ∀i ∈ S. (3)
Equation 3 calculates the departure time of a ship based on the

loading and unloading time of the ship.

pi + li + r≤pj +M · 1 − yij( ), ∀i, j ∈ S, (4)
yij + yji ≤ 1, ∀i, j ∈ S, (5)

ei ≤ bj +M · 1 − xij( ), ∀i, j ∈ S, (6)
xij + xji ≤ 1, ∀i, j ∈ S, (7)

xij + xji + yij + yji ≥ 1, ∀i, j ∈ S. (8)

A series of constraints from Equations 4–8 ensures that only one
vessel can berth at the same location at any given time, avoiding
scheduling conflicts in time or space.

pi + li ≤ L, ∀i ∈ S. (9)

Equation 9 requires that the berthing position of the ship be on
the shoreline of the port and that the feasibility of the berthing
position be ensured.

ei ≤T max, ∀i ∈ S. (10)

Equation 10 requires all ships to leave port during the berth
planning period.

TABLE 1 Sets, parameters, and decision variables of the proposed problem.

Set Connotation

S Set of ships arriving during the planning period.
S � 1, 2...s{ }, indexed by i, j

T Set of planning periods. T � 1, 2...t{ }

Q Set of quay cranes in front of the terminal. Q � 1, 2...q{ }
Parameter Connotation

C Total cost of the berth allocation plan

cservicet Average cost of service per unit of time for each quay
crane

cdelayi
Average cost of compensation per unit of time for ship
delays

cmove The average cost of moving a quay crane

ei Time when ship i finishes unloading and loading cargo

di Expected departure time of ship i

ai Expected arrival time of ship i

fi Time required for ship i to load and unload cargo

li Length of ship i

Tmax End of the planning period

Qmax Total number of quay cranes

qi max Maximum number of quay cranes that can be assigned to
a ship

qi min Minimum number of quay cranes that can be assigned to
a ship

ηit Average handling efficiency of ship i in time period t

wi Amount of cargo to be loaded and unloaded by ship i

qlk Leftmost position that can be served by quay crane k

qrk Rightmost position that can be served by quay crane k

r Safe distance between ships at berth

M Infinite number

L Length of the quay shoreline

Decision
variables

Connotation

ztiq Binary variable that takes the value of 1 if ship i is served
by quay crane q in time slot t and 0 otherwise

vtiq Binary variable that takes the value of 1 if quay crane q
moves to ship i in time period t and 0 otherwise

bi Berthing time of ship i

pi Berthing position of ship i

yij Binary variable that takes the value of 1 if the berthing
position of ship i is to the left of ship j and 0 otherwise

xij Binary variable that takes the value of 1 if the berthing
time of ship i is earlier than that of ship j and 0 otherwise

mit Binary variable that takes the value of 1 if vessel i is
serviced in time period t and 0 otherwise
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∑
i

∑
q

ztiq ≤Q
max,∀i ∈ S,∀t ∈ T. (11)

Equation 11 ensures that the total number of quay cranes serving
ships at any one time is less than the total number owned by
the terminal.

∑
q

ztiq ≥ qi
min,∀i ∈ S,∀t ∈ T,∀q ∈ Q, (12)

∑
q

ztiq ≤ qi
max,∀i ∈ S,∀t ∈ T. (13)

Equations 12, 13 require that the number of quay cranes on
the service ship at each point in time be greater than the
minimum required number of quay cranes and less than the
maximum number of quay cranes that the ship can
accommodate.

∑
t

∑
q

ηitz
t
iq ≥wi,∀i ∈ S,∀t ∈ T. (14)

Equation 14 ensures that the loading and unloading tasks of the
ship can be accomplished.

M ·mit ≥ ∑
q

ztiq,∀i ∈ S,∀t ∈ T, (15)

mit ≤ ∑
q

ztiq,∀i ∈ S,∀t ∈ T. (16)

Equations 15, 16 indicate that if ship i is serviced in time slot t,
then mit takes the value of 1 and otherwise 0.

fi � ∑
t

mit,∀i ∈ S. (17)

Equation 17 calculates the total loading and unloading time for
each ship.

∑tmax−1

t�1
|mi,t −mi,t+1 ≤ 2, ∀| i ∈ N. (18)

Equation 18 ensures that the quay crane is available to serve
the ship for each time period after it berths until the
ship departs.

ztiaq
l
a − ztjbq

l
b + ztia + ztjb − 2( )M≤ 1 − yij( )M,∀i ∈ S,∀j ∈ S,

∀t ∈ T,∀a ∈ Q,∀b ∈ Q. (19)

Equation 19 ensures that the quay cranes do not cross. If ship i is
to the right of ship j and yij is 0, the equation is constant; if ship i is
to the left of ship j, the right-hand side of the equation is 0; and if
both ships require quay crane service at the same time, the quay
crane that serves ship i must be all the way to the left of the quay
crane that serves ship j. The equation also ensures that the quay
crane that serves ship j will not cross.

qlk − pi − li ≤M 1 − ztik( ),∀i ∈ S,∀t ∈ T,∀k ∈ Q, (20)
pi − qrk ≤M 1 − ztik( ),∀i ∈ S,∀t ∈ T,∀k ∈ Q. (21)

Equations 20, 21 provide that a ship can only be serviced within
the working limits of the quay crane.

vtiq ≤ ztiq,∀i ∈ S,∀t ∈ T,∀q ∈ Q, (22)

vtiq ≤ 1 − zt−1iq ,∀i ∈ S,∀t ∈ T,∀q ∈ Q, (23)
vtiq ≥ ztiq − zt−1iq ,∀i ∈ S,∀t ∈ T,∀q ∈ Q. (24)

Equation 22 through Equation 24 ensure that vtiq records the first
time at time t that a quay crane q moves to a ship i to service it.
Equation 22 ensures that the quay crane only moves to a ship if it
must service that ship. Equation 23 states that when the quay crane q
has already serviced ship i at the previous time period t − 1, the move
is not recorded. Equation 24 indicates that when quay crane q did
not serve ship i in the previous time period t − 1, and quay crane q
serves ship i in this time period t, then a movement of the quay crane
is recorded.

pi ≥ 0, bi ≥ 0, ∀i ∈ S, (25)
xij, yij ∈ 0, 1, (26)

mit ∈ 0, 1,∀i ∈ S,∀t ∈ T, (27)
ztiq ∈ 0, 1,∀i ∈ S,∀t ∈ T, ∀q ∈ Q. (28)

Equation 25 defines the non-negativity of berthing position and
berthing time. Equations 26–28 define the 0–1 variables.

4 Solution methodology

Berth-quay crane scheduling is an NP-hard problem, and exact
algorithms are difficult to solve in large-scale arithmetic cases (Lujan
et al., 2021). Compared with traditional heuristic algorithms, genetic
algorithms have higher global search capability (Hanagandi and
Nikolaou, 1998). However, traditional genetic algorithms have a
single genetic operation that easily falls into local optimization. To
balance the diversity of the population and global search ability, we
adopt the Q-learning algorithm to adaptively select the genetic
operator (Wang et al., 2013). In the calculation process, we use
the genetic algorithm to determine the berthing order, berthing
position, and the number of quay cranes required for each time
period. The quay crane allocation algorithm calculates the specific
quay crane allocation scheme for each ship and evaluates the fitness
of the solution. The Q-learning algorithm selects the genetic
operator according to the state of the population in the genetic
algorithm, which advances the iterative process of the genetic
algorithm. The three algorithms continuously interact with each
other and ultimately obtain the optimal solution that meets the
requirements. The algorithm framework is shown in Figure 2.

4.1 Genetic algorithm

4.1.1 Chromosome and population initialization
We encode the solution into a three-layer structure: the first

layer shows the order in which the ships berth, the second layer
indicates the serial number of the first docking cluster pile where the
ship docks, that is, where the ship berths, and the third layer is a
number obtained from the list encoding, which contains the number
of quay cranes needed in each time period after the ship berths. The
structure of the solution is shown in Figure 3, taking Ship 1 as an
example. Ship 1 is the third in the berthing order, the berthing
cluster pile serial number is 44, and the number of quay cranes
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required in the first time period after berthing is 5. The number of
quay cranes required in the second time period is 4, and so on.

The third layer of the decoding consists of an array of an
indeterminate number of quay cranes, which must be decoded to
obtain the number of quay cranes required for each time period of
the vessel after berthing. The logic of decoding is as follows: First, the
encoded data are converted into binary numbers. Then, according to
the number of quay cranes activated in the port, the number of
binary bits corresponding to the number of quay cranes is obtained.

Finally, according to the number of bits, it is decoded into the
required number of quay cranes. Taking the third layer of encoding
of Ship 1 as an example, the encoded number is 345,157, which is
first converted into a binary number for storage. Assuming the port
has eight available quay cranes, we convert the encoded number
345157 into a binary number (1010100010001000100010101).
Reading four bits from back to front, we get 0101, which
converts to the decimal number 5. By similar reasoning, we
obtain the array: 54445, which means that over five time periods,

FIGURE 2
Algorithm framework diagram.

FIGURE 3
Structure of the solution.
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the ship requires 5, 4, 4, 4, and 5 quay cranes, respectively. Then,
using the quay crane allocation algorithm, we allocate the specific
serial numbers of the quay cranes.

4.1.2 Fitness calculation and quay crane
allocation algorithm
4.1.2.1 Fitness calculation

We process individual chromosomes through a set of heuristic
algorithms to compute the various costs of the port and to perform
quay crane allocation. The berthing order of ships is first determined
by the first layer of coding of the chromosome. Then, the second
layer of the chromosome’s coding is read to determine the berthing
position. If the berthing position of the ship does not conflict with
the berthing position of the previous ship, satisfies the safety distance
constraint, and the quay cranes of the port can satisfy the minimum
quay crane requirement of the ship, then the ship enters the port.
Otherwise, the ship needs to wait for the previous ship to leave the
port before entering the port. After the ship enters the port, the quay
crane allocation algorithm is invoked to allocate a specific quay
crane for the ship.When the unloading and loading of the ship’s
cargo is completed, the ship leaves the port, and the delay cost of all
ships, the service cost of the quay cranes, and the movement cost of
the quay cranes are calculated. The steps of the algorithm are
as follows:

Step 1: input a chromosome, let t � 0, read the first layer of the
chromosome to obtain the berthing order of the ships
S(k), let k � 1, set the port state to empty, the quay crane
service state to empty, and the expected number of ships to
be accepted is N.

Step 2: If t> tmax or k>N, and the port state is empty, then jump
to Step 7; otherwise, jump to Step 3.

Step 3: If the arrival time of ship S(k) is greater than t, the
berthing position of ship S(k) is not in conflict with
the berthing position of the ship in the port, and if it
satisfies the safety distance constraint, and if the quay
cranes in the port are able to meet the minimum demand
of the ship, then record the berthing position of ship S(k),
so that k � k + 1.

Step 4: Input the original quay crane service status and the
expected number of quay cranes for ships in port.
Activate the quay crane allocation algorithm to
minimize the changes and update the service status,
considering the working range and continuous
allocation of quay cranes.

Step 5: Calculate the total amount of cargo to be loaded and
unloaded by the ships in port at this moment based on the
updated service status of the quay cranes and the efficiency
of the quay cranes at time t, and update the total amount
of cargo to be loaded and unloaded by the ships in port.
Record the service status of the quay cranes and the
movement of the quay cranes.

Step 6: Determine if any ship’s unloading and tasks are
completed. If so, update the port status, record the
ship’s departure time, and the quay cranes’ service and
movement status during the unloading and loading
processes. Return to Step 2.

Step 7: If k>N, calculate the delay, service, and movement costs
for the quay cranes based on each ship’s departure time,
the quay cranes’ service, and movement situations. If not,
mark the solution as infeasible and set the costs to Inf.

Step 8: Output the delay cost of the ship, the service cost of the
quay cranes, and the movement cost of the quay cranes for
this chromosome.

We set the fitness of the genetic algorithm to depend on the total
cost of the port, and the fitness is defined by Equation 29, where x
represents the individual, Cdelay

x represents the delay cost of the ship,
Cservice
x represents the service cost of the quay crane, and Cmove

x is
denoted as the movement cost of the quay crane.

fitness x( ) � 1000

Cdelay
x + Cservice

x + Cmove
x

. (29)

4.1.2.2 Quay crane allocation algorithm
We design a quay crane allocation algorithm to solve for ship-

specific assigned quay crane numbers. The number of quay cranes
required for each time period after berthing of the ship is recorded in
the chromosome, and the quay crane allocation algorithm turns
these requirements into assigned quay crane numbers. The steps are
as follows:

Step 1: Input the current port status p(t), the last time period port
status p(t − 1), and the last time period quay crane status
Q(t − 1). Judge whether the state of the port in the last
time period p(t − 1) and the state of the port in the
current period are consistent. If they are consistent, it
means that there is no new ship in the port, so proceed to
Step 5; otherwise, go to Step 2.

Step 2: Identify the departing ship, mark the quay cranes that
served it in the last period as unserved in the quay crane
status Q(t − 1), and update the status to
Q(t − 1) ← Q′(t − 1). If there is no departing ship, no
further processing is needed. Judge whether there is a new
ship; if so, go to Step 3; otherwise, go to Step 5.

Step 3: Compare the last time period port state p(t − 1) with the
current port state p(t), find the new ship number k, and
query the set of quay crane numbers that can be invoked at
the berthing location q(k).

Step 4: Retrieve the available quay crane number set q(k) of ship
k. Arrange the quay cranes for ship k without affecting the
quay crane state Q(t − 1) in the previous time period, set
the quay crane state at this time toQ′(t − 1), and make the
state Q(t − 1) ← Q′(t − 1).

Step 5: Review the current port state, noting the expected number
of shore bridges (ntk) and the set of available quay crane
numbers of ships q(k) during the berthing time of the
ships in port. Examine the quay crane stateQ(t − 1) of the
previous time period, marking the quay cranes assigned to
ships as −1 and those unassigned as −2.

Step 6: Select quay cranes from the set of available quay cranes
q(k) for each ship k to fulfill the minimum number of
quay cranes required for each ship. Prioritize the selection
of quay cranes marked with −1 to ensure that their spacing
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aligns with the expected number required. Subsequently,
select quay cranes that offer the largest spacing. Label quay
cranes that have been allocated.

Step 7: Traverse through the ships in the port and prioritize the
allocation of the quay cranes marked with −1 to the ships
so that the change in the quay crane allocation is less than
the previous quay crane state Q(t − 1). Mark the quay
cranes that have been assigned.

Step 8: Analyze the port state, considering the future demand for
quay cranes from ships. Assign quay cranes marked
as −2 to ships, prioritize the ships with smaller changes
in the expected number of quay cranes (ntk, nt+1k , nt+2k ...),
and mark the completed allocation of the quay cranes.

Step 9: Record the quay crane allocation and output the quay
crane status Q(t).

4.1.3 Genetic operations
We use roulette to select the operator and maintain the elite

strategy (Pham et al., 2024). The three-layer encoding approach
involves three distinct crossover and mutation operations. The
crossover operations for the three chromosome layers include
partial matching crossover, single-point crossover, and single-
point crossover applied after decoding. Mutation operations for
the three chromosome layers consist of exchange mutation,
random mutation, and bit-flip mutation. Instead of
simultaneously applying crossover and mutation to all three
chromosome layers, we leverage a pre-trained Q-learning
algorithm to select appropriate genetic operators for one or
more layers. This approach enhances the algorithm’s
convergence speed and optimization capability.

Two types of infeasible solutions can occur when
performing genetic operations. We need to fix the
infeasible solutions.

1) The new individuals may not satisfy the condition where the
ship’s berthing position, combined with its length, exceeds the
total length of the quay shoreline. We employ random
regeneration of berthing positions to ensure the ship’s stern
does not extend beyond the quay shoreline’s total length.

2) The third layer of coding in the new individual may not meet
the requirements for ship loading and unloading. We
randomly add quay cranes to the list after decoding the
third layer until the number and efficiency of quay cranes
meet the ship’s loading and unloading needs.

4.2 Q-learning algorithm

We utilize the Q-learning algorithm to determine the genetic
operators during the population iteration process and set the agent
of the Q-learning as populations. The two-dimensional states and
actions form a three-dimensional Q-table. The agent calculates the
current state of the population and selects the appropriate action
(i.e., genetic operator) to enhance the genetic algorithm’s
convergence and optimization capabilities. The algorithm
framework of the Q-learning part is shown in Figure 4.

We define the state of the environment in which the agent is
located to be determined by the diversity of individuals in the
population and the number of repetitions of the optimal
individual fitness in the population that have not been updated.
The diversity of individuals in the population is defined by the
information entropy (as shown in Equation 30), where xi is the
individual fitness in the population, p(xi) is the probability of
occurrence of the individual fitness, −∑n

i�1P(xi)log2 P(xi) is the
information entropy of the population, which is log2 n when the
population is completely disordered, and H(x) is defined as the
complexity of the population. The number of repetitions without

FIGURE 4
Q-learning algorithm framework.
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updating represents the number of times the current individual
repeats the optimal state keeping.

H X( ) �
−∑n
i�1
P xi( )log2 P xi( )

log2 n
. (30)

We define the state space as in Table 2, where iter is the number
of repeated non-updates, and G is the total number of iterations.

Traditional genetic algorithms often employ a single crossover
and mutation method, which can easily lead to local optima.
Moreover, these operations are applied to the entire
chromosome, making local adjustments challenging for relatively
fit individuals. We implement diverse crossover and mutation
strategies at three coding levels: ship berthing order, ship
berthing position, and the number of quay cranes required for
ships during different time periods. The actions of the Q-learning
algorithm in this study are defined in Table 3.

We set two strategies in selecting the action: the first one is to use
the Q-table for selection, and the other one is to select by greedy
strategy. The greedy value is defined in Equation 31, where εmax is
the hyperparameter represents the maximum greedy rate, f is the
current iteration number, and G is the total iteration number. We
use random selection of actions when random< ε; otherwise, one is

randomly selected in the Q-table from the actions corresponding to
the first three Q-values of the current state.

ε � εmax

1 + e10×
f−0.6×G

G( ). (31)

After performing an action, the agent obtains a reward for that
action, and we set the reward value as in Equation 32. The Q-table is
updated as shown in Equation 33, where Q(st, at) denotes the
Q-value for each generation of selecting action at based on the
state st. α ∈ [0, 1], and γ ∈ [0, 1] denote the learning rate and
discount factor. maxQ(st+1, at+1) denotes the maximum Q-value
at the next state st+1 when taking the next action at+1.

reward � +1 if fnew
gbest − fold

gbest > 0,
0 otherwise.

{ (32)

Q st, at( ) � Q st, at( ) + α rewardt+1 + βmaxQ st+1, at+1( )(
−Q st, at( )). (33)

5 Numerical experiments

5.1 Instance description and results

We take the data from a port on 4 July 2023 as an example for
our analysis. The quay shoreline extends for a total length of 800 m
and is equipped with eight quay cranes, each with a working distance
of 300 m. Fifteen ships arrive at the port successively, and their
details, including the captain’s information, arrival time, expected
departure time, and the amount of cargo to be loaded and unloaded,
are shown in Table 4. We wrote the code in Python 3.9 and executed
it on a computer featuring a Core i9 2.50 GHz CPU, 16.0 GB of
RAM, and a 64-bit Windows 11 operating system. The parameter
settings are shown in Table 5.

Based on the above relevant parameters, we calculate the
results as follows: the cost of quay crane service is
235,320 CNY, the cost of quay crane movement is
70,670 CNY, the cost of ship delay is 35,000 CNY, and the
final total cost is 340,990 CNY. The final allocation plan of the
ship is shown in Figure 5.

The quay crane scheduling plan is shown in Figure 6. We
illustrate with the example of Quay Crane 1. Quay Crane
1 initially remains idle and then commences service for Ship
2 mid-way through its stay; subsequently, it transitions to serve
Ship 4. After completing the service, the quay crane stops working. It
resumes service at 00:00 the following day to assist Ship 11 and
ceases operation upon completion of this service. Quay Cranes 5, 6,
and 7 also implement time-variant allocation. To ensure that Ship
12 departs on schedule, they cease service after a designated period
of unloading and loading for Ship 12, thereby reducing the
operational costs associated with the quay cranes.

5.2 Q-learning algorithm for result
optimization discussion

Section 4 describes our use of the Q-learning algorithm to
select genetic operators, which enhances the search speed of the

TABLE 2 Q-learning state definitions.

State Details

State 1 0≤H(X)< 0.25, iter< 10% · G

State 2 0.25≤H(X)< 0.5, iter< 10% · G

State 3 0.5≤H(X)< 0.75, iter< 10% · G

State 4 0.75≤H(X)< 1, iter< 10% · G

State 5 0≤H(X)< 0.25, iter≥ 10% · G

State 6 0.25≤H(X)< 0.5, iter≥ 10% · G

State 7 0.5≤H(X)< 0.75, iter≥ 10% · G

State 8 0.75≤H(X)< 1, iter≥ 10% · G

TABLE 3 Q-learning action definitions.

Scope Primitive operator

Layer
1 encoding

(1) Two nodes are randomly selected, and all elements within the
two nodes are swapped in order

(2) Randomly select two nodes to swap order

(3) Coding crossover with global optimum layer 1

Layer
2 encoding

(4) Randomly increase or decrease some random integer

(5) Randomly select numbers within the full range of integers

(6) Coding crossover with global optimum layer 2

Layer
3 encoding

(7) Randomized selection list of two nodes swapping order

(8) Randomly select nodes to increase or decrease by some
random integer

(9) Coding crossover with global optimum layer 3
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algorithm. However, it is also possible to optimize the algorithm
without using the Q-learning algorithm. To demonstrate the
effectiveness of the Q-learning algorithm, we have designed two
genetic operator selection methods for comparative analysis:
random selection and selection using the Q-learning algorithm.
We conducted five sets of experiments, with the number of quay
cranes set at eight and a maximum of 3,000 iterations for the
algorithm. Each operator’s results were run five times. The
experimental results are shown in Table 6.

The comparison results indicate that the performance gap
between the two algorithms is minimal when the number of
ships is low. However, as the number of ships increases, the
optimization capability of the Q-learning-assisted algorithm is
significantly superior to that of the random selection method.
This is attributed to the fact that with a smaller number of ships,
the algorithm’s complexity is manageable. In contrast, as the
number of ships grows, the random selection method

TABLE 4 Information on arriving ships.

Ship
name

Arrival
time

Estimated time
of departure

Length of
ship (m)

Number of containers to
be loaded and unloaded

Min number of
quay cranes

Max number of
quay cranes

V1 2023–07–04 04:
00:00

2023–07–04 08:00:00 90 220 1 2

V2 2023–07–04 05:
00:00

2023–07–04 11:00:00 150 440 1 3

V3 2023–07–04 07:
30:00

2023–07–04 11:00:00 100 280 1 3

V4 2023–07–04 10:
30:00

2023–07–04 15:30:00 120 400 1 3

V5 2023–07–04 12:
00:00

2023–07–04 16:00:00 180 500 1 3

V6 2023–07–04 14:
00:00

2023–07–04 18:30:00 150 420 1 3

V7 2023–07–04 18:
30:00

2023–07–04 22:00:00 200 520 1 4

V8 2023–07–04 20:
30:00

2023–07–04 23:00:00 89 180 1 3

V9 2023–07–04 22:
30:00

2023–07–05 03:00:00 110 310 1 3

V10 2023–07–04 23:
00:00

2023–07–05 02:00:00 98 200 1 3

V11 2023–07–05 00:
00:00

2023–07–05 08:30:00 120 350 1 3

V12 2023–07–05 02:
30:00

2023–07–05 09:30:00 190 470 1 4

V13 2023–07–05 09:
30:00

2023–07–05 12:30:00 120 300 1 3

V14 2023–07–05 09:
30:00

2023–07–05 17:00:00 180 430 1 3

V15 2023–07–05 09:
30:00

2023–07–05 15:30:00 130 300 1 3

TABLE 5 Parameter settings.

Parameter Value

Population 50

Maximum number of iterations 1,000

Work efficiency of quay cranes 30 TEU/h

Maximum greed rate 0.6

Q-learning algorithm discount rate 0.3

Q-learning algorithm learning rate 0.1

Cost of quay cranes movements 1910 CNY/times

Cost of quay cranes service from 8:00 to 17:00 1330 CNY/hour

Cost of quay cranes service at other times 1110 CNY/hour

Ship delay cost 7000 CNY/hour
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introduces uncertainty and a higher likelihood of becoming
trapped in local optima. The algorithm optimized with
Q-learning also exhibits a reduced running time,
demonstrating its superior search capabilities.

5.3 Algorithm effectiveness analysis

To verify the effectiveness of the algorithm presented in this
article, we compare it with the CPLEX solver and genetic algorithm.

FIGURE 5
Ship allocation plan.

FIGURE 6
Quay crane allocation diagram.
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The genetic algorithm adopts the traditional crossover and mutation
logic and simultaneously performs crossover and mutation
operations on the three layers of codes. We calculate the average
of five runs for each algorithm under various scenarios, with the final
results presented in Table 7. Given the difficulty of solving large-
scale problems with CPLEX, we impose a 3-hour time limit on the
solver, terminating it after this duration. The gap calculationformula
is defined as follows, taking the genetic algorithm shown in Equation
34 as an example:

GAP � Objcplex − ObjGA
ObjGA

× 100%. (34)

From Table 7, it can be found that when the number of quay
cranes is constant, as the number of ships increases, the overall cost
and solution time of the ships will increase accordingly. This is
because an increase in the number of ships leads to an increase in the
complexity and workload of loading and unloading operations,
which increases the overall cost and solution time. In terms of
cost, our proposed algorithm demonstrates lower costs across all
examples, with its optimal costs significantly lower than those of the
genetic algorithm. In comparison with CPLEX, our algorithm has a
significantly lower GAP value than the genetic algorithm, indicating

that its cost is much closer to the optimal cost. In certain large-scale
scenarios (for example, 30 × 5 and 30 × 10), our proposed
algorithm’s GAP is negative, indicating that its performance
surpasses that of CPLEX, which is limited by time constraints.
This further confirms the superior search capability of our
algorithm in handling large-scale cases.

In Table 7, “Running time/s” refers to the computational time
required to complete the optimization process, measured in
seconds. This metric is used to evaluate the efficiency of the
proposed method. The running time of our proposed algorithm
is generally lower than that of the genetic algorithm and much
lower than that of CPLEX, which reflects the high
computational efficiency. Q-learning effectively reduces the
running time by introducing a dynamic mechanism for
operator selection. Q-learning leverages the performance of
past iterations to dynamically adapt the selection of genetic
operators. This ensures that only the most effective operators
are utilized at each stage of the optimization process, thereby
avoiding low-efficiency operations and reducing unnecessary
computational effort. In summary, the algorithm proposed in
this article offers significant advantages in terms of solution
speed and accuracy.

TABLE 6 Comparison of optimization with and without Q-learning.

No Q-learning optimization With Q-learning optimization

Number of ships Target value (CNY) Running time (s) Target value (CNY) Running time (s) GAP

10 23,311 112 23,392 61 −0.35%

20 41,675 168 40,648 82 2.53%

30 73,428 234 71,379 96 2.87%

40 85,301 312 82,301 116 3.65%

50 11,081 426 10,653 127 4.02%

TABLE 7 Performance of different algorithms in the examples.

CPLEX Genetic algorithm Algorithms in this article

Number of
ships ×
Number of
bridges

Cost
(CNY)

Running
times (s)

Average
cost
(CNY)

Optimal
cost
(CNY)

GAP Running
times (s)

Average
cost
(CNY)

Optimal
cost
(CNY)

GAP Running
times (s)

10 × 5 242,410 6,760 266,880 264,230 8.3% 87 248,180 245,720 1.3% 61

10 × 10 233,920 10,780 255,300 252,770 7.5% 83 238,690 236,320 1.0% 57

10 × 15 262,600 15,300 287,060 284,210 7.6% 88 268,410 265,750 1.2% 68

20 × 8 415,630 18,000 455,640 451,120 7.9% 103 421,910 417,730 0.5% 72

20 × 10 406,480 18,000 444,930 440,520 7.7% 112 413,820 409,720 0.8% 84

20 × 15 427,620 18,000 468,080 464,440 7.9% 114 433,810 429,510 0.4% 84

30 × 7 736,430 18,000 810,260 802,230 8.2% 138 739,800 732,470 −0.5% 106

30 × 10 713,790 18,000 784,160 776,390 8.1% 111 716,810 709,710 −0.6% 92

30 × 15 714,730 18,000 784,800 777,020 8.0% 119 715,800 708,710 −0.8% 117
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6 Conclusion and future work

In this article, the joint berth and time-variant quay crane
allocation problem is addressed. This is a cooperative
allocation problem where the allocation of quay cranes can
vary over time, allowing cranes to serve other ships even if a
ship’s operation is not yet complete. To solve this problem, a
new MIP model is constructed, with the objective of
minimizing ship delay costs, quay crane movement costs,
and quay crane service costs while considering constraints
such as quay crane working range and collision avoidance.
A joint berth and time-variant quay crane allocation algorithm
based on Q-learning is proposed, with a genetic algorithm as
the main framework. The quay crane allocation module is
embedded, and genetic operators are selected using the
Q-learning algorithm. Q-learning is employed to evaluate
the current population state and guide the generation of
new solutions, enhancing optimization performance. This
approach addresses the time-variant quay crane allocation
problem by considering both crane and berth allocations to
improve port resource utilization.

The results of the data analysis indicate that: 1) The method
presented in this article can simultaneously address the
continuous berth and time-variant quay crane allocation
problems, reducing the total port cost. 2) The Q-learning
selection module in this article can both accelerate the
algorithm’s convergence and enhance its search capability. 3)
The algorithm proposed in this article outperforms the
traditional genetic algorithm in terms of convergence speed
and optimization ability in different scale examples. In small-
scale examples, the proposed algorithm’s performance is close
to the exact solutions provided by CPLEX, and in some cases, it
even surpasses the CPLEX algorithm when time constraints are
applied, demonstrating the feasibility and superiority of
our approach.

Future research could consider the following directions: 1)
Incorporating the movement time of quay cranes into the model.
2) Extending the algorithm proposed in this article to include
time-variant scheduling planning for automated guided vehicles,
quay cranes, and berths within ports. 3) Future research may also
incorporate the considerations of import and export container
flows, along with a broader range of intricate factors that could
influence port operations.
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