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Big Science applications require very large infrastructures and often involve
different countries in order to achieve important scientific results or to find
solutions to the major problems of mankind, such as finding a clean and endless
source of energy. Big Science applications represent not only a scientific
challenge, but also large engineering applications involving a wide range of
technologies shared with other industrial applications. As a consequence
there is a significant overlap in technologies and approaches between Big
Science and Industry. In this paper, the overlap between Big Science and
industrial applications will be presented in more detail under the control
perspective, that is, by highlighting the common aspects between industrial
informatics and the control, data acquisition and data management in large
scientific applications.
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1 Introduction

The term “Big Science” describes the current trend in scientific research toward large
scale experiments. While in the past relevant scientific results could be obtained by small
groups in university or other research laboratories, major scientific achievements nowadays
require a much larger infrastructure often involving different countries. To better illustrate
what Big Science means, let’s consider two recent major results in physics research: the
evidence of the Higgs Boson achieved in the CERN laboratories in 2012 (CERN, 2023) and
the first observation of gravitational waves in 2015 detected at the twin LIGO laboratories
(LIGO, 2023). The discovery of the Higgs Boson, almost 50 years after it was first proposed,
is the result of the statistical analysis performed over a huge amount of measurements
derived by collision events between accelerated protons in the CERN Large Hadron Collider
(LHC) (The CERN LHC, 2023). LHC consists in a 27 Km ring where superconducting
magnets boost the energy of two proton beams flowing in opposite directions up to a value
that is of the same order as the kinetic energy of an Airbus 380 flying at a speed of 720 km/h.
The two proton beams flow in separate paths except for four points in the ring where they
are deflected in order to let them collide. The quarks and gluons inside the colliding protons
interact to form a wide array of low-energy, ordinary particles. Occasionally, heavier
particles are produced as well as energetic particles paired with their antiparticles. Every
sector hosts different detector types so four separate experiments are hosted along the LHC.
ATLAS and CMS use general-purpose detectors to investigate the largest range of physics
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possible. ALICE and LHCb have detectors specialized for focusing
on specific phenomena. The CERN laboratories hosting the LHC
employ approx. 2,500 people on a permanent basis and more than
10,000 visiting researchers from all around the world. The successful
exploitation of scientific research involves not only physicists but
also a large number of engineers and technicians who are involved in
the development and maintenance of the experiment components
such as:

- high vacuum system for the pipes along the 27 km ring;
- cryogenic systems for maintaining ultralow temperature for the
superconducting magnets bending the proton beams;

- power supplies driving magnet current and transferring energy
to the beam;

- support electronics for the particle detectors;
- precise timing system to timestamp events and validate real
events against noise;

- data system for storing and processing petabytes of
data per day;

- grid infrastructure to let scientists all over the world access and
analyze experimental data.

On Sept. 14, 2015, the gravitational waves originated from the
collision of two black holes that occurred 1.3 billion years ago were
observed for the first time in both the LIGO twin interferometers,
thus confirming a major prediction of Albert Einstein’s 1915 general
theory of relativity. Each LIGO experiment consists of two 4 km long
interferometers arranged in the shape of an L. The interferometers
are locked in such a way that the light waveform of a laser generator
destructively interferes, i.e., the generated and reflected waveforms
elide each other producing no light. When a gravitational wave
arrives, the length of the two arms in the L change so that the Laser
interference changes and light is generated. The twin
interferometers, located in Louisiana and Washington state,
respectively, allow detecting the origin in the universe of the
gravitational wave based on the difference in time at which the
event has been detected. Despite the simplicity of the detection
ground principles, the LIGO project represents a great engineering
challenge because the change in the 4 km long interferometer arms,
due to the interaction with the gravitational wave, is in the order of
1E-19 m, i.e. 1/1000th the size of a proton, and the detection system
must therefore compensate all the possible sources of vibration, such
as traffic in the nearby roads and earthquakes, that are orders of
magnitude larger. This is achieved via sophisticated active and
passive vibration-damping systems. Ultra-high vacuum for a
volume surpassed only by CERN LHC in the world, extremely
accurate optic systems for the laser mirrors, and highly pure laser
light generation represent some of the engineering challenges in the
LIGO project. The amount of data required to discriminate real
events from all the other noisy sources is several terabytes per day
and cloud data availability is provided in order to share data with the
other gravitational antenna experiments around the world to
synchronize and validate detected events.

Big Science is not only involved in pure physics research, but it
addresses also other important achievements of mankind, such as
finding a clean and endless source of energy. In this context, nuclear
fusion represents currently the main challenge. Reproducing on
earth the nuclear fusion phenomena occurring on the sun would

provide a carbon-neutral source of energy avoiding those problems
that affect nuclear fission reactors, i.e. (1) scarcity of fuel for the
nuclear reaction, (2) risk of uncontrolled nuclear reactions and (3)
nuclear waste management. Nuclear fusion is based on the reaction
between deuterium and tritium, two isotopes of hydrogen with 2 and
3 neutrons, respectively, and producing an atom of helium and a fast
neutron. An unlimited source of deuterium is available in the earth’s
oceans while tritium is produced in the reactor itself as a side
product of the interaction of the generated neutrons with a lithium
blanket. Intrinsic safeness, i.e., the impossibility that a failure in the
reactor could produce uncontrolled fusion is guaranteed by the
nature of the nuclear reaction itself. Finally, nuclear waste produced
by the activation of the material during the fusion reaction has a
decay time that is orders of magnitude shorter than that of materials
that are activated by a fission reaction. The major technological
challenge in fusion reactors is due to the fact that the mixture of
deuterium and tritium must be kept at a temperature of 10 Million
degrees in order to achieve nuclear fusion and the only way of
keeping such a mixture of ionized gas (called plasma) in a container
is to make it levitate by means of strong electromagnetic fields
generated by coil currents so high that they can only be achieved by
keeping the coils in the superconducting state. The inner wall of such
a container (doughnut-shaped and called Tokamak) must sustain a
heat flux in the order of 10 MW per square meter and at the same
time, the whole tokamak and the surrounding coils must be
immersed in a large cryostat at 4.5 K temperature. As with
several other Big Science projects, also fusion research is the
result of worldwide cooperation. ITER, currently the largest
fusion device in the world (The ITER project 2023) is under
construction in France and it is the result of the collaboration
among Europe, the United States, China, Korea, Japan, India,
and Russia.

From the above examples, it can be seen how Big Science
applications represent not only a scientific challenge but also
large engineering applications involving a wide range of
technologies shared with other industrial applications. The
overlap between Big Science and industrial applications will be
presented in more detail under the control perspective, i.e.by
highlighting the common aspects between industrial informatics
and the control, data acquisition, and data management in large
scientific applications. In the following, Section 2 analyzes in detail
the similarities and differences between industrial informatics and
control and data acquisition systems in Big Science. These are
presented in the context of different fields of application in order
to cover most use cases that can be found in industry and research
(plant control, real-time applications, FPGA applications, timing
systems, data acquisition and storage, cloud and grid computing,
and machine learning). The presented concepts are then
summarized and discussed in Section 3. Some general
conclusions are finally drawn in Section 4.

2 Application specific similarities and
differences

Industrial informatics refers to the infrastructure that provides
the development and deployment of real-world applications. Such
an infrastructure consists of a collection of techniques and practices
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that use information analysis and tools to achieve higher efficacy,
effectiveness, reliability, and security within the industrial
environment. These techniques represent the heart of the
Industry 4.0 concept that encompasses control, the Internet of
Things, artificial intelligence, robotics, and automation. The
above definitions can be rephrased by replacing “industrial” with
“research” to obtain the definition of the objectives of Control, Data
Acquisition, and Management in Big Science. Of course, reality is
more complex and requires a more detailed discussion based on
more specific application fields, as shown below.

2.1 Plant control

Common components in Big Science are large vacuum and
cooling systems. For CERN LHC, an ultra-high vacuum is necessary
for the beam pipes. In LIGO, an ultra-high vacuum is required for
the interferometer arms. In ITER, the 840 m3 volume where the
plasma is formed must be kept in vacuum and the heat generated by
nuclear fusion must be fully removed by cooling systems. Cryogenic
systems are also required to achieve high vacuum via cryopumps
and to cool the superconducting coils required to achieve extremely
high electromagnetic fields to bend the beam in particle accelerators
or to confine the plasma in fusion devices. Control for these plants is
carried out by Programmable Logic Controllers (PLCs) and
industrial solutions are often adopted. Indeed, these plants are
often commissioned to industry rather than internally developed.
Due to the large dimension of such plants, different components,
possibly developed in the context of different contracts, must be
integrated, relying in most cases on common practices in industrial
informatics. As an example, the control of the large helium
cryogenic system in the CERN LHC is compliant with the
standard automation pyramidal organization of IEC-62264 and
defines (1) an instrumentation layer that integrates a large
number of industrial sensors and actuators via field buses, (2) a
control layer based on standard industrial components (PLCs) and
(3) a supervision layer implemented by a cluster of Linux Data
Servers (Pezzetti, 2021).

Industrial control applications for vacuum, cooling, and
cryogenics in Big Science have a large overlap in requirements
with other applications outside research. Even if building the
controlled equipment often represents a challenge with respect to
other industrial plants (e.g., for their dimension, for the heat flow,
and for the required vacuum level) the requirements in control
functions and their dynamics do not differ significantly with respect
to those of other industrial plants. Considering also the number of
I/O signals in the plants involved in Big Science, this can be
considered of the same order of magnitude with respect to the
number of signals involved in a large industrial facility or a
transportation system. As a consequence, the challenges in this
context are similar for Big Science and large industrial appliances.
Here the main challenge is the effective management of systems that
are composed of a huge number of components that, not being
complex per se, require strategies for handling overall system
complexity. An important strategy in this context is automatic
code generation targeting the difficulty in developing safe and
efficient program code in large systems. For this reason, methods
and tools for the automatic generation of PLC code based on high-

level system descriptions, including I/O signal lists and
transformation specifications, are a common practice in large
industrial applications. However, a general approach for
automated code generation is missing (Koziolek et al., 2020).
This is true also in Big Science where site-specific solutions for
PLC code generation have been developed. For example, CERN
developed UNICOS (UNICOS Framework portal 2017), a control
system framework for designing and implementing control systems
applications. It provides a methodology, an object library, and a set
of tools to generate the control code for the target applications. A
different solution addressing similar requirements has been
developed at ITER in order to generate the code to coordinate
roughly 200 plant systems and to integrate them into the control
infrastructure (Stepanov et al., 2011). In this case, the high-level
description, supported by a specialized editor, includes not only
industrial control components but extends also to other services
such as data archiving and network configuration.

A peculiar aspect of industrial control in Big Science
applications is the widespread use of open-source SCADA tools
in the control of the industrial parts of the experimental facility. The
most widespread open-source SCADA solution is EPICS
(Experimental Physics and Industrial Control System 2023).
EPICS is an open-source software tool collaboratively developed
and used in several experiments around the world, such as particle
accelerators and telescopes, and adopted also in ITER, whose
complexity is comparable to CERN LHC, for the integration of
its plant control systems (Leone et al., 2023). The main concepts of
EPICS are not different from those of other modern supervisory
tools, defining a set of Process Variables (PVs) and exporting the
value of physics quantities over the network. Above the core level of
EPICS, handling the management and distribution of PVs, the
Control System Studio provides a collection of tools and
applications to monitor and operate large-scale control systems,
such as the ones in the accelerator community (Control System
Studio, 2024).

A notable exception in the accelerator community is CERN
which uses Siemens WinCC-OA Supervisory Control and Data
Acquisition (SCADA) System. It is worth noting that Siemens
WinCC-OA derives from the former PVSS SCADA system,
adopted by CERN in the year 2000 after a 3-year evaluation
phase (SIMATIC, 2023). The industrial product WINCC-OA can
be considered a spillover of CERN and represents a successful
example of the synergy that can be achieved between industry
and research.

The diffusion of EPICS and other open-source solutions in the
scientific environment is also a consequence of the collaborative
attitude of research people, often moving from one laboratory to
another and bringing ideas and solutions. It is worth noting that
what is considered a plus in the research environment, i.e., sharing
ideas and solutions, can be a drawback in the industrial world where
nondisclosure is often a requirement. Moreover, despite the
advantages offered by open-source SCADA solutions, there are
also drawbacks that need to be taken into consideration in design
choices. This is in particular true in large experimental facilities
where many plant systems are not developed within the scientific
community but commissioned to industry. Typically, the
(associations of) industries that are involved in plant systems
development bring their internal expertise, including the support
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tools for the development of plant control systems. In this case,
rather than dictating the technology to be used, it is necessary to
define the interface between the specific plant and the rest of the
system. This interface should be defined via methods and protocols
that are familiar in the industrial world, and in this case, adopting
open-source components that are well known within the scientific
community but not outside can bring additional costs. In any case,
open-source solutions are gaining interest also in the industry. The
most notable example, with implications also in Big Science, is the
OPC Unified Architecture (UA) which is a cross-platform open-
source IEC 62541 standard for data exchange (OPC, 2024). OPCUA
has been adopted as the standard for Industry 4.0 to support digital
transfer. This standard is implemented both in commercial SCADA
systems and in open-source libraries and currently represents the
preferred choice in the integration of plant systems in many Big
Science projects.

2.2 Real-time applications

In industry, real-time processing is crucial for businesses that
require continuous improvement in safety, efficiency, and reliability.
Applications of real-time systems include process control systems,
machine vision, robotics, manufacturing, and healthcare. Real-time
applications are more and more involved in edge computing, where
data processing occurs closer to where it is being generated, e.g., in
Industrial Internet of Thing (IIOT) system, in order to improve
response time and save bandwidth in the overall system
communication (Musaddiq et al., 2018). Several Real-Time
Operating Systems (RTOS) have been adopted, whose evolution
towards more and more distributed applications followed the
evolution in hardware towards multicore architectures. Nowadays
many industrial applications are moving towards implementations
based on Real-Time Linux. Originally not fit for real-time, the
evolution of the Linux OS and in particular of its real-time
extensions such as Messaging Real-time Grid (MRG), combined
with more powerful computing hardware and multicore
architectures, provide real-time performance parameters such as
response time and jitter that are quite acceptable for a large number
of industrial applications. Moreover, real-time performance
integrated into a general-purpose operating system such as Linux
allows prioritizing, managing, and executing real-time workloads
over non real-time workloads, unifying the software and hardware
solutions for complex systems. It is worth noting that Linux and its
real-time extensions are not the unique emerging RTOS in both
industrial and scientific environments. FreeRTOS, combining
proven robustness, tiny footprint, and wide device support, is
one emerging RTOS that is gaining more and more widespread
usage in IIOT as well as in research applications (Guan et al., 2016).
In general, for larger distributed applications involving many
different actors with different requirements in hardware and
software, a combination of RTOS may be required. For example,
in an IIOT framework, FreeRTOS may represent the best choice for
the smaller devices close to the sensors, while Linux may be best
suited for the higher-level servers collecting overall data.

When considering overlaps in real-time requirements and
solutions between industry and Big Science it is convenient to
identify two broad categories under the common denomination

of real-time systems. The first category refers in general to
distributed information processing systems with hardware and
software components that can respond to events with predictable
time constraints. This is the typical context of IIOT, involving a
network of interconnected devices and sensors in an industrial
setting. Examples of use cases in this category are industrial
automation and energy distribution monitoring. The second
broad category refers to real-time control of a given equipment
such as an electrical power supply or a jet engine. In this case, timing
constraints are typically stricter, being the controlled entity a
physical component rather than a distributed infrastructure. This
last category represents historically the starting point of the concepts
and the solutions in real-time systems and in Big Science the focus
on real-time is more oriented to this last category being often the
experiment itself the target of real-time control. Depending on the
nature of the experiment, computer-based real-time control may
address the experiment core or be required for accessory, but crucial,
aspects. In the LIGO gravitational antennas, for example, real-time
systems are used in the active vibration damping where the vibration
originated from human activity (e.g., traffic) and environmental
(e.g., earthquakes) close to the detector site must be canceled.
Vibration sensors send their signals to a computer that combines
all the vibration signals and generates a net counteraction to cancel
all external vibrations simultaneously (Matichard et al., 2015). In
CERN LHC there is no need for closed-loop real-time control
systems for the main experiment (albeit a large number of
accessory instrumentation require active real-time controls) but
real-time systems are nevertheless required in order to provide
online analysis for the huge amount of data coming from the
detectors in correspondence to proton-to-proton collisions. In the
most recent implementation of the ALICE detector system, more
than 3.5 terabytes per second are produced by the continuous
readout of 12 billion detector pixels. After a first-level data
processing carried out by FPGA, a stream of up to 600 gigabytes
per second is produced and analyzed online on a high-performance
computer farm, implementing 250 nodes, each equipped with eight
GPUs and two 32-core CPUs. This allows us to further reduce the
rate to a maximum of 100 gigabytes per second before writing the
data to the disk (Nowakowski et al., 2024).

Among Big Science applications, computer-based active real-
time control of the core phenomena is most important in nuclear
fusion experiments. In fusion devices, real-time control of the
plasma within its container is essential in order to ensure
confinement and avoid any contact between the 10 M degree
plasma and the tokamak inner wall that would otherwise melt
immediately. To achieve plasma confinement, the system acquires
real-time information about the magnetic fields via several hundreds
of electromagnetic sensors as well as other plasma parameters
derived by other plasma diagnostics and provides a sub-
millisecond system reply in terms of reference currents for the
power supplies. The power supplies then feed the
superconducting coils in order to generate a response
electromagnetic fields and compensate plasma instabilities (Perek
et al., 2023). The dynamics of the involved physical phenomena in
the plasma confinement require a reaction time for its control in the
order of some hundreds of microseconds that is compatible with
state-of-the-art technology in computer hardware and software. Due
to the large amount of requested computation, mostly required to
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derive plasma parameters from the input sensors measurements,
and due also to the physical location of the sensors and of the
actuators in a large experimental plant, the plasma control in large
fusion experiments is implemented by a network of computers
connected via a real-time network. Such a network was
implemented in the past with ad-hoc solutions, but now the
mainstream 10 Gigabit Ethernet allows reaching the required
performance in network latency.

An additional requirement in real-time applications derives from
their experimental nature and the research environment, requiring
frequent updates in the control algorithms or even in the control system
layout, depending on the availability of new plasma diagnostics, or on
new ideas in control algorithms. This requirement in flexibility is in
contrast with other requirements in reliability that are mandatory in a
system controlling a billions-worth experimental plant. Moreover,
algorithms and technical solutions are often shared in the scientific
community thus requiring an effective way of integrating new solutions
still retaining the reliability of the system. The solution for incorporating
all these requirements is represented by real-time frameworks,
i.e., collections of collaborating classes that provide a set of services
for a given domain. The framework is then customized to a particular
application by subclassing and composing instances of the framework
classes. In this way new components can be integrated in the system
without the need of re-writing code, but just adding a new component
in the customized framework instance. Reliability can be maintained by
reusing well-tested components and concentrating only on the newly
added functionality, such as the implementation of a new control
algorithm. For the above reasons, open-source real-time frameworks
have been developed by the fusion research community targeting the
need for complex and performing real-time control. For example,
MARTe2, a framework for real-time applications developed by the
European ITER agency, combines the flexibility required to integrate
new components with strict software quality requirements (Avon et al.,
2021). Even if some research is ongoing (Delgado et al., 2023), open-
source real-time frameworks for plant control are not common in the
industry in respect of nonopen-source ones. Perhaps the most
widespread nonopen source solution in this context is the Object
Execution Framework (OXF) that is used in the code generated
within the IBM Engineering System Design Rhapsody (IBM
Engineering Systems, 2024).

A further step towards fast and reliable component integration
in real-time systems is the integration of code generated by the
Simulink coder within the framework. MATLAB Simulink
represents the ‘lingua franca’ in the control community both in
research and industry. The Simulink coder tool provides
automatically generated C code corresponding to the selected
Simulink component, removing the need for the demanding and
error-prone manual translation of the component into C or C++.
However automatic code generation of Simulink components alone
is not enough to ensure a fast and reliable component integration in
a framework if the interface adapter must be implemented manually.
This is a common requirement both in industry and Big Science and
indeed both the frameworks cited above provide a wrapper interface
that is able to integrate the Simulink component directly into the
framework without any manual code development, based on the
introspection capability provided in the Simulink generated code.

If we turn out attention to the first cited category of real-time
systems, i.e., distributed information processing systems and IIOT,

open source framework solutions are much more common. This is
not a surprise, as the number of applications in this case is much
larger in respect of applications referring to the real-time control of a
given physical system. It is worth noting that the real-time
management of streams of information carried out by open-
source frameworks such as Apache Kafka (Apache Kafka Portal,
2024) or Redis (Redis 2024) is also needed in Big Science when
considering the related infrastructure. Indeed the requirements in
managing in due time the flow of information in a Big Science
facility, such as sharing real-time experimental results along a
worldwide community, are not different from other high-
performance, low-latency information systems in the industry.
For example, Apache Kafka is used at CERN for radiation
supervision and environmental protection (Ledeul et al, 2019)
and Redis is used in the Fusion Energy Sciences Network (ESnet)
to deliver highly reliable data transport capability in data-intensive
sciences (ESnet final report 2021).

2.3 FPGA applications

FPGA applications are used when required throughput and
latency cannot be achieved with computers. Real-time computer
applications can achieve at most a control cycle time down to
20–50 µs in closed loop applications, therefore shorter periods
require different solutions such as FPGAs. Now prevalent in
high-performance computing, FPGAs offer the benefit of task-
specific customization of a generic computing architecture.
Examples of FPGA usage in the industry are smart energy
applications for efficient, reliable, and intelligent energy systems,
robotics for low latency, deterministic computing, and connectivity,
machine vision for direct ingest of data and pipelined processing,
and motor and motion control. Big science applications have a large
overlap with industry when considering FPGA technology, sharing
hardware solutions and software tools, but differ significantly when
considering applications. This in particular true in particle
accelerator experiments where FPGA systems are extensively
used as the first processing of the huge amount of raw data
coming from detectors. The first level of data filtering is required
to reduce the data flow to an amount that can be stored and
processed on more traditional CPU-based processing units. In
this context, FPGAs are used to run algorithms looking for
particle signatures in the raw detector signals (Harris, 2021).
FPGA programming normally involves simple computation
expressed in a Hardware Description Language such as Verilog
or VHDL. However, in the accelerator community, and in particular
at CERN, there has been a strong push towards more complex FPGA
applications. Including more complex algorithms, such as Kalman
filters, in the first-level processing, greatly improves the overall
detector efficiency, and it represents the key to the CERN
achievements in particle physics experimentation. This has been
made possible thanks to the High-Level Synthesis (HLS) tools that
allow the use of a high-level language for generating FPGA firmware.
Major FPGA development tools such as XILINX Vivado or Intel
Quartus provide HLS compilers for high-level specifications such as
C++, dramatically lowering the development time to the extent that
students and physicists can contribute to large parts of the
development of detector electronics systems (CERN courier
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2024). Integration of FPGA applications via HLS has been pushed
further at CERN to implement in FPGA complex deep learning
algorithms. Deep learning solutions are being considered for
replacing former algorithms to extract particle signatures for raw
detector data (Blago, 2023) and their implementation in FPGA has a
potentially huge impact on detector efficiency. The hls4ml project
(CERN hls4ml 2024) aims at providing automated translation to
HLS starting from traditional open-source machine learning
packages such as PyTorch and Keras.

Even if FPGA applications are pushed to the extreme in accelerator
experiments, industrial FPGA solutions and tools are adopted also in
other Big Science applications. In particular, Systems on Chips (SoC),
leveraging CPU performance in FPGA applications, are increasingly
used in nuclear fusion experiments. As stated before, nuclear fusion
experiments rely on complex real-time computer systems to achieve
the confinement of the plasma in its container. Even if most controlled
phenomena have dynamics that allow their control via a computer-
based real-time system, other phenomena related to fast plasma
instabilities require a faster response in control that can be
achieved only via FPGA control. In this context, SoC solutions
provide an easy integration of FPGA functions within the plasma
control system, where FPGA computation is orchestrated by the
embedded Linux controller. Other FPGA applications are involved
in plasma diagnostic systems and provide intelligent data processing
prior to real-time control. For example, in ITER data from several
thousands of electromagnetic probes requiring filtering and
integration will be processed by a cluster of Ultra Scale Zynq SoC
systems (Batista et al., 2017).

2.4 Timing systems

Correct time synchronization in industrial systems represents an
important requirement especially when different systems with
independent clocks interact with each other (Balakrishnan et al.,
2023). Examples of industrial applications where accurate time
synchronization plays a crucial role are cloud robotics, smart
grids, and drone-based sensors in industries such as mining oil
and gas. When considering Big Science applications, accurate time
synchronization is in general needed to correlate a possibly large set
of sensor measurements in order to derive useful information about
the physical phenomena being investigated. Time synchronization
requirements can be divided into two broad categories:

• Relative synchronization, typical in industrial plants where the
entities in a plant such as field devices, controllers, and
computers are synchronized with each other. Relative
synchronization represents also the required
synchronization in all Big Science experiments. For
example, a plasma instability in a nuclear fusion
experiment triggers signal evolution over hundreds of
sensors. If the acquired signals were not synchronized with
each other to a precision extent that is compatible with the
dynamics of the instability it would not be possible to derive
useful information from the measurements.

• Absolute synchronization, necessary to achieve relative
synchronization when a direct connection is not feasible
between synchronizing and synchronized components. The

most popular way of achieving absolute synchronization is
using a Global Positioning System (GPS) obtaining in
principle an accuracy in synchronization of tens of
nanoseconds. However, the unavailability of the GPS signal
due to radio jamming and building structures as well as high
installation/maintenance costs hinder extensive GPS usage for
synchronization both in industry and in Big Science.

Absolute synchronization can be also achieved by means of the
distribution of time over a network, such as Ethernet. The network
evolution towards packet switching has led to increased interest in
time synchronization using packet-based methods, such as Network
Time Protocol (NTP), ubiquitous in PLC-based applications for
industrial control. The NTP intrinsic time precision is in the range of
10–100 m and it is enough for most PLC-based control applications
in industry as well as in many plants in Big Science applications,
such as vacuum and cooling systems. There are however
applications requiring a tighter, sub-millisecond, synchronization
in the telecom industry, finance segment, and smart grids. In this
context, the IEEE 1588 Precision Time Protocol (PTP) has been
increasingly adopted both in industry and research (Girela-López
et al., 2020). The PTP protocol uses standard network lines to offer
hardware-level time synchronization accuracy in nanoseconds
range, provided all the involved network components, such as
switches and routers, are PTP enabled. PTP-based
synchronization is being adopted in several Big Science projects.
As an example, ITER implements PTP-based synchronization for
the synchronization in control and data acquisition for all the
diagnostic systems of the nuclear fusion experiment (Liu et al.,
2018). In this context, being data from physical measurements
collected at possibly high frequency (>10 MHz), exact data
sample timestamping is essential to validate data coming from
different sensors and acquired by different systems, possibly
reflecting the occurrence of a fast physical phenomenon in the
experiment. In other Big Science applications, such as CERN, timing
requirements are even more stringent with respect to what even a
properly calibrated PTP synchronization network can provide. In
accelerators such as LHC the detection of particle interaction decay
products results in data coming from a potentially high number of
different detectors. Very accurate, sub-nanosecond timing precision is
required to discriminate meaningful data from noise via temporal
coincidence analysis. This requirement triggered the White Rabbit
Project in 2012 (The White Rabbit Project, 2023). White Rabbit
provides sub-nanosecond accuracy in synchronization for large
distributed systems in which devices are interconnected in a
network. It combines PTP and Synchronous Ethernet (SyncE) with
clock loopback and phase adjustment. SyncE uses the data carrier
frequency of the physical layer interface and a digitally implemented
Phase Locked Loop (PLL) removes the jitter generated by the clock
recovery circuitry. The cleaned clock is sent back to the originating
master that measures the phase difference between its reference clock
and the received one. The measured phase difference is finally sent to
the slave node so that it can correct its phase offset such that the delay
variations in the physical link are compensated (Jansweijer et al., 2013).
Fully implemented in open-source technology WhiteRabbit has
expanded outside the field of particle physics. In 2020, it was
included in the PTP industry standard, governed by the Institute of
Electrical and Electronics Engineers.
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2.5 Data acquisition and storage

Data acquisition and storage systems are ubiquitous in industrial
applications. The importance of data in industry is, among others, a
consequence of the Cyber-Physical System approach in modern
industrial applications, where cyber components like cloud servers
compute results and make decisions according to data collected or
generated by physical components such as sensors. The data
oriented paradigm has proven fundamental for the technological
transformation process that characterizes Industry 4.0. The same
paradigm always represented a pillar in Big Science and more in
general in all scientific experiments. Indeed data, i.e., scientific
knowledge, is the ultimate result of scientific research, and
therefore data storage and database technology represent an
important component of the control systems in scientific
experiments.

Restricting our attention to Big Science, data requirements are
further stressed by the dimension of the experiment and by the
dynamics and complexity of the underlying phenomena being
investigated. For example, in CERN LHC up to one billion
particle collisions can take place at every second inside the LHC
experiment’s detectors. A trigger system is therefore used to filter the
data and select those events that are potentially interesting for
further analysis. However, even after this drastic reduction,
1 petabyte of data per day must be placed and stored. An even
larger amount of data per day, currently estimated at 2 petabytes,
will be produced by the ITER nuclear fusion experiment (Abla et al.,
2014). In this case, the biggest generators of raw data are camera-
based diagnostics taking redundant measurements that are required
to reduce uncertainties and increase confidence in values that cannot
be measured directly and must be inferred from other
measurements.

When considering data acquisition, a current trend in scientific
experiments is to use commercial data acquisition modules (DAQs)
whenever solutions for specific requirements, such as data sampling
rate, are available on the market, limiting as far as possible in house
development. This is particularly true for plant control, where PLC-
based data acquisition solutions are ubiquitous both in industry and
research. There is moreover an increasing interest from industry,
research, and academia towards emerging open-source SoC
platforms for data acquisition such as RedPitaya DAQ that may
provide cheap and flexible alternatives to bulky and expensive
instruments.

When considering requirements and solutions in database
technology there are similarities and differences between industry
and Big Science. To better understand them, it is necessary to
identify what data represent in the two contexts. Borrowing
terminology from Industry 4.0, an asset is defined as a “physical
or logical object owned or held in custody by an organization, having
a perceived real value to the organization” (De Oliveira et al., 2021).
An asset in the industry context can be something physical
(equipment, materials, products) or not (electronic documents,
computer programs) or represent some sort of metadata, such as
location, time, state of an asset, and relationships with other assets.
In the research context, an asset will be most likely represented by a
measurement and the associated metadata describing how such
measurement has been derived. NoSQL data model is beneficial
here because of the heterogeneity of data types and aggregates

required to describe assets both in industry and in research. An
added requirement is the need for storing time series, i.e., samples
over time for acquired plant signals. Even if time series may need to
be stored both in industry and in scientific experiments, the
requirements for the latter are typically much more stringent.
Solutions such as InfluxDB and TimescaleDB, widely used in
industry for time series databases, are not feasible in Big Science
for all signals, but typically only for signals produced by the
industrial components of the experimental application. For
several Big Science applications, the intrinsic organization of the
experimental time-dependent results is best described by a
hierarchical database such as HDF5 (The HDF Group 2023).
HDF5 is widely used in scientific simulations producing a very
large amount of data and this database has been chosen in ITER to
store the data produced by the experiments.

In addition to more stringent timing requirements (i.e., data
sampling rate) that cannot be withstand by current industrial
solutions, two additional requirements are more specific to
scientific data, namely:

• Data dependency, experimental results are very often not
represented by a direct measurement (such as a
temperature or pressure measurement in an industrial
plant), but they represent the result of an acquisition and
computation chain involving parameters and raw data
acquired by a possibly large set of sensors. In order to
provide self-descriptive data, both raw and computed data
must be stored in the database. Keeping raw data in the
database after they have been used to derive scientific
results is necessary because of the experimental nature of
the application. For example, a new derivation of scientific
results is required when a new, better algorithm developed by
the scientific community is available, or when some
parameters in the data acquisition chain must be corrected
(we are dealing with an experiment, after all). A solution that
allows at the same time to optimize database dimension and to
maintain data consistency is to store in place of computed data
only the raw measurements and a complete description of the
computation needed to derive a meaningful physical
measurement. The computation specified in the database is
then activated on the fly whenever the signal is retrieved. This
concept is implemented, for example, in the ROOT data
system (CERN ROOT 2023) used at CERN and in the
MDSplus (MD Splus, 2023) data system used in the fusion
research framework.

• Consistency of scientific data among different facilities, even
when defining self-describing data for experimental results,
deriving first principles for a given research domain requires
accessing experimental results from different Big Science
applications. This is, for example, of interest in Nuclear
Fusion research where the general principles of the
underlying physics are deduced from experimental results
of large experiments located in the US, Europe, China,
Korea, and Japan. To help researchers prepare tools for
scientific investigation, a common, inter-experiment
representation of data is under development at the ITER
organization so that data can be used across all the fusion
machines in the world. This data representation model, called
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Integrated Modelling and Analysis Suite (IMAS) is built based
on a common data dictionary and allows researchers all
around the world to prepare simulation and analysis tools
for fusion research (Romanelli et al., 2020).

2.6 Cloud and grid computing

Industrial cloud computing refers to a vast concept including
a suite of infrastructures, systems, and solutions. Several
definition of cloud computing, involving a different number of
layers, can be found in literature, but in essence cloud computing
provides data storage, computational power and software
applications through the internet on demand. This approach
offers several advantages in an industrial environment, such as
pooling resources from different servers and allocating them on
an as-needed basis, thus reducing inefficiencies and increasing
elasticity and flexibility in response to fluctuating demand. In an
industrial organization cloud computing eliminates the user’s
responsibility for software and hardware installations and
maintenance and allows a better organization of resources in
the production and in the supply chain. Considering the Big
Science framework, the computational resources can be divided
into two broad categories: (1) resources for operating the
scientific experiment, such as control and data acquisition
systems, and (2) resources needed for the storage of the
experimental results and offline data analysis. While resources
belonging to the first category cannot clearly be exported to
remote sites (the same holds considering computing resources
involved in an industrial plant), distributed architectures for the
management of a large amount of data and analysis computation
are adopted to keep pace with the ever-growing demand of data
space and computation in Big Science applications. However,
rather than a cloud organization with a central management of
resources, the more flexible grid organization is the best fit in this
context. One of the largest grid organizations is the Worldwide
LHC Computing Grid (WLCG) (Worldwide LHC, 2023) which
combines about 1.4 million computer cores and 1.5 exabytes of
storage from over 170 sites in 42 countries. Such an amount of
computing resources would be unaffordable even for a large
international scientific organization such as CERN and indeed
laboratories all around the world actively contribute to sharing
resources (CERN provides about 20% of the overall resources
of WLCG).

Related to the management of the Computing Grid
infrastructure, and more in general to any infrastructure devoted
to the supervision of the experiment operation, is the need for data
analytics tools that allow the collection, transformation, and
organization of cloud data. We are not referring here to the
management of the mainstream experiment, but rather to its
support infrastructure. In this context, the requirements are the
same both in Big Science and large industrial applications. For
example, the requirements in the supervision of a computing center
or of the building infrastructure are the same, regardless they refer to
a large industrial plant or a Big Science experiment. As a
consequence, solutions now extensively used in the industry such
as Kafka, Hadoop, and related data management tools such as
ElasticSearch and InfluxDB are also adopted in large scientific

experiments. In particular, Grafana, an open-source and Web-
based data visualization and monitoring tool used to create
interactive and customizable dashboards is being increasingly
used in scientific experiments (Hasmani et al., 2023). The main
reason for its widespread usage is the possibility of integrating
customized, application-specific data sources in the Grafana
framework, in addition to the large set of available interfaces for
SQL, NoSQL, and time series databases.

2.7 Machine learning

Machine Learning (ML) is a rapidly growing field with
potentially endless applications. Considering industrial
applications, ML can be used for quality control, automation,
and customization in production lines and for data analysis to
help make better decisions about inventories and prices. Not
surprisingly, ML applications can be found in Big Science for
solving common problems, such as feature recognition in camera
images, as well as more specific ones, such as deriving physical
parameters from a large set of experimental data. Convolutional
Neural Networks (CNN) are largely adopted in industrial
automation to detect defects in products and more in general to
retrieve information from images acquired by camera devices. There
is a great interest in the application of CNNs also in fusion research
because camera-based diagnostics, placed at a safe distance from the
reactor, will be used for plasma control in the next-generation of
fusion devices. Indeed any other equipment for measuring physical
plasma parameters would be soon destroyed by the high
temperature and the neutron flux in these reactors. Another
important application of ML in Fusion experiments is the
prediction of plasma disruptions (Vega et al., 2022). A plasma
disruption occurs upon sudden failure of plasma control, losing
plasma confinement. In this case, the large energy stored in the
plasma is transferred in a very short time to the walls and the
structure of the container, with big damage to the experimental
facility itself. It is therefore of paramount importance to detect in
advance a disruption so that defense actions such as a fast, but
controlled, termination of the plasma can be achieved.

Within the large number of ML applications in Big Science, it is
possible to identify two classes of applications of particular interest
with potential implications in industrial applications, namely FPGA
implementation and Physics Informed Neural Networks. In particle
accelerators a huge data volume needs to be efficiently analyzed in
real-time to reconstruct and filter nuclear events of interest,
requiring FPGA processing. In many cases, the algorithms for
the derivation of parameters of interest from raw detector data,
previously implemented with ad hoc fitting procedures, are now
efficiently implemented by means of ML algorithms such as CNNs.
Two factors however hinder straight implementation of deep
learning algorithms in very low latency (sub-microsecond) FPGA
applications. The first factor is the long development time that is
required to translate physics-motivated data processing into the
firmware, as engineering is a scarce and valuable resource. We have
already seen that this problem has been tackled at CERN in the
development of the hls4mltool that allows physicists to rapidly
prototype ML algorithms without extensive Verilog/VHDL
experience, greatly reducing the “time to physics.” The second
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factor is the challenge in creating an optimal FPGA implementation
to balance the FPGA resources needed to achieve the latency and
throughput goals of the target algorithm. The adopted techniques
for this purpose are (Duarte et al., 2019):

- Compression, attempting to reduce the number of synapses
and neurons without suffering performance loss;

- Quantization that can reduce the required resources for
computation (sums and multiplications) retaining an
acceptable loss in precision

- Parallelization tuning the degree of reuse of the multiplication
units for a given layer computation allowing a tradeoff between
FPGA resource utilization and latency in response.

In the CERN framework, these techniques are implemented in the
combined usage of the high-level ML framework (e.g., TensorFlow and
PyTorch) and of the proper parametrization of the hls4ml tool. These
techniques can boost processing efficiency also in other domains,
beyond high energy physics, from energy efficiency gains in data
centers to cell screening in medical applications. The research
activity in this field triggered also a collaboration between CERN
and an autonomous driving software company aiming at using the
techniques and software developed at CERN for deploying deep
learning on FPGAs for autonomous driving. Instead of particle-
physics data, the FPGAs will be used to interpret huge quantities of
data generated by normal driving conditions, using readouts from car
sensors to identify pedestrians and vehicles.

Physics Informed Neural Networks (PINNs) represent an
advancement in the use of Neural Networks (NNs) to solve
linear and nonlinear partial derivative equations. In PINNs, the
loss function that is minimized at every iteration in learning takes
into account also the underlying physical law governing the transfer
function to be learned. PINNs are of particular interest in nuclear
fusion for diagnosis and control. For example, controlling the shape
and position of the plasma requires knowledge in real-time of the
magnetic configuration inside and outside the plasma column. This
configuration is derived by solving an inverse problem based on the
Grad Shafranov equation, a nonlinear partial derivative equation
describing the equilibrium in a magnetized plasma. This task
requires an interactive procedure to adjust the equilibrium in
order to match the experimental measurements and the
computation can be speeded by orders of magnitude in time by
means of PINNs (Bonotto et al., 2024). More in general PINNs are
being increasingly used in several application within scientific
experiments where parameters of interest are derived from raw
data combining in this way the plasticity of ML algorithms with the
information brought by the knowledge of the underlying physical
phenomena. This concept can be extended to industrial applications
where the decision-making basis of the adopted ML models may be
difficult to understand being based on a black box model. PINNs
based solutions have already been recently proposed in industry,
such as a method for investigating crack propagation in industrial
applications (Tu et al., 2023).

Finally, it is worth mentioning recent results in the usage of
reinforcement learning achieved in nuclear fusion. Reinforcement
learning is already adopted in the industry for control-related tasks
such as self-driving cars and robot applications. A completely new
approach for plasma control based on reinforcement learning has

been developed at Google DeepMind and validated for the first time
in a fusion experiment (Degrave et al., 2022).

3 Discussion

The key element in the implementation of Industry 4.0 practice is
the concept of Cyber-Physical System which refers to complex
engineered systems that leverage embedded computing, sensing, and
network communication to monitor, coordinate control, and integrate
physical devices or processes (Zhang et al., 2023). These concepts were
pioneered in the nineties in several physics experiments, even before the
termBig Science was invented because they are intrinsic in the nature of
the application--the experiment--requiring acquiring and saving
recorded measurements and interacting both with the real
experiment and its data image.

The Industry 4.0 concepts gradually expanded towards smart
components incorporating intelligent robotics, machine learning
technology and mobile computers. Similar concepts pervaded at the
same time the technology involved in more recent Big Science projects.
In particular, an important concept in the Industry 4.0 movement is the
Digital Twin, which is the virtual replica of processes, production lines
factories, and supply chains. The Digital Twin concept is also a key
concept in Big Science for even more compelling reasons. Indeed,
especially for large and expensive Big Science experiments, the digital
replica of the experiment, that is its digital model, is mandatory in order
to reduce risk and optimize the experimental sessions. As an example, in
the 20 Billion Euro ITER experiment, simulated runs of a detailed
model of the experiment itself are expected to represent a routine
operation to be performed before every experimental session in order to
validate the experimental setup and to reduce the risk that a wrong
configuration may cause dramatic events, such as plasma disruptions,
that may even destroy the experimental apparatus. In other words, if in
industrial applications digital twins help increase productivity, improve
workflows, andminimize downtime, in several Big Science applications,
a digital twin is the only viable option to safely operate experiments.

It has been shown in the previous sections that, depending on
the specific field of application, common solutions have been often
adopted in industry and Big Science. At the same time, peculiar
aspects of Big Science applications have triggered new developments
from which industry eventually benefited. For example, considering
the more traditional plant systems such as vacuum and cooling, the
need for SCADA solutions able to integrate a large number of
components at CERN (a typical use case in large experiments)
triggered the development of WinCC-OA that is now also a
widespread solution in large industrial applications. Also
considering real-time applications, a variety of solutions, often
open source, are shared between industry and Big Science,
especially in the field of distributed information processing and
IIOT, such as Kafka and Grafana. More specific solutions are instead
adopted when referring to real-time control of critical equipment.
Even if the adopted strategies in the industry and Big Science do not
basically differ, the collaborative nature of scientific institutions led
to open-source solutions that are however not common in the
industry. Open source frameworks such as MARTe2 for real-time
control or EPICS for plant supervision have been developed and are
used in research, but they may well represent interesting solutions
also in industry. There is, in any case, increasing consensus towards
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using open source technologies in industrial applications for a
variety of reasons, among which: (1) Cost effectiveness, (2)
Flexibility due to the ease of modification whereas proprietary
software is often hardly customizable, (3) innovation, as open
source products are constantly being developed and improved by
a large community of contributors (Ebert, 2008). There are however
some disadvantages that must be taken into account especially when
deploying open-source solutions. For example, some open source
applications may be tricky to set up and use and, even if a
community is normally present on the web helping in finding
solutions, this fact has to be considered when time to production
is an issue.

Originally evolved in the collaborative research environment,
open source, and more recently open hardware, concepts, and
approaches proved successful in the industry, leading to several
open standards that allow for solutions that are interoperable,
modular and vendor independent, such as OPC-UA for industry
automation and MQTT for IIOT applications, open Modbus/TCP
for equipment supervision and control, PROFINET, a high level
network for industrial applications and EtherCAT for high speed
and low latency plant communication.

Among Big Science applications, CERN is, without doubt, the
most active scientific organization promoting the technological
transfer of open-source solutions toward industry. In the
previous sections the hls4ml package for machine learning
inference in FPGA and the White Rabbit project for high
precision timing have been presented, but there are many other
cooperation projects for technology transfer between CERN and
industrial partners (CERN, 2023).

4 Conclusion

In the paper, it has been shown how Big Science and industry
took advantage of synergy in several fields of application. It is true
that several concepts of Industry 4.0 have been pioneered in the
scientific research environment, however, several practices that
evolved in industry have been later imported successfully into

Big Science. Among those, software quality addressing
characteristics like reliability, usability, performance, and security
represents perhaps the most important contribution of industry in
the research world. Disciplined methods and best practices that are
likely to result in a higher quality product contrast with the
programming anarchy that used to be common in research and
university. This new approach required a change in mentality in
many software development teams when they moved from small
pioneering experiments to Big Science applications, closing a loop in
which new concepts are generated in the research environment, but
good practices are taken from the industrial experience.
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