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Multi-objective scheduling problems in workshops are commonly
encountered challenges in the increasingly competitive market economy.
These scheduling problems require a trade-off among multiple objectives
such as time, energy consumption, and product quality. The importance of
each optimization objective typically varies in different time periods or
contexts, necessitating decision-makers to devise optimal scheduling plans
accordingly. In actual production, decision-makers confront intricate multi-
objective scheduling problems that demand balancing clients’ requirements
and corporate interests while concurrently striving to reduce production
cycles and costs. In solving various problems, multi-objective evolutionary
algorithms have attracted the attention of researchers and gradually become
one of the mainstream methods to solve these problems. In recent years,
research combining multi-objective evolutionary algorithms with machine
learning technology has shown great potential, opening up new prospects for
improving the performance of multi-objective evolutionary methods. This
article comprehensively reviews the latest application progress of machine
learning in multi-objective evolutionary algorithms for scheduling problems.
We review various machine learning techniques employed for enhancing
multi-objective evolutionary algorithms, particularly focusing on different
types of reinforcement learning methods. Different categories of
scheduling problems addressed using these methods were also discussed,
including flow-shop scheduling issues, job-shop scheduling challenges, and
more. Finally, we highlighted the challenges faced by the field and outlined
future research directions.
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1 Introduction

Scheduling problems are a prevalent class of operational
research problems widely applied in practical work. Their central
objective is to allocate limited resources to multiple tasks within
certain constraints, aiming to satisfy or optimize one or more
performance indicators. The specific process of scheduling
involves assigning specific tasks to designated resources and
prioritizing tasks on the same resource, ultimately determining
the start and end times for each task on each resource. Efficient
optimization techniques and scheduling methods are key to achieve
energy conservation (Gao et al., 2020), reduce consumption
(Makhadmeh et al., 2019), lower emissions (Li and Wang, 2022),
reduce costs (Tang et al., 2021), and improve the optimality of
production systems (Kenné and Gharbi, 2000), and are the core
component to improving production efficiency and economic
benefits. Scheduling problems find significant applications in
various domains, including production planning, supply chain
management, transportation, aerospace, entertainment,
healthcare, and telecommunications, among others.
Consequently, research on scheduling holds paramount
theoretical and practical value. The study of production
scheduling problems originated in the 1950s and has attracted
considerable attention from researchers worldwide due to its
practical significance.

In the field of production scheduling, shop scheduling problems
are the earliest and most extensively studied categorty. Shop
scheduling refers to the process of optimizing the allocation of
resources such as equipment, personnel (Luo Q. et al., 2022), and
raw materials (Ramya et al., 2019) in a factory to meet production
plan requirements and maximize production efficiency. Its objective
is to ensure accurate execution of production plans while reducing
production costs and improving efficiency. Proper shop scheduling
plays a crucial role in manufacturing by ensuring smooth
production processes, minimizing waste and wait times
(Koulamas and Kyparisis, 2021), and improving production
quality and efficiency (Zhao et al., 2021a). Common types of
shop scheduling include flow-shop scheduling for continuous
production processes and job-shop scheduling for discrete
production processes, with variations such as parallel machine
scheduling (Lei and Liu, 2020), hybrid shop scheduling (Botta-
Genoulaz, 2000), and flexible shop scheduling (Li X. et al., 2022),
each having their unique characteristics and scheduling algorithms
that companies can choose based on their specific needs to achieve
optimal production benefits. Figure 1 illustrates the classification of
shop scheduling problems.

Several classic variants, such as the permutation flow-shop
scheduling problem, hybrid flow-shop scheduling problem, job-
shop scheduling problem, and flexible job-shop scheduling
problem, among others, are encompassed by the shop scheduling
problem. Building upon these classical problems, numerous other
scheduling problems can be derived, such as the flexible job-shop
scheduling problem considering composite processing limitations
and the distributed flexible job-shop scheduling problem. Real-
world shop scheduling can serve as a research problem, and
researchers can tackle these problems by designing efficient
scheduling algorithms.

Traditional job scheduling faces challenges in meeting market
demands. Its main limitation lies in excessive focus on a single
optimization goal, typically minimizing completion time (Ahmadian
et al., 2021), while overlooking other crucial factors. Concerning
production indicators, the emphasis solely on completion time
(Umam et al., 2022) neglects considerations such as machine
utilization (Abualigah and Diabat, 2021) and total processing time
(Dai et al., 2019), making scheduling less adaptable to diverse market
needs. Additionally, rigid scheduling strategies in traditional systems
struggle to flexibly respond to market changes and demand
fluctuations, resulting in delays or an inability to meet new market
requirements. To better address market demands, current research is
gradually shifting towards multi-objective optimization problems
(MOPs), highlighting the importance of considering factors like
machine utilization, delivery time (Liu et al., 2021), and inventory
costs (San-José et al., 2019). Simultaneously, introducing more flexible
and intelligent scheduling strategies and technologies becomes crucial
for better adaptation to the ever-changing market environment.
Therefore, research on MOPs in the field of scheduling holds
significant engineering importance (Lei, 2009).

FormostMOPs, the objectives are often in conflict. Consequently,
optimizing all objectives simultaneously to their respective optimal
values is unattainable. An array of compromise solutions among
different objectives is referred to as the Pareto optimal set. The
expression of MOP is (Cheung et al., 2016):

min. F t( ) � f1 t( ), f2 t( ), . . . , fm t( )( )T

s. t. t ∈ Ω (1)

where t = (t1, t2, . . . , tn) ∈Ω is a decision vector andΩ is the decision
space. F(t) consists of m objective functions (Li and Wang, 2022).
The objectives in Eq. 1 often manifest mutual conflicts (Gu and
Wang, 2020), where the optimization of one objective tends to
deteriorate another objective. To address this issue, Edgeworth and
Pareto (Stadler, 1979) introduced the concept of Pareto optimality as
a means to balance these objectives and attain relatively superior
solutions. Presented below are fundamental definitions related to
Pareto optimality (Voorneveld, 2003; Deb and Gupta, 2005; Gen
et al., 2008; Zitzler et al., 2008).

Definition 1. Pareto Dominance: If the vector u �
(u1, u2, . . . , um)T is better than the vector v � (v1, v2, . . . , vm)T,
iff ∀i ∈ {1, . . . , m}, ui#vi and u ≠ v. It is said that u dominates
v, denoted as u ≺ v.

Definition 2. Pareto optimal solutions: There does not exist any
feasible solution x ∈ D where all the objective values of f(x) are not
worse than the objective values of f(x*) and at least one objective
value is strictly better than the corresponding objective value of f(x*).
The mathematical expression is represented in Eq. 2.

x* ∈ D,ex inD, f x( )#f x*( ) (2)

Definition 3. Pareto Set: The amalgamation of all Pareto optimal
solutions is commonly denoted as the Pareto set (PS). The
mathematical expression is represented in Eq. 3.

PS � xps ∈ D | ex ∈ D, x < xps{ } (3)
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Definition 4. Pareto front: The assemblage of objective value
vectors corresponding to each solution within the PS is referred
to as the Pareto front (PF). The mathematical expression is
represented in Eq. 4.

PF � F x( ) ∈ Λ | x ∈ PS{ } (4)
Scheduling is a highly intricate and multi-dimensional discrete

optimization challenge encompassing the optimal arrangement of
jobs and operations, and the assignment of machines. It can be
formulated a function, denoted as follows:

f x*, y*( ) � min
x∈Ω

f x, y( ) (5)

In Eq. 5, where x represents an n-dimensional vector, x = (x1, x2,
. . . , xn), representing the prioritized order of n jobs or operations.
Similarly, y represents an n-dimensional vector, y = (y1, y2, . . . , yn),
indicating the allocation status of machines. The sequence of jobs
determines the order of machine allocation (Lin and Gen, 2018).

Numerous multi-objective optimization approaches have been
proposed, such as: heuristic approaches (Fattahi et al., 2007), multi-
objective evolutionary algorithms (MOEAs) (Gen and Cheng, 2000;
Zitzler et al., 2001; Deb et al., 2002; Espejo et al., 2009; Deb, 2011; Zhang
et al., 2014), machine learning-based approaches (Brik et al., 2019), etc.

Among them, MOEAs is a population-based evolutionary
algorithm (EA) that generates new solutions by evaluating
objective functions and using selection and recombination
operators. The methods of MOEAs can generally be
categorized into Pareto-dominance-based MOEAs (Srinivas
and Deb, 1994), decomposition-based MOEAs (MOEA/D)
(Zhang and Li, 2007), and indicator-based MOEAs (Zitzler
and Künzli, 2004).

1. Pareto-dominance-based MOEAs: This method is based on
Pareto dominance relationship, and by maintaining a set of
non dominated solutions, the algorithm can iteratively
evolve pareto optimal solutions that achieve compromise
on multiple objectives. This algorithm adopts non
dominated sorting and selection mechanisms, making the
selected solutions more likely to make significant progress
on the PF in each generation. The approach have been
proven effective in solving MOPs with two or three
objectives. However, when facing high-dimensional
MOPs, many Pareto-dominance-based MOEAs may
encounter selection pressure issues, making it challenging
for them to evolve effectively towards the true PF. Due to the
exponential growth of non-dominated solutions with an
increasing number of objectives during the early
iterations, the aforementioned issue arises. Consequently,
the convergence-maintaining mechanism based solely on
Pareto dominance (e.g., NSGA-III (Yi et al., 2020)) loses the
pressure to drive the population towards the PF. Hence,
relying solely on the criterion of Pareto dominance cannot
effectively differentiate the convergence level of individuals.
In light of this, the dual archive algorithm (Liu et al., 2019)
boosts solution convergence, while the enhanced dual
archive algorithm (Li et al., 2014) addresses the
complexities associated with high-dimensional multi-
objective problems. To achieve a harmonious equilibrium
between population convergence and diversity, Wang and
Tong (Wang and Tong, 2020) put forth a dimension-
convergent MOEA.

2. Decomposition-based MOEAs: A novel approach called
MOEA based on decomposition (MOEA/D). By leveraging

FIGURE 1
Classification of shop scheduling problems.
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decomposition, MOEA/D offers a promising avenue for multi-
objective evolutionary optimization. It facilitates the efficient
optimization of multiple objectives by breaking them down
into simpler subproblems and leveraging inter-subproblem
interactions. This approach has the potential to enhance the
scalability and computational efficiency of multiobjective
evolutionary optimization algorithms (Trivedi et al., 2016).
In MOEA/D, the evolutionary operators are highly sensitive to
the characteristics of the problem, particularly in different
search stages where the characteristics often exhibit
diversity. However, in existing integrated approaches, the
same evolutionary operators are applied to all subproblems/
subspaces. For complex MOPs, the characteristics of
subproblems/subspaces vary, which significantly weakens
their distribution. Furthermore, the distribution of high-
dimensional MOPs cannot be effectively guaranteed,
resulting in suboptimal performance.

3. Indicator-based MOEAs: A method of evaluating and
comparing solution sets generated by algorithms by
designing and utilizing performance indicators. These
indicators typically include convergence, diversity, balance,
etc., aimed at helping optimization algorithms better
understand and improve their performance when dealing
with multi-objective problems. By introducing these
indicators, indicator-based MOEAs provide researchers with
an effective way to quantify and compare the performance of
multi-objective optimization algorithms. Among the indicator-
based MOEAs (Beume et al., 2007), the s-metric selection
evolutionary multi-objective algorithm stands out as a
widely recognized and representative method. Furthermore,
there are other notable approaches in this domain, such as
MOEA whose environmental selection is based on an
enhanced inverted generational distance indicator with
noncontributing solution detection (IGD-NS) (Tian et al.,
2016) and MOEA methods based on IGD-NS (Tian
et al., 2017), etc.

Despite the tremendous success of existing MOEAs in
addressing multi-objective problems, they are predominantly
focused on unconstrained MOPs, and the performance of
most MOEAs drastically deteriorates when confronted
with large-scale MOPs. The emergence of machine learning
(ML) has offered potential to enhance the performance of
MOEAs. Early investigations into the integration of ML and
EAs were initiated by Goldberg and Holland in 1988 (Booker
et al., 1989).

This paper primarily emphasizes recent advancements in
combining ML, particularly emerging reinforcement learning
(RL), with MOEAs for solving multi-objective shop scheduling
problems. In Section 2, we provide an in-depth and
comprehensive discussion on the background knowledge of
scheduling problems and RL. Subsequently, in Section 3, we
investigate the detailed application of traditional MOEAs and RL
in scheduling problems. Following that, in Section 4, we present the
latest progress in the application of enhanced MOEAs in the field of
scheduling. Finally, in Section 5, we summarize the paper and
propose potential avenues for future research.

2 Shop scheduling problems

2.1 Flow-shop scheduling problem

The flow-shop scheduling problem (FSP) is an NP-hard
optimization problem (Berlińska and Przybylski, 2021), and
researchers typically employ nature-inspired EA or other meta-
heuristic algorithms (Goli et al., 2023) to solve it. These algorithms
often leverage inspiration from natural evolution processes,
collective behavior, and physical laws to enhance search
efficiency, using a variety of potential options to preserve
population diversity and prevent being stuck in local optima
(Katoch et al., 2021).

The FSP refers to the task of scheduling the sequence and timing
of different operations in a manufacturing shop consisting of
multiple machines. The objective is to achieve the optimal
production efficiency and minimize the production cost.

The problem can be formulated using mathematical models that
include the following elements.

• Individually assigned to a specific machine, each job is
executed solely once on that designated machine.

• Each machine has a limited capacity, therefore only one job
may be executed concurrently on each machine at
any one time.

• Every job can only be finished on a single machine; it cannot
be changed to another.

• Jobs are non-preemptive, once they commence running on a
machine, they cannot be paused or transferred to other
machines midway.

• Regardless of changes to the schedule, the processing time for
every job on every machine is fixed.

• The order in which the machines are used is predetermined,
and each job is completed on the machines in the
designated sequence.

The following is a mathematical description of the FSP.

c i, j( ) � t i, j( ) (6)
c i, j( ) � c i, j − 1( ) + t i, j( ) (7)
c i, j( ) � c i − 1, j( ) + t i, j( ) (8)

c i, j( ) � max c i − 1, j( ), c i, j − 1( )( ) + t i, j( ) (9)
MakeSpan � min c n,m( )( ) (10)

Where the completion time of task i on machine j equals its own
processing time, as shown by Eq. 6. Eq. 7 denotes the completion
time of task i on machine j as the sum of the completion time of job i
on the preceding machine and the processing time for the current
operation. The completion time of task i on machine j is determined
by adding the cumulative completion time of the previous job on
machine j and the processing time necessary for the current
operation, as stated in Eq. 8. As demonstrated by Eq. 9, the
completion time of job i on machine j can be represented as the
sum of the processing time for the current operation and the
maximum value obtained by comparing the completion time of
the i − 1st job on machine j with the completion time of job i on
machine j − 1. Eq. 10 demonstrates that the makespan and overall
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completion time of the complete assembly line are contingent upon
the finalization time of the last task n on the last machine m.

Typically, FSPs are categorized based on the sequence of
operations and the attributes of the processing machines into
various classifications, including permutation flow-shop
scheduling Problem (PFSP) (de Fátima Morais et al., 2022), no-
wait flow-shop scheduling Problem (NWFSP) (Zhao et al., 2019),
hybrid flow-shop scheduling Problem (HFSP) (Fernandez-Viagas
et al., 2019), no-idle FSP (Zhou et al., 2014; Zhang W. et al., 2021),
and block FSP (Miyata and Nagano, 2019), etc. Figure 2 represents a
Gantt chart for a flow-shop.

2.2 Hybrid flow-shop scheduling problem

The HFSP is an important production planning problem widely
used in different manufacturing fields. Researchers use various
algorithms to solve HFSP problems, considering different goals
and process constraints.

The scheduling challenge in a hybrid-flow shop setting can be
broadly defined as handling n jobs that follow similar processing
routes across m processing stages. The presence of at least one
parallel machine, and preferably two or more, is essential. Moreover,
it is imperative that these parallel machines exhibit uniform
processing capabilities.

With the provided processing times for all jobs, the primary goal
of this issue is to ascertain the sequential arrangement of the n jobs
both before and after each processing stage. Additionally, it involves
allocating devices during each stage to minimize the total
completion time of all jobs. The assumptions underlying the
problem model are outlined below.

• Each job can be processed on only one machine at
the same time.

• The same machine can only process one job at a time.
• The processing duration for each job on a specific device is
predetermined.

• Once initiated, the processing procedure remains
uninterrupted.

• Sequential dependencies are present solely within the
operations of a given job, with no inter-operation
constraints across distinct jobs.

• Unforeseen factors, such as machine malfunctions, are not
taken into consideration.

• Any additional time incurred from transitioning between jobs
on the same machine is not factored into the analysis.

2.2.1 Decision variables
Xq,j,i: The feasibility of processing job j on machine q during

operation i. A value of Xq,j,i = 1 indicates the feasibility of processing,
while Xq,j,i = 0 signifies the impossibility of processing;

Yij1j2: The precedence relationship between job j1 and j2 in
operation i. A value of Yij1j2 = 1 indicates that j1 takes precedence,
while Yij1j2 = 0 indicates that j1 takes precedence.

The following is a mathematical representation of the HFSP.

min .Tmax (11)
Tmax � max Fji{ } (12)
Fji � Sji + Tji (13)

s. t.∑
Bi

q�1
Xqji � 1 (14)

Sj i+1( ) − SjiPTji (15)
Yij1j2 + Yij2j1P1 j1, j2 � 1, . . . , n; j1 ≠ j2( ) (16)
Sj1 i − Fj2i + C × 3 − Yij2j1 −Xj1qi −Xj2qi( )P0 (17)

Eq. 11 represents the minimization of the overall completion
time. Eq. 12 signifies the overall completion time for all jobs, which is
the maximum completion time within the set of completion times
for each job j at operation i. Eq. 13 represents the processing time for
any job at any operation. Eq. 14 indicates that any operation for any
job is performed by only one machine within that operation. Eq. 15
states that any job must complete the processing of the current
operation before moving on to the next one. Eqs 16, 17, when
combined, express that any machine within any operation cannot
process more than one job at the same time.

The actual processing environment of enterprises is complex
and ever-changing. The traditional formulation of the HFSP is no
longer adequate to address the diverse requirements of enterprises.
In response to specific demands, considering variations in
constraints, characteristics of machining tasks, and the quantity
of jobs, diverse extensions of the HFSP have surfaced. Examples
include the multi-stage HFSP (Hoogeveen et al., 1996), reentrant
HFSP (Dugardin et al., 2010), no-wait HFSP (Engin and Güçlü,
2018), among others.

2.3 Job-shop scheduling problem

The job-shop scheduling problem (JSP) is a fundamental
combinatorial optimization issue in the field of operational
research and management science (Xiong et al., 2022). JSP is
commonly characterized as the efficient scheduling of n jobs on
m machines, optimizing performance indicators under the
assumptions of known processing techniques, machine sequences,
and processing times for each job. When addressing JSPs, the
following fundamental constraints need to be taken into
consideration.

FIGURE 2
A Gantt chart of a three-job, three-machine flow-shop.
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• Every job is comprised of multiple operations that need to be
accomplished.

• A job can only be executed on a single machine at
any given time.

• The predetermined processing time for each operation on
each machine has been determined.

• All jobs are accessible and ready for processing from the start
• Each machine can handle only one operation at a time.
• All operations must be completed on the same group
of machines.

In this paper, JSP as an integer programming model will be
represented.

min. max
1≤i≤n,1≤k≤m

cik{ } (18)
s. t. cik − sik +M 1 − aihk( )≥ cih,∀i, h (19)

xijk > 0, cjk − cik +M 1 − xijk( )≥ sjk,∀j, k (20)
cik ≥ 0,∀i, k (21)

In Eq. 18, Where n denotes the number of jobs,m represents the
number of machines. In Eqs 19–21, sik and cik indicate the processing
time and completion time of job i onmachine k. i, j ∈ {1, 2, . . . , n}; h,
k ∈ {1, 2, . . . ,m}. Here,M signifies a sufficiently large positive value.
The binary variable aihk with values 0 and 1 denotes the precedence
relationship between jobs i and h on machine k; aihk being 0 implies
job i is processed before job h on machine k, while aihk being
1 signifies the reverse. Similarly, the binary variable xijk, also with
values 0 and 1, indicates the sequencing of jobs i and j on machine k;
xijk being 0 denotes job i is scheduled before job j on machine k,
whereas xijk being 1 implies the opposite. The objective of the JSP is
to determine the optimal schedule of operations for all jobs that
minimizes the makespan (Cmax), which is defined as the maximum
completion time among all jobs.

JSP is a highly complex problem due to its combinatorial nature
and the large number of possible solutions. Finding an optimal
solution to JSP is known to be NP-hard, which means that it is
computationally intractable for large instances. Therefore, many
heuristic and meta-heuristic algorithms have been proposed to find
near-optimal solutions to JSP (Tsujimura et al., 1995; Cheng et al.,
1996; 1999; Tavakkoli-Moghaddam et al., 2005; Hao et al., 2017).

In addition, JSP has various forms and variants, including
dynamic job-shop scheduling problem (Ramasesh, 1990;
Kundakcı and Kulak, 2016; Mohan et al., 2019), flexible job-shop

scheduling problem (FJSP) (Pezzella et al., 2008; Zhang G. et al.,
2011; Xie et al., 2019), distributed job-shop scheduling problem
(DJSP) (De Giovanni and Pezzella, 2010; Meng et al., 2020; Şahman,
2021), and JSP with consideration of energy and environmental
factors (Jiang et al., 2019; Wang et al., 2020), etc. Figure 3 represents
a Gantt chart for a job-shop.

2.4 Flexible job-shop scheduling problem

The FJSP is a variant of the classical JSP that has gained
significant attention in the field of research on JSP. In traditional
JSP, each process must be completed on a specific machine tool,
while flexible job shop scheduling allows each process to be carried
out on multiple different machine tools, and the time required for
the execution of the operation exhibits variation contingent upon
the performance of the machine tool. This extension brings more
problem complexity while reducing machine constraints and
expanding the search space for feasible solutions.

The issue may be delineated in the following manner: The
production system is comprised of a total of m machines and n
distinct sorts of jobs. Every job comprises one or more operations,
with a predetermined sequence of these operations. Every operation
can be processed on multiple different machines, each with its own
performance and processing speed. The scheduling objective is to
choose the most appropriate machine for each operation, establish
the optimal sequence and start time for each job operation on each
machine, and optimize the system’s performance indicators.
Additionally, it is essential that the following limitations be duly met.

• Initial Setup: At the beginning of the task, all jobs and
equipment are ready and ready to start working immediately.

• Machine Constraints: Each machine can only perform one
operation at a time, meaning only one machining task is
allowed to take place simultaneously.

• Operation Selection: Each operation can be processed on
multiple machines, but only one machine can be selected
for processing at a time.

• Continuous Processing: Once processing begins, it cannot be
interrupted and must proceed continuously without pauses or
interruptions.

• Operation Sequence: Each job must follow the specified
sequence of operations, with the next operation starting
only after the completion of the previous one.

• Job Priorities: All jobs have equal processing priorities,
ensuring the fair allocation of processing times for all jobs
and preventing prolonged waiting times for any particular job.

In 1990, Brucker and Schlie (Brucker and Schlie, 1990) first
introduced the FJSP, and its solving methods can be broadly
categorized into three main classes: exact algorithms (Woeginger,
2003), heuristic algorithms, and intelligent optimization algorithms
(Li W. et al., 2021).

2.4.1 Exact algorithms
Exact algorithms are a category of algorithms specifically

designed to find the optimal solution to a given problem. These
algorithms are recognized for their systematic and deterministic

FIGURE 3
A Gantt chart of a three-job, three-machine job-shop.
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approaches, making them particularly suitable for addressing
intricate combinatorial optimization problems. Some of the main
exact algorithms include branch and bound (Narendra and
Fukunaga, 1977), cutting-plane methods (Kelley, 1960), integer
linear programming (Schrijver, 1998; Moon et al., 2004), mixed-
integer linear programming (Floudas and Lin, 2005), and so on.
Torabi et al. (Torabi et al., 2005) proposed a novel mixed integer
nonlinear programmingmethod for solving the common cycle multi
product batch scheduling problem in flexible job shops. Emami et al.
(Emami et al., 2016) developed an innovative Lagrangian relaxation
algorithm for handling simultaneous order acceptance and
scheduling problems in non identical parallel machine
environments. Their method uses the cutting plane method to
dynamically update Lagrange multipliers to improve the
optimization efficiency of the problem.

The primary objective of exact algorithms is to determine the
best solution to a given issue, as opposed to providing an
approximation. In instances when issue sizes are modest, the
processing time necessary to get the best solution by use of
precise methods is often deemed satisfactory. Nevertheless, when
the size of the issue rises, the computing complexity experiences a
substantial increase. Therefore, the task of identifying the most
efficient solution within a feasible time is a significant challenge and
complexity, depending on the current computational resources, may
become infeasible (Lin and Gen, 2018).

2.4.2 Heuristic algorithms
A heuristic algorithm is actually a set of rules with guiding

properties, which are used to guide the algorithm in finding
directions to solve problems in the search space. Under the
guidance of these rules, the algorithm can find the optimal solution
to the problem, but it may not necessarily be the optimal solution. At
present, many heuristic algorithms have been widely applied to handle
FJSP, with most of them using heuristic rules as the main method,
which usually come from practical scheduling problems.

Scrich et al. (Scrich et al., 2004) proposed two heuristic
algorithms based on taboo search when solving FJSP with the
optimization objective of minimizing total delay: a hierarchical
process and a multiple initiation process. The core idea of these
algorithms is to generate initial solutions using scheduling rules, and
then search in the critical path neighborhood represented by the
disjunction graph to improve the solution. In addition, Shanker et al.
(Shanker and Tzen, 1985) compared these heuristic algorithms with
precise mixed integer programming and proposed a simulation
model for system performance evaluation by combining four
scheduling rules: first In first out, shortest processing, longest
processing time, and most operations remaining first.

Heuristic algorithms have the ability to quickly respond and
generate feasible scheduling solutions when solving specific
problems. More importantly, the solving complexity of these
algorithms remains low sensitivity as the problem size increases,
making them still effective in dealing with large-scale problems.
Therefore, heuristic algorithms play an important role in solving FJSP.

2.4.3 Intelligent optimization algorithms
Intelligent optimization algorithms are important research

methods for solving FJSP, which can be divided into EA and
swarm intelligence algorithms. The proposal of EA was inspired

by natural evolution, and classic EA includes genetic algorithms
(Gao et al., 2007; Gen et al., 2009), evolutionary strategies (Beyer and
Schwefel, 2002), genetic programming (Langdon and Poli, 2013),
and differential evolution (Price, 2013). Among these methods,
genetic algorithm (GA) has the most extensive and in-depth
research and application.

Gao et al. (Gao et al., 2007) adopts a hybrid method of a new GA
and an innovative local search process (bottleneck shifting) to
optimize the three objectives in FJSP: minimizing Cmax,
minimizing maximum machine workload, and minimizing total
workload. The author verified the performance of their proposed
method by conducting numerical experiments on a large number of
representative problems to verify its effectiveness in solving FJSP. In
addition, Gao et al. (Gao et al., 2008) have developed a hybrid GA to
solve FJSP with three objectives, which uses two vectors to represent
the solution. They adopt advanced crossover and mutation
operations to adapt to the characteristics of special chromosome
structures and problems. In order to enhance the search ability, GA
individuals first improve through variable neighborhood descent. As
applications based on the FJSP model, Chou et al. (Chou et al., 2014)
reported a case study of multiobjective hybrid genetic algorithm for
thin film transistor liquid crystal display module assembly
scheduling. Jamrus et al. (Jamrus et al., 2015) proposed a
multistage production distribution under uncertainty demands by
discrete Particle Swarm Optimization approaches with extended
priority based-hybrid genetic algorithm. Chamnanlor et al.
(Chamnanlor et al., 2017) reported embedding ant system in
genetic algorithm for re-entrant hybrid flow shop scheduling
problems with time window constraints.

The swarm intelligence algorithm is an excellent method for
solving FJSP. This type of algorithm has simple principles, strong
robustness, and can find almost the best solution in a relatively short
time, and is easy to implement.

2.5 Distributed shop scheduling problem

The distributed shop scheduling problem (DSSP) is a study on
optimizing the scheduling of job allocation between different
factories and processing sequences within each factory in a
distributed manufacturing context (Toptal and Sabuncuoglu,
2010). DSSP typically involves collaborative production among
multiple factories or cooperative production among different
companies, aiming to maximize production efficiency by
optimizing scheduling indicators. DSSP is a problem involving
multiple shops and multiple tasks, where each task requires
processing in one or more shops. The objective of this problem
is to complete all tasks as much as possible within a given time and
minimize the total cost or maximize the total profit. Combining the
traditional JSP, this paper presents the model of DJSP as follows.

• Workshops and their internal manufacturing resources are
distributed at different geographical locations, interconnected
through a network to facilitate the exchange and sharing of
manufacturing task and process information.

• Each workshop and its internal manufacturing resources
possess independent processing capabilities and intelligent
decision-making capabilities. The processing capacities of
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various machine devices may be uniform or diverse, with fixed
categories, quantities, and capabilities.

• Strict processing sequence constraints exist between successive
operations of the same jobs, necessitating sequential processing of
each operation according to the technological order.

• Different operations of the same jobs task must be completed
within the same workshop.

• During the shop scheduling process, jobs can be dynamically
added, and global tasks may undergo reallocation and
rescheduling based on demand.

The notations of mathematical model of DSSP is expressed
as follows.

2.5.1 Indices
j, h: Index of job, (j, h = 0, 1, 2, . . . , n), where job 0 is a virtual job;
i, l: Index of machine, (i, l = 1, 2, . . . , m);
k: Index of factory, (k = 1, 2, . . . , f).

2.5.2 Parameters
n: The number of jobs;
m: The number of machines;
f: The number of factories;
pj,i: Processing time of job j on machine i;
Sj,i: Start time of job j on machine i;
A: A positive infinity.

2.5.3 Decision variables
Xh,j,i,k: 1 when job j is processed on machine i in factory k after

job h, otherwise 0;
aj,l,i: 1 when job j is processed on machine i after completion on

machine l, otherwise 0.

2.5.4 Mathematical model
The mixed-integer linear programming model (MILP)

of DSSP with minimization of Cmax is formulated as follows.

min. Cmax (22)

s. t. ∑
n

h�0,h≠j
∑
f

k�1
Xh,j,1,k,∀j (23)

∑
n

h�0,h≠j
Xh,j,i,k � ∑

n

h�0,h≠j
Xh,j,1,k,∀j, i> 1, k (24)

∑
n

j�1,j≠h
Xh,j,i,k ≤ ∑

n

j�0,j≠h
Xh,j,i,k,∀h> 1, i, k (25)

∑
n

j�1
X0,j,i,k � 1,∀i, k (26)

∑
n

j�1
Xh,j,i,k +Xj,h,i,k( )≤ 1,∀j> n, h> j, i (27)

Sj,i ≥ Sj,l + pj,l,∀j, i, l ≠ i | aj,l,i � 1 (28)
Sj,i ≥ Sh,i + ph,i − A 1 −Xh,j,i,k( ),∀h> 0, j ≠ h, i, k (29)

Cmax ≥ Sj,i + pj,i,∀i (30)
Sj,i ≥ 0,∀k, i (31)

Xh,j,i,k � 0, 1{ },∀j, h ≠ j, i, k (32)

Eq. 22 indicates that the objective is tominimize the total time of the
manufacturing process. Eq. 23 ensures that each job can only be assigned
to one factory. Eqs 24, 25 ensure that all processing operations for a job
are carried out in the same factory. Eq. 26 represents the initial operation
for each job on each machine. Eq. 27 ensures that each operation can
only have one adjacent operation. Eq. 28 indicates that the next
operation for the same job cannot commence until the preceding
operation is completed. Eq. 29 ensures that each machine must be in
a non-occupied state before commencing processing. Eq. 30 defines the
Cmax of the problem. Eq. 31 ensures that the start time for processing is a
non-negative value. Eq. 32 defines binary variables used to represent the
status of each operation.

DSSP is an extension of the shop scheduling problem that
considers collaboration and resource sharing among multiple
factories and processing centers. Common models include
distributed parallel machine scheduling (Lei and Liu, 2020),
distributed flow-shop scheduling problem (Han X. et al., 2021),
DJSP (Şahman, 2021), distributed assembly shop scheduling
problem (Zhao et al., 2021b), etc. To improve the efficiency and
quality of problem-solving, researchers have proposed various
optimization algorithms and methods (Li et al., 2022b; Lei and
Su, 2023; Song et al., 2023; Ying et al., 2023; Yue et al., 2023). Figure 4
depicts a schematic diagram of a distributed shop. Figure 5 shows
the distribution of different types of shops in the shop scheduling
problems collected in this paper.

2.6 Distributed hybrid flow-shop
scheduling problem

As the manufacturing industry shifts from a single factory to a
multi factory model, distributed scheduling issues have become the
focus. Among them, there is relatively little research on the
distributed hybrid flow shop scheduling problem (DHFSP). Some
studies have proposed algorithms to solve DHFSP, taking into
account factors such as multiprocessor tasks (Ying and Lin, 2018;
Cai et al., 2020), maximum completion time (Hao et al., 2019), and
sequence dependent preparation time (Lei and Wang, 2020).

Studying the DHFSP problem is of great significance for
improving production efficiency, reducing inventory costs, and
better utilizing manufacturing resources. Compared to traditional
HFSP problems, solving DHFSP problems can bring greater
performance improvement to enterprises. In addition, DHFSP
issues are widely present in multiple manufacturing scenarios,
such as wafer manufacturing factories. However, due to the
introduction of the factory allocation sub problem, the DHFSP
problem is more complex and difficult to solve. Therefore,
studying the DHFSP problem is of great significance.

2.6.1 Homogeneous distributed hybrid flow-shop
scheduling problem

Compared to HFSP, the homogeneous DHFSP requires
addressing three sub-problems simultaneously: the allocation of
jobs among workshops, the processing sequence of jobs within
each workshop, and the selection of machines. The single-layer
encoding approach used for HFSP is no longer suitable for this new
problem. This chapter provides a detailed introduction to the
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homogeneous DHFSP and proposes a mathematical model based on
mixed-integer linear programming to describe it.

• All factories have the same number of stages, the same number
of machines, and identical machine performance.

• All jobs can freely choose to be processed in any factory.
• At any given moment, each job can only be assigned to
one factory.

• Once a job begins processing in a certain factory, the
assignment cannot be changed.

The notations of mathematical model of homogeneous DHFSP
is expressed as follows.

2.6.1.1 Parameters
F: The collection of factories, (F = 1, . . . , f, . . . i);
L: The collection of stages, (L = 1, . . . , l, . . . p);
J: The collection of jobs, (J = 1, . . . , j, . . . q);
T: The collection of machine positions, (Q = 1, . . . , t, . . . k);
Pf: Machine collection for factory f;
Pl,f: Set of machines in the lth stage of the factory f;
Sj,l: The time required to complete job j during stage l;
Vj,l: The start time of job j on stage l;
Ij,l: The completion time of job j during stage l;
PVf,p,t: Starting time of machine p in factory f at time t;
PIf,p,t: The completion time of machine p in factory f at time t.

2.6.1.2 Decision variables
Aj,f: If job j is allocated to factory f, it is represented as 1;

otherwise, it is represented as 0.
Bj,l,f,p,t: If job j is designated to the position t onmachine p during

stage l of factory f for processing, it is denoted as 1; otherwise, it is
denoted as 0.

2.6.1.3 Mathematical model
The MILP of homogeneous DHFSP with minimization of Cmax

is formulated as follows.

min. Cmax (33)
s. t. Cmax ≥ Ij,p,∀j ∈ J (34)
∑
f∈F

Aj,f � 1,∀j ∈ J (35)

Aj,f � ∑
p∈Pl,f

∑
t∈T

Bj,l,f,p,t,∀l ∈ L, j ∈ J, f ∈ F (36)

∑
j∈J

Bj,l,f,p,t ≤ 1,∀f ∈ F, p ∈ Pl,f, t ∈ T (37)

∑
j∈J

Bj,l,f,p,t ≥ ∑
j′∈J

Bj′,l,f,p,t+1,∀f ∈ F, l ∈ L, p ∈ Pl,f, t ∈ 1, . . . , q − 1{ }

(38)

FIGURE 4
Schematic diagram of distributed shop scheduling.

FIGURE 5
Proportion of various shop scheduling problems in this paper.
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PIf,p,t � PVf,p,t +∑ Sj,lBj,l,f,p,t( ),∀f ∈ F, l ∈ L, p ∈ Pl,f (39)
PVf,p,t+1 ≥PIf,p,t,∀f ∈ F, p ∈ Pf, t ∈ 1, . . . , q − 1{ } (40)

PVf,p,1 ≥ vj,j,l − P 1 − Bj,l,f,p,t( ),∀f ∈ F, l ∈ L, p ∈ Pf, t ∈ T (41)
PVf,p,t ≤Vj,l + P 1 − Bj,l,f,p,t( ),∀f ∈ F, l ∈ L, j ∈ J, p ∈ Pl,f, t ∈ T

(42)
PVf,p,t ≥Vj,l − P 1 − Bj,l,f,p,t( ),∀f ∈ F, l ∈ L, j ∈ J, p ∈ Pl,f, t ∈ T

(43)
Ij,l � Vj,l + Sj,l,∀j ∈ J, l ∈ 1, . . . , p − 1{ } (44)
Ij,l ≤Vj,l+1,∀j ∈ J, l ∈ 1, . . . , p − 1{ } (45)
PVf,p,t ≥ 0,∀f ∈ F, p ∈ Pf, t ∈ T (46)

Vj,l ≥ 0,∀j ∈ J, l ∈ L (47)

Eq. 33 represents the objective of homogeneous DHFSP
optimization as minimizing Cmax. Eq. 34 ensures that Cmax is not
less than the completion time of any factory. Eq. 35 restricts each job to
be assigned to only one factory. Eq. 36 specifies that each job can be
processed on only onemachine in one stage within a factory at the same
time. Eq. 37 indicates that each machine in each factory can only
process one job at the same time. Eq. 38 indicates that each job selects a
machine based on the machine’s consecutive position and ensures the
selection of the current position of themachine. Eqs 39, 40 represent the
start and end times of each machine position in each factory. Eq. 41
ensures that the start time of a job is not earlier than the start time of the
machine in the factory. Eqs 42, 43 describe the respective relationships
between machine positions and job sequences. Eq. 44 defines the
completion time of a job as the sum of the start time of the
machine processing that job and the processing time. Eq. 45
indicates that the processing sequence is the same for all jobs. Eqs
46, 47 ensure that the start time of each machine is not earlier than 0.

2.6.2 Heterogeneous distributed hybrid flow-shop
scheduling problem

Researchers have extended the homogenous DHFSP by
considering the heterogeneity of the distributed factory structure,
including variations in machine quantities and performance. The
differences in machine performance are reflected in inconsistent
processing times, and there are also sequence-dependent setup time
constraints between differentmachines. This new problem is referred to
as the heterogeneous DHFSP. The heterogeneous DHFSP introduces
variations based on the DHFSP by incorporating multiple factory-
specific processing environment differences. Building upon the
description provided in Section 2.6.1, the distinctive settings for the
heterogeneous DHFSP are as follows.

• There are i factory, each with the same number of stages, but
the number of machines, processing time, and preparation
time for each stage are different.

• The preparation time of a machine is related to the sequence of
jobs before and after processing, that is, it is
sequence dependent.

• The processing time and sequence related preparation time of
the machine depend on the type of job.

The notations of mathematical model of heterogeneous DHFSP
is expressed as follows.

2.6.2.1 Parameters
F: The collection of factories, (F = 1, . . . , f, . . . i);
L: The collection of stages, (L = 1, . . . , l, . . . p);
J: The collection of jobs, (J = 1, . . . , j, . . . q);
T: The collection of machine positions, (Q = 1, . . . , t, . . . k);
Pf : Machine collection for factory f;
Pl,f : Set of machines in the lth stage of the factory f;
Sj,l,f,p: The duration it takes for job j to be completed on machine

p during stage l within factory f;
Vj,l: The start time of job j on stage l;
Ij,l: The completion time of job j during stage l;
PVf,p,t: Starting time of machine p in factory f at time t;
PIf,p,t: The completion time of machine p in factory f at time t;
Vj,j′,l: The initiation time for the setup from job j to job j′ during

stage l, where if job j is the initial job to be processed, then j′ = j.

2.6.2.2 Decision variables
Aj,f : Aj,f is 1 if job j is allocated to factory f, and 0 otherwise.
Bj,l,f,p,t: Bj,l,f,p,t is 1 if job j is designated to position t on machine p

during stage l of factory f for processing, and 0 otherwise.

2.6.2.3 Mathematical model
The MILP of heterogeneous DHFSP with minimization of Cmax

is formulated as follows.

min. Cmax (48)
s. t. Cmax ≥ Ij,p,∀j ∈ J (49)
∑
f∈F

Aj,f � 1,∀j ∈ J (50)

Aj,f � ∑
p∈Pl,f

∑
t∈T

Bj,l,f,p,t,∀l ∈ L, j ∈ J, f ∈ F (51)

∑
j∈J

Bj,l,f,p,t ≤ 1,∀f ∈ F, p ∈ Pl,f, t ∈ T (52)

∑
j∈J

Bj,l,f,p,t ≥ ∑
j′∈J

Bj′,l,f,p,t+1,∀f ∈ F, l ∈ L, p ∈ Pl,f, t ∈ 1, . . . , q − 1{ }

(53)
PIf,p,t � pVf,p,t +∑ Sj,l,f,pBj,l,f,p,t( ),∀f ∈ F, l ∈ L, p ∈ Pl,f, t ∈ T

(54)
PVf,p,t+1 ≥PIf,p,t,∀f ∈ F, p ∈ Pl,f, t ∈ 1, . . . , q − 1{ } (55)
PVf,p,t+1 + P 1 − Bj,l,f,p,t+1( )≥PIf,p,t

+∑
j∈J

vj,j,lBj,j,f,p,t,∀f ∈ F, l ∈ L, p ∈ Pf, t ∈ 1, . . . , q − 1{ }

(56)
PVf,p,1 ≥ vj,j,1 − P 1 − Bj,l,f,p,t( ),∀f ∈ F, l ∈ L, p ∈ Pf, t ∈ T (57)
PVf,p,t ≤ vj,l + P 1 − Bj,l,f,p,t( ),∀f ∈ F, l ∈ L, j ∈ J, p ∈ Pl,f, t ∈ T

(58)
PVf,p,t ≥ vj,l − P 1 − Bj,l,f,p,t( ),∀f ∈ F, l ∈ L, j ∈ J, p ∈ Pl,f, t ∈ T

(59)
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Fj,l � Vj,l + ∑
f∈F

∑
p∈Pl,f

∑
t∈T

Sj,l,f,pAj,l,f,p,t,∀j ∈ J, l ∈ 1, . . . , p − 1{ }

(60)
Ij,l ≤Vj,l+1,∀j ∈ J, l ∈ 1, . . . , p − 1{ } (61)
PVf,p,t ≥ 0,∀f ∈ F, p ∈ Pf, t ∈ T (62)

Eq. 48 represents the objective function aiming to minimize the
maximum completion time. Eq. 49 denotes the objective value,
ensuring it is greater than or equal to the completion time of any
factory. Eq. 50 represents the constraint that each job can only be
assigned to one factory. Eq. 51 ensures that each job can only be
processed within one factory and only one machine can be selected at
any given stage. Eq. 52 indicates that each machine is limited to
handling a single job concurrently. Eq. 53 ensures that every job
chooses a machine based on its sequential position and guarantees the
selection of the machine currently in that position. Eqs 54 and 55
determine the start and end times of each machine’s position in all
factory. Eq. 56 represents the adjustment constraints for sequence-
related setup times. Eq. 57 specifies that the initiation time of the
initial job must not be earlier than the setup time for each machine
within the factory. Eqs 58, 59 define the corresponding relationships
between machine positions and job sequences. Eq. 60 defines the
completion time of a job. Eq. 61 defines that jobs pass through all
stages within a factory in sequence. Eq. 62 specifies that nomachine at
any level of a manufacturing shall have a start time that is less than 0.

Researchers have conducted studies on single-objective DHFSP
with the objective of minimizing the maximum completion time.
Various algorithms have been employed to address this problem,
including the adaptive iterative greedy algorithm (Ying and Lin,
2018), dynamic frog-leaping algorithm (Cai et al., 2020), hybrid
brainstorming algorithm (Hao et al., 2019), artificial bee colony
algorithm (Li Y. et al., 2019; Li et al., 2020b; Li Y. et al., 2021), multi-
neighborhood iterative greedy algorithm (Shao et al., 2020), dual-
population competitive cultural genetic algorithm (Wang and
Wang, 2020), improved brainstorming algorithm (Li J. et al.,
2021), iterative greedy algorithm (Wang and Wang, 2019), and
teaching optimization algorithm (Lei and Su, 2023). The common
objective of these algorithms is to minimize the maximum
completion time.

For the homogeneous DHFSP, Shao et al. (2021) proposed a
MOEA based onmulti-neighborhood local search to solve the multi-
objective DHFSP. Cai et al. (Cai et al., 2018) proposed an improved
non-dominated sorting genetic algorithm II (NSGA-II) for finding
the Pareto-optimal solutions of the multi-objective distributed
permutation flow-shop scheduling problem (DPFSP). The
algorithm utilizes new solution representation, new population
re-initialization method, effective crossover and mutation
operators, as well as local search technique.

Switching to the heterogeneous DHFSP, Shao et al. (2022)
employed network meta-heuristic algorithm (NMA) to address
the problem of energy and labor perception in distributed
heterogeneous DHFSP (ELDHHFSP). Initially, the author
introduced a MILP model to depict ELDHHFSP and defined
multiple optimization objectives. Subsequently, the author
proposed the NMA, which comprises two crucial components: a
probabilistic network model and a learning-based local search,

corresponding to global search and local search respectively.
Zhang et al. (2023b) employed a multi-objective genetic
algorithm along with particle swarm optimization and a
Q-learning-based local search method to address the energy-
efficient heterogeneous DHFSP. Their objectives were to
optimize both the manufacturing Cmax and total energy
consumption. To expedite rapid convergence of the solution
across multiple directions on the Pareto frontier, they
employed multiple sets of particle swarm optimization as a
global search strategy. To enhance the search for problem-
specific knowledge, they designed two local search strategies to
further improve the quality and diversity of solutions.
Additionally, they utilized Q-Learning (QL) to guide variable
domain exploration for a better balance between algorithm
exploration and exploitation.

Currently, both Particle Swarm Optimization (PSO) an QL
algorithms are highly regarded and essential in this field. PSO
with its exceptional search and optimization capabilities, has
become a preferred tool for researchers tackling job scheduling
problems. Simultaneously, QL algorithms have gained widespread
attention for their outstanding performance in the field of RL,
offering an effective approach for systems to learn and optimize
strategies in unknown environments. Next, we will delve into these
two methods in detail.

2.6.3 Particle swarm optimization and Q-learning
In 1995, James Kennedy and Russell Eberhart (Kennedy and

Eberhart, 1995) were inspired by the foraging behavior of bird flocks
and proposed the PSO algorithm. The inspiration of particle swarm
optimization algorithm comes from the study of the foraging
behavior of bird swarms, which help the entire population find
the optimal destination through collective information sharing.
Single objective PSO has significant advantages in convergence
speed and is therefore widely used in solving MOP. Reyes-Sierra
and Coello Coello (2006) have published a research result on using
PSO to handle MOP, which is called multi objective particle swarm
optimization (MOPSO). The conventional calculation steps for
MOPSO are as follows.

• Initialize the particle swarm, including setting the number of
particles, velocities, and positions.

• Evaluate the quality of particles using multiple fitness
functions, typically employed in MOPSO.

• Update the individual’s historical best positions, which, in
multi-objective algorithms, form a collection known
as pbestset.

• Update the global best position of the particle swarm, where in
multi-objective algorithms, the global best positions constitute
a set often referred to as gbestset.

• Output the optimal solution.

Update the velocity and position of each particle based on the
following formula.

v t( ) � wv t − 1( ) + c1r1 pbest − x t( )( ) + c2r2 gbest − x t( )( ) (63)
x t + 1( ) � x t( ) + v t( ) (64)
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In Eqs. 63, 64 Where v(t) and x(t) respectively represent the
velocity and position of a particle. The w is the inertia weight, c1 and
c2 represent the cognitive learning factor and social learning factor,
which can adjust the particle’s proximity to its previous best
distance. r1 and r2 are random numbers between 0 and 1 used to
enhance the randomness of particle movement.

The MOPSO method, although proficient in addressing MOPs,
faces certain challenges. One prominent drawback is its
susceptibility to the choice of control parameters (Zhang W.
et al., 2023), including the inertia weight w, cognitive learning
factor c1, and social learning factor c2. Inadequately calibrated
parameters may impede convergence, leading to suboptimal
solutions. Furthermore, the algorithm’s effectiveness can be
influenced by the selection of fitness functions and their
respective weights. To address these challenges, researchers have
explored alternative optimization approaches. One intriguing
avenue is the application of QL, a value-based RL algorithm.

In this algorithm, Q (s, a) represents the expected return value
when taking action a in a specific state s. At each time step, the
environment provides a corresponding reward based on the agent’s
action. The core idea of the algorithm is to construct a Q-table,
which is used to store Q-values for different state-action pairs, and
then select actions that maximize the expected return based on these
Q-values.

When building QL, Firstly, it is necessary to define real-time
rewards, which guides the agent to select actions to obtain the
Q-table. The update of Q-values is as follows (Watkins and
Dayan, 1992):

Q s, a( ) � Q s, a( ) + α R s, a( ) + γmaxQ s′, a′( ) − Q s, a( )( ) (65)
In Eq. 65, where the parameter α is the learning rate, with a value

of 1, and the parameter γ is the discount factor, which determines
the extent of value iteration updates, ranging from 0 to 1. In this
study, Q-values are stored in the Q-table and updated iteratively.
The agent selects actions from the action set based on an ε-greedy
behavioral policy. The symbol ε represents the probability of
choosing a greedy action.

In order to enhance the flexibility of the PSO algorithm during
the iteration process, cope with convergence difficulties and
overcome local optimization problems, an effective method is to
adopt an adaptive parameter adjustment strategy. This can be
achieved by designing appropriate states, actions, and reward
mechanisms, and utilizing QL. The QL based PSO (QL-PSO) (Xu
and Pi, 2020) algorithm can better adapt to the characteristics of the
problem, automatically adjust parameters to adapt to different
problem instances, thereby improving its performance and
robustness. This adaptive parameter adjustment strategy helps to
overcome the limitations of conventional PSO algorithms and make
them perform better in complex problems. The algorithm process of
QL-PSO is roughly as follows (Zhang et al., 2023b).

• Initialize particle swarm and evaluate particle quality.
• Employ amixed sampling strategy to divide the particle swarm
into three sub-particle swarms and employ the PSO algorithm
to update each sub-particle swarm.

• Divide the entire particle swarm into three sub particle swarms
again, and initialize the Q-table, actions, states, and rewards.

Then use the QL algorithm for local search on each sub
particle swarm.

• Merge the three sub-particle swarms with the overall particle
swarm from the end of the second step, employing a selection
strategy based on Pareto dominating and dominated
relationship-based fitness function (PDDR-FF) (Zhang
et al., 2014), selecting the top 50% of particles ranked by
fitness function values to form the next-generation of the new
particle swarm.

3 Machine learning and multi-objective
evolutionary algorithms

3.1 Machine learning

Traditional methods encounter a trade-off between efficiency
and quality. Meta-heuristic algorithms, while powerful, can be
computationally expensive, making them less practical in
dynamic environments with frequent events, where optimal
solution quality may suffer. In contrast, rule-based methods
provide solutions quickly but at the cost of sacrificing solution
quality. These methods rely on limited information types and simple
mathematical operations for decision-making.

During the search process, EAs accumulate valuable
information related to search and population dynamics, as well
as problem characteristics. ML techniques can harness this
information to extract meaningful insights, enhancing the overall
search performance of algorithms. ML techniques include statistical
methods such as interpolation and regression (Cleveland et al.,
2017), orthogonal experimental design (Lopes et al., 2020),
opposition-based learning (Mahdavi et al., 2018), principal
component analysis (Abdi and Williams, 2010), artificial neural
networks (Ismayilov and Topcuoglu, 2020), support vector
machines (Pisner and Schnyer, 2020), cluster analysis (Trebuňa
and Halčinová, 2013), case-based reasoning (Kolodner, 1992), mean
and variance (Makridakis et al., 2018), competitive learning
(Rumelhart and Zipser, 1985), Bayesian networks (Heckerman,
2008), and RL (Wiering and Van Otterlo, 2012). The
amalgamation of ML approaches with evolutionary computing
has been empirically shown to provide benefits in terms of both
convergence speed and solution quality. Early researchs (Lin and
Gen, 2018) have proposed using ML techniques to enhance EAs.
Supervised learning (Jourdan et al., 2006; Zhang J. et al., 2011) has
faster convergence and better solution quality compared to
evolutionary learning (Kotsiantis et al., 2007).

EAs does not rely on backpropagation and has become a
powerful optimization tool due to its high parallelism and wide
applicability. Their ability to conduct global searches in parameter
space and robustness make them particularly effective, with
relatively low demands on environmental reward settings.
However, EAs exhibit lower sample efficiency, a relatively
singular exploration approach, and a lack of learning and
generalization capabilities.

Comparatively, with its characteristic of data-driven decision-
making, ML can achieve performance in specific scenarios that
approaches or even surpasses human capabilities. Yet, ML faces
significant limitations. Primarily, its performance highly depends on
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the quality of training data, with low-quality data potentially leading
to incomplete or inaccurate models. Secondly, the task-specific
model types in ML hinder its ability to seamlessly perform
diverse tasks. Lastly, the lack of generality in ML models
prevents them from adapting to various unspecific tasks.
Therefore, when considering the characteristics of EAs and ML,
it is essential to choose an appropriate method based on the specific
requirements of the problem or flexibly combine both in practical
applications to leverage their respective strengths and compensate
for their limitations.

Having discussed the characteristics of EAs and ML, our focus
will now shift towards their integration, particularly the fusion of RL
and MOEAs. This integration is not only aimed at overcoming their
respective limitations but also at creating a more comprehensive and
powerful optimization framework. In the following chapters, we will
delve into the methods, advantages, and potential application areas
of this integration.

3.2 Reinforcement learning

RL is a learning approach that seeks to optimize the total reward
obtained via the iterative interaction between an autonomous agent
and its surrounding environment (Arulkumaran et al., 2017). It can
be delineated using the Markov Decision Process framework, which
includes action space A, state space S, reward function r, state
transition probability p and discount factor γ. When the agent is
in state s ∈ S, it can choose action a ∈ A, and the environment will
transition to a new state s′ with probability p (s′|s, a) and provide a
reward r (s, a, s′). The agent’s goal is to learn a policy π(a|s) that
maximizes the cumulative reward Rt � ∑∞

i�0γ
irt+i, where γ is the

discount factor that balances the importance of immediate and
future rewards.

In the context of scheduling inside a shop, the state space Smay
be used to denote the existing state of the shop, encompassing
factors such as the condition of machines and the advancement of
jobs. The action space A can represent scheduling decisions, such as

which jobs to assign to which machines. The state transition
probability p can represent the change in the shop state based on
the scheduling decision. The reward function r can represent the
reward obtained from the scheduling decision, such as the number
of completed jobs and time saved. The discount factor γ can
represent the ratio between immediate and future rewards,
typically between 0 and 1. The policy π of the agent may be used
to make decisions depending on the current state of the shop, with
the objective of maximizing the cumulative reward. The interaction
process between an intelligent agent and its environment is shown
in Figure 6.

Through RL algorithms, shops can achieve intelligent
scheduling to improve efficiency and quality. Compared to
supervised learning and evolutionary learning, RL has the
following advantages.

1. RL can operate without labeled data, which makes it more
suitable for real-world environments.

2. It is more adaptive and can learn and make decisions in
dynamic and complex environments.

3. RL receives real-time feedback by interacting with the
environment, which helps with rapid learning and decision-
making. Decision-making.

4. RL can explore and discover better solutions autonomously,
without relying solely on human prior knowledge.

5. In some cases, RL may outperform supervised learning and
evolutionary learning.

3.3 MOEAs and their application to
scheduling problems

The extensive use of MOEAs has attracted significant attention
in the context of multi-objective shop scheduling problems. This
chapter will predominantly concentrate on recent advancements
within this domain, providing an in-depth exposition of the
pertinent progress achieved in recent years. Wang et al. (Wang
et al., 2021) utilized a multi-objective mathematical model and a
modified MOEA/D algorithm to address the energy-efficient
scheduling problem in a distributed heterogeneous welding flow-
shop scheduling problem, with the aim of minimizing both total
energy consumption (TEC) and completion time simultaneously. In
the revised MOEA/D algorithm, various genetic operators and
problem-specific local search strategies were designed for multi-
level optimization. However, the implementation and
computational complexity of the aforementioned methods are
high, which may require a long running time to achieve good
results. In response to this, Zhang et al. (Zhang et al., 2022)
proposed an automatic MOEA to solve the HFSP with Cmax and
total number of sublots as objectives. This study solely focuses on the
two objectives of Cmax and the total number of sub-batches, limiting
its ability to tackle intricate production scheduling challenges. To
address this issue, Han et al. (Han W. et al., 2021) proposed a
heuristic decodingMOEA to solve the HFSP with worker constraint.
The proposed method can effectively address complex production
scheduling problems. Moreover, experimental results show that the
proposed algorithm performs well in achieving the Cmax objective.
Deng and Wang (Deng and Wang, 2017) proposed a competitive

FIGURE 6
The interaction process of agents in RL.
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memetic algorithm (CMA) to solve the multi-objective DPFSP with
the criteria of Cmax and total tardiness (TTD). The generality of the
above-mentioned methods is relatively poor, as they cannot fully
consider various uncertainties in the production process.

To tackle this challenge of generality, Wang et al. (Wang G.-G.
et al., 2022) proposed a hybrid adaptive differential evolution
algorithm to solve the multi-objective fuzzy JSP. Li et al. (Li Z.
et al., 2019) proposed an elitist non-dominated sorting hybrid
algorithm (ENSHA) to solve the multi-objective FJSP with
sequence-dependent setup times/costs, which minimizes two
objectives: maximum completion time and total setup cost. Gong
et al. (Gong et al., 2020) proposed a hybrid artificial bee colony
algorithm to solve the FJSP with worker flexibility. However, all the
above algorithms are incapable of handling large-scale problems.

Within the domain of shop scheduling problems, the expansion
of the problem’s scale leads to an escalated requirement for
computational resources and time (Li and Pan, 2015), while
intensifying issues of resource competition and bottlenecks due
to a larger number of tasks contending for limited resources
(Zhang and Wu, 2010), thereby causing imbalances in resource
utilization and production delays (Goli et al., 2019). To overcome
the problem, Tan et al. (2021) proposed a fatigue-aware dual-
resource-constrained flexible job-shop problem method, aimed at
simultaneously alleviating fatigue and improving production
efficiency through joint scheduling of machines and workers.
A multi-objective optimization model was developed with the
aim of reducing both the maximum worker fatigue and
completion time. Furthermore, a suggested solution to
address the issue included the development of an improved
iteration of NSGA-II, known as Enhanced NSGA-II
(ENSGA). The ENSGA algorithm has four distinct scheduling
rules that have been specifically developed to provide solutions
of superior quality. Additionally, two distinct area structures
have been established, using an innovative methodology for
designing critical routes. This technique serves to significantly
enhance the efficacy of local search operations. Although this
method performs well on large-scale problems, further
experiments and data may be required to verify its
universality on different domains and datasets.

Regarding the strong coupling dilemma in shop scheduling
(Galiana et al., 2005), Zheng et al. (2020) proposed a
collaborative EA with problem-specific strategies by combining
estimation of distribution algorithm (EDA) and iterative greedy
search (IG) to tackle the multi-objective fuzzy distributed hybrid
flow-shop problem with fuzzy processing time and fuzzy delivery
time. The following Table 1 summarizes the applications of MOEAs
in scheduling problems.

3.4 Applications of ML in solving
scheduling problems

When confronted with intricate shop scheduling dilemmas,
MOEAs necessitate multiple iterations within the solution space,
resulting in a relatively sluggish convergence speed and potential
performance limitations (Zhang et al., 2019). In contrast, ML
exhibits enhanced adaptability in dynamic shop scheduling
scenarios and can leverage neural networks to augment its
learning capabilities.

In the domain of DJSP, traditional scheduling methods often
only consider existing jobs and ignore the possibility of new ones
appearing at any time. To address this issue, Luo et al. (Luo, 2020)
proposed a new job insertion policy leveraging the deep Q-learning
network (DQN) algorithm, which can dynamically insert new jobs
and optimize scheduling by real-time perception and decision-
making of the current shop state. In addition to this, Luo et al.
(2021a) also proposed an online rescheduling framework named
two-layer DQN (THDQN) for the dynamic multi-objective flexible
job-shop Problem with the insertion of new jobs. Four distinct
objectives were introduced, in accordance with four distinct
variations of reward functions, with each objective optimizing a
tardiness or machine utilization metric. However, the
aforementioned algorithms only consider a limited number of
production environment factors, and all of them are value-based
methods that cannot directly optimize policies. Therefore, Luo et al.
(Luo et al., 2021b) used a real-time scheduling method for the
dynamic part no-wait multi-objective FJSP in modern discrete
flexible manufacturing systems, based on hierarchical multi-agent

TABLE 1 The application of MOEAs in shop scheduling problems.

Methodology Shortcomings Article

Hybrid flow shop Automatic MOEA Poor generalizability Zhang et al. (2022)

Heuristic decoding MOEA Han et al. (2021a)

Fuzzy Job-Shop Hybrid Adaptive Differential EA High time and space complexity Wang et al. (2022a)

ENSHA Poor Scalability Li et al. (2019b)

Flexible job shop hybrid artificial bee colony algorithm High implementation complexity Gong et al. (2020)

ENSGA Poor generalizability Tan et al. (2021)

Distributed hybrid flow shop EDA+IG Stochasticity Zheng et al. (2020)

Distributed permutation flow shop CMA Poor generalizability Deng and Wang
(2017)

Distributed heterogeneous welding flow
shop

A multi-objective mathematical model and a modified MOEA/D
algorithm

The algorithm requires
improvement

Wang et al. (2021)
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deep reinforcement learning (DRL) called hierarchical multi-agent
proximal policy optimization (HMAPPO), which handles situations
such as new job insertion and machine failures. The method consists
of three intelligent agents based on proximal policy optimization
(PPO), namely, the target agent, job agent, and machine agent.

With the intention of elevating generality in practical
implementations, Samsonov et al. (2021) respectively used DQN
and soft actor-critic (SAC) algorithms to solve the production
planning and control problem in DJSP. Lang et al. (2020) used a
discrete-event simulation model to train two DQN agents, where
one agent is responsible for selecting operation sequences and the
other is responsible for allocating jobs to machines. They applied
this model to solve a FJSP with integrated process planning. The
research shows that DQN appears to generalize the training data to
other problem instances.

The aforementioned algorithm exhibits certain limitations with
regards to training speed and efficiency, which may potentially
encumber its training efficacy on large-scale datasets.
Furthermore, the algorithm’s intricacy and computational
requirements might lead to suboptimal performance within
resource-constrained environments, thereby imposing constraints
on its feasibility for practical shop scheduling. To better mitigate
these issues, Liu et al. (2022a) utilized a double deep Q-network
(DDQN) algorithm to train a scheduling agent in a FJSP with
constant job arrival times. The algorithm effectively captures the
correlation between production information and scheduling
objective in order to make timely scheduling choices. Hameed
and Schwung (2020) proposed a method that combines
distributed intelligent agent learning and internal agent
interaction mechanisms, and uses graph neural networks as
feature extraction models to address the scalability and
environmental variability issues in JSP. The paper points out that
compared to centralized optimization algorithms such as genetic
algorithms, graph neural networks have greater advantages in
representing complex and variable scheduling environments.
Additionally, the authors validated the superiority of the
proposed method in two experimental scenarios: a robot
manufacturing unit and an injection molding machine. However,
there are some potential challenges to the stability of this method. In
actual shop production environments, complex work processes,
resource constraints, and unforeseeable interference factors may
result in this method not performing stably enough in response to
specific workshop situations. This deficiency may be particularly
evident in the face of sudden changes, urgent tasks, or resource
bottlenecks, thereby affecting the accuracy and stability of
scheduling results.

To improve these issues, Zhang et al. (2020) utilized the PPO
algorithm to automatically learn the priority dispatching rule (PDR)
and combined it with graph neural networks to effectively improve
the generalization of the algorithm. Luo P. C. et al. (2022) used the
PPO algorithm to solve the DJSP under resource constraints. Wang
H. et al. (2022) have designed a new dynamic multi-objective
scheduling algorithm (DMOSA) based on DRL, which utilizes
two DQN and a real-time processing framework to handle
changing events and generate comprehensive scheduling
strategies. The method was subjected to simulation using six
distinct kinds of dynamic events that are often seen in real-world
production settings. The optimization procedure focused on three

specific objectives: average machine utilization, average job
processing delay rate and the longest job processing time. These
objectives were pursued while adhering to a predefined set of
limitations. With that being said, it is important to note that
these algorithms may need substantial experimentation and
refinement, including aspects such as reward mechanisms, neural
network architecture, and scheduling policies, in order to effectively
address a wider array of industrial production requirements. As a
result, practical applications may entail a substantial amount of time
and effort.

With the objective of improving scheduling efficiency and
diminishing operating costs, Leng et al. (2022) developed a
multi-objective DQN algorithm to determine the Pareto frontier.
The purpose of reward shaping is to enhance the convergence of the
neural network. The algorithm addressed the multi-objective
reordering scheduling problem in automotive manufacturing
systems with color batch requirements in the painting shop and
sequencing requirements in the assembly shop. This approach
requires offline training before implementation and may only be
suitable for manufacturing factories with specific configurations.
Therefore, it is necessary to further improve the practicality and
adaptability of the algorithm.

The following is a summary of the application of RL in
scheduling problems in Table 2.

In summary, it can be inferred that ML, especially RL, has the
following advantages and disadvantages in scheduling applications:

Advantages:

1. Efficiency: ML utilizes the insights of historical data to enhance
the scheduling process, enabling the system to predict and
optimize based on identified patterns and trends.

2. Adaptability: The ML model demonstrates the ability to
dynamically adjust to constantly changing conditions.

3. Scalability: ML can be used to solve various complexity and
scale scheduling problems from simple task scheduling to
large-scale production scheduling.

4. Generalizability: Once an ML model is trained for a set of
scheduling problems, it can be applied to similar scheduling
problems in different fields.

Disadvantages:

1. Data requirements: Many scheduling problems have limited
data, but ML models require a substantial amount of data for
training and optimization.

2. Interpretability: Certain ML models, such as neural networks,
might provide challenges in terms of comprehending their
decision-making mechanisms.

3. Overfitting: Models trained in ML may excessively tailor
themselves to the training data, resulting in poor performance
when applied to new data or under conditions of change.

The strengths and weaknesses of RL in workshop scheduling
problems are illustrated in Figure 7.

Despite the advantages that ML holds in addressing scheduling
issues, it is crucial to contemplate its limitations and potential
drawbacks before practical implementation, ensuring the full
realization of its immense potential.
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4 Enhancing MOEAs for solving shop
scheduling problems

Enhancing MOEAs (EMOEAs) utilizes ML algorithms to model
the objective function and then integrates the resulting model into
MOEAs. Through this approach, MOEAs can better search the
solution space and find optimal solutions. ML can assist MOEAs in
exploring unknown domains and improving search efficiency, thus
accelerating the solution process.

Meta-heuristic optimization techniques are commonly utilized
to address intricate optimization problems across diverse domains,
with MOEAs being a well-researched method due to its efficacy in

tackling multi-objective problems. Nevertheless, conventional
MOEAs approaches encounter drawbacks such as the need for
manual tuning of algorithmic parameters to achieve optimal
performance and suboptimal results in handling high-
dimensional problems with large scales. To overcome these
challenges, ML-assisted techniques have been proposed in recent
years, some of which have demonstrated remarkable results in
resolving scheduling problems. In this chapter, we will classify
and present different methods based on the proportion and
weight of RL and MOEAs in each approach, which include ML-
assisted MOEAs, MOEAs-assisted ML, and collaborative
MOEAs and ML.

TABLE 2 The application of RL in shop scheduling problems.

Type of shop scheduling Methodology Shortcomings Ref

Flexible job-shops DRL Poor flexibility Luo (2020)

DDQN Poor generalizability Liu et al. (2022a)

Two DQN agents Insufficient convergence quality and algorithm stability Lang et al. (2020)

Dynamic job-shop DQN and SAC Poor training efficiency Samsonov et al. (2021)

PPO Poor Scalability Luo et al. (2022a)

HMAPPO Poor generalization and scalability Luo et al. (2021b)

Job-shop Distributed intelligent agent Poor stability Hameed and Schwung (2020)

PPO+PDR Poor interpretability Zhang et al. (2020)

Dynamic flexible job-shop DMOSA based on DRL Poor generalizability and practicality Wang et al. (2022b)

THDQN Poor flexibility Luo et al. (2021a)

Assembly shop MODQA Poor practicality and generalizability Leng et al. (2022)

FIGURE 7
Advantages and disadvantages of RL.
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4.1 ML assists MOEAs

In conventional ML algorithms, Pericleous et al. (2017)
investigated the hybridization of MOEA/D with six general-
purpose heuristic methods to locally optimize solutions
during the evolutionary process. Initially, six individual
hybrid MOEA/D were considered, whereby the same local
search heuristic method was applied at each step of
evolution. Subsequently, in light of the characteristics of the
issue and the objectives, the integration of MOEA/D with Meta-
lamarckian learning (MLL) was used to dynamically choose the
most effective local search heuristic approach from the general
heuristic pool during each evolutionary phase and for every
problem neighborhood.

Wang and Tang (2017) proposed a machine-learning-based
multi-objective memetic algorithm (ML-MOMA) to address the
discrete PFSP. Within ML-MOMA, each solution is allocated an
individual archive for storing its discovered non-dominated
solutions, and a novel population update approach is devised
based on these individual archives. Additionally, a novel adaptive
multi-objective local search method is proposed, which utilizes
the analysis of historical data acquired during the search process
to dynamically decide the selection of non-dominated solutions
for local search and the execution of local search itself.

In response to the labor shortages and social distancing
challenges faced by manufacturing plants affected by COVID-19,
Li et al. (2021b) studied an energy-efficient JSP with limited workers.
The study established a multi-objective model with five objectives:
maximum completion time, TTD, total idle time (TIT), total worker
cost (TWC), and TEC. In order to address this particular many-
objective optimization issue, a unique approach was taken by
including a fitness assessment mechanism that relies on fuzzy
correlation entropy. Additionally, two distinct techniques for
constructing reference points were introduced to establish a
connection between the many-objective optimization problem
and fuzzy sets. An environmental selection mechanism was
proposed to achieve a balance between solution convergence and
variety, using the fuzzy correlation entropy and clustering approach.

Lou et al. (2022) investigates the multi-objective FJSP with
human factors to reduce costs and improve efficiency. However,
traditional FJSP only consider machine flexibility, while ignoring
human factors. Thus, this paper establishes a multi-objective mixed-
integer nonlinear programming model and proposes a learning and
decomposition-based multi-objective memetic algorithm (MOMA-
LD) to simultaneously optimize three objectives: Cmax, machine
workload (MW), and total machine workload (TMW). By
incorporating a learning-based adaptive local search algorithm
into a decomposition-based MOEA. The MOMA-LD framework
utilizes ML approaches to determine the suitability of local search
solutions. It also dynamically allocates computing resources during
the evolutionary process, taking into account the convergence level
of the population.

Karimi-Mamaghan et al. (2023) have spearheaded the
conception of a cutting-edge and highly efficient iterative greedy
algorithm, cultivated through their research. The algorithm’s
eminent contribution resides in its revolutionary perturbation
mechanism, ingeniously employing QL to discern and select
for appropriate perturbation operations among the search

process. However, this approach is only applicable to single-
objective problems.

In comparison to conventional ML, RL is better suited for
exploration and decision-making problems, demonstrating
greater adaptability and generalization capabilities. Zhao et al.
(2023b) proposed a RL-based brain storm optimization (RLBSO)
approach to tackle the multi-objective and energy-efficient
distributed assembly NFSP. The optimization objectives include
minimizing the Cmax, minimizing the total TEC, and achieving a
balanced resource allocation. Four operations were designed,
including key factory insertion, key factory swap, key factory
insertion into other factories, and key factory swap with other
factories, to optimize the objective of minimizing the Cmax. The
QL mechanism was employed to guide the operation selection and
avoid blind search during the iteration process. The product was
assigned to factories in the objective space based on the processing
time using a clustering-based learning mechanism to balance the
resource allocation. To reduce the TEC, the operation speed on the
non-critical path was slowed down, considering the characteristics
of the NFSP. Moreover, the author (Zhao et al., 2021b) utilized the
cooperative water wave optimization (CWWO) algorithm to
address the distributed assembly scheduling problem in an no-
idle flow-shop, enhancing the search capabilities of the algorithm
by introducing RL, path relinking, VNS methodology, and multi-
neighborhood perturbation strategies, ultimately improving the
efficiency and stability of the problem-solving process.
Nonetheless, this method only optimizes single-objective
problems and is only applicable to specific distributed flow-shop
scheduling problems, which limits its applicability.

Cheng et al. (2022) advanced a hybrid job-shop and flow-shop
production scheduling problem using velocity scaling and no idle
time strategies. AMILP was formulated to optimize both production
efficiency and energy consumption by determining the speed levels
of operations and the production sequence for job-shop and flow-
shop products. Following that, a novel hyper-heuristic method
called multi-objective Q-learning-based hyper-heuristic with Bi-
criteria selection (QHH-BS) was devised, which utilizes a multi-
objective QL approach to generate a collection of PF solutions of
superior quality. This algorithm introduces a novel three-layer
encoding scheme for representing the production sequence of
job-shop and flow-shop products. Additionally, a sequence
implementation is employed, which incorporates both PF and
indicator-based selection criteria to promote diversity and
convergence. Furthermore, a QL algorithm with a reward
mechanism based on multi-objective indicators is utilized to
select an optimizer from a pool of three high-performing
optimizers in each iteration, thereby facilitating improved
exploration and exploitation.

Wang J.-j. et al. (2023) utilizing the CMA to tackle the energy-
aware distributed welding shop scheduling problem arising from the
trends of globalization and sustainable industrial development, with
the aim of simultaneously optimizing the minimal manufacturing
cycle time and TEC. A proposal is made to improve the quality and
diversity of the initial population by utilizing a hybrid initialization
approach based on the modified Nawaz-Enscore-Ham (NEH)
algorithm (Fernandez-Viagas et al., 2017). A feedback-based
collaborative search is developed by effectively leveraging
historical data, incorporating a collaboration selection method
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that aims to strike a balance between exploration and exploitation.
Furthermore, the study proposes a number of problem-specific
operators and introduces a local reinforcement method based on
QL to augment the system’s development capabilities.

Li et al. (2023) proposed a MILP model and a learning-based
reference vector membrane algorithm (LRVMA) to address the
energy-efficient FJSP with type 2 processing times with multiple
objectives, aiming to enhance profit and reduce energy consumption
for better practical production simulation. The study included the
development of four problem-specific beginning rules and the
introduction of four problem-specific local search strategies. The
Tchebycheff decomposition technique was successfully used to
attain an efficient method for solution selection. Additionally, a
parameter selection strategy based on RL was introduced to enhance
the variety of non-dominated solutions. Furthermore, an energy-
saving strategy was designed to reduce energy consumption.

4.2 MOEAs assists ML

This approach utilizes MOEAs algorithms for model
optimization. Specifically, MOEAs improves the performance and
prediction accuracy of the model by optimizing its hyperparameters
or model selection. This approach can help ML algorithms
overcome local optima and over fitting problems, and improve
the model’s generalization ability.

Khadka and Tumer (2018) proposed a hybrid algorithm called
evolutionary reinforcement learning (ERL) that combines EA and
DRL to address issues related to sparse reward temporal credit
assignment, effective exploration, and unstable convergence due to
hyperparameter sensitivity in DRL algorithms. ERL leverages the
advantages of EA, such as sequential credit assignment based on
fitness indicators, diverse policy exploration, and stability
improvement using population models, while also utilizing the
gradient information of DRL algorithms to improve sample
efficiency and learning speed.

Furthermore, The author introduces a method called
Collaborative evolutionary reinforcement learning (CERL)
(Khadka et al., 2019), designed to address the exploration
problem and hyperparameter sensitivity in DRL. CERL employs
multiple learning algorithms to simultaneously explore different
regions of the solution space, and dynamically allocates
computational resources to support the best learners. Neural
evolution combines these algorithms to generate a new learner
that outperforms all the constituent learners in the experiment,
while also possessing higher sample efficiency. Pourchot and Sigaud
(Pourchot and Sigaud, 2018) introduced a novel method that
integrates Deep Neuroevolution with DRL to address the low
sample efficiency of Deep Neuroevolution and the sensitivity to
hyperparameters of Deep RL. They introduced a new algorithm,
which combines the simple cross-entropy method with a new Deep
RL algorithm called Twin Delayed Deep Deterministic Policy
Gradient. Bodnar et al. (2020) presents a novel algorithm named
PDERL to enhance the scalability of GA in RL. This algorithm
integrates evolution and learning hierarchically by employing a
learning-based mutation operator to compensate for the
simplicity of GA gene encoding. Suri et al. (2020) provide a
review of the strengths and limitations of RL and MOEAs in

recent years, and discuss how to combine these two methods to
address scalability and hyperparameter sensitivity issues in RL.
Moreover, they propose an Evolution-based SAC algorithm based
on the ERL framework, which integrates SAC algorithm and
evolutionary strategies. Cideron et al. (2020) propose a novel RL
algorithm, which combines the advantages of offline policy RL
algorithms with the quality diversity (QD) approach. The authors
train a population of offline deep DRL agents to maximize both
diversity within the population and the agents’ rewards. QD-RL
selects agents from the diversity-reward PF, enabling stable and
efficient population updates. Marchesini et al. (2021) propose a
novel hybrid framework that combines EAs and DRL to leverage the
strengths of both approaches. To address the issue of high
computational cost in evaluating ERL algorithms, the authors
propose the SUPE-RL algorithm, which performs parallel
evaluation of the population at fixed intervals during the RL process.

The above content indicates that EA-assisted RL is mainly
applied to DRL, where the policy of DRL is used as individuals
in the population for RL optimization. Although it belongs to
evolutionary computation guided RL, the empirical guidance is
relatively weak due to the randomness of the samples, which
limits the improvement of environmental exploration capability.

In addition, the utilization of MOEAs assisted ML in shop
scheduling is still in its nascent stage. For MOPs, reasonable and
effective hybrid methods need to be designed to solve them.
Therefore, this field still deserves further exploration and research.

4.3 The collaboration between MOEAs
and ML

This approach combines the advantages of the previous two
methods, namely, utilizing both MOEAs and ML for solving
problems. In this approach, MOEAs and ML algorithms work
together, providing information and feedback to each other, to
achieve better solution results. Specifically, MOEAs can provide
more data and optimization methods for ML, while ML can provide
more accurate objective function modeling and prediction for
MOEAs. This approach can help solve more complex problems,
improve solution efficiency and accuracy.

Chen et al. (2020) have proposed a self-learning genetic
algorithm (SLGA) to solve the FJSP, which utilizes GA as the
fundamental optimization technique and adapts its key
parameters intelligently based on RL. The algorithm employs
SARSA and QL algorithms as the initial and subsequent learning
methods, respectively, and designs state determination and
reward methods to realize RL in the GA environment.
However, this method only considers Cmax as the
optimization objective.

Li et al. (2022a) propose a multi-objective flexible job-shop
scheduling problem with fuzzy processing times, aimed at
optimizing the objectives of Cmax and total machine load. To
tackle MOFFJSP, a RL-based MOEA/D algorithm, called
RMOEA/D, is presented. In this algorithm, the authors use an
initial policy with three rules to obtain high-quality initial
populations, propose a parameter adaptive strategy based on QL
to guide population selection of the best parameters to increase
diversity, design a RL-based variable neighborhood search to lead
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solution selection to the correct local search method, and use an elite
archive to increase the utilization of discarded historical solutions.

Zhao et al. (2023b) investigate an energy-efficient distributed
NFSP with sequence-dependent setup times, aiming to minimize
Cmax while reducing TEC. They construct a mixed integer linear
programming model and propose a cooperative meta-heuristic
algorithm based on QL (CMAQ) to solve the problem. In
CMAQ, a heuristic method named RNRa is proposed to generate
initial solutions, and a dual QL-based two-population cooperation
framework is designed to further optimize solutions. Based on the
energy-efficient DNWFSP-SDST’s characteristics, a knowledge-
based energy-saving strategy is proposed to improve Cmax and
TEC. Furthermore, the author proposed a QL-based meta-heuristic
algorithm (HHQL) (Zhao et al., 2023a), for solving the energy-
efficient distributed blocking FSP (EEDBFSP). This algorithm first
uses QL to select appropriate low-level heuristics (LLHs) from a pre-
designed LLH set and employs QL for LLH selection based on
historical feedback from LLHs. In addition, a concurrent
initialization method is proposed to construct the initial
population, taking into account both TTD and TEC. The ε-greedy
strategy is incorporated into the LLH selection process, allowing the
utilization of acquired knowledge while ensuring a specific degree of
exploration.

Wang andWang (2021) proposes a CMAwith a RL policy agent,
along with a MILP, for the energy-aware distributed hybrid flow-
shop problem to minimize both the Cmax and energy consumption
simultaneously. Initially, an encoding scheme and a rational
decoding method are devised to account for the trade-off
between the two conflicting objectives. Subsequently, two
problem specific heuristic methods are introduced for hybrid
initialization, aiming to generate diverse solutions. Furthermore,
a solution selection method based on decomposition strategy
effectively balances convergence and diversity, and the RL policy
agent selects appropriate improvement operators to optimize the
solutions. Fourth, the algorithm’s developmental capability is
further enhanced through the integration of reinforced search
employing multiple problem-specific operators. Additionally, two
energy-saving strategies are devised to improve non-
dominated solutions.

Du et al. (2023) introduced a novel approach for solving the FJSP
with a time-of-use electricity price constraint. The proposed
method, referred to as the estimation of distribution algorithm
and deep Q-Network (EDA-DQN), is a hybrid multi-objective
optimization algorithm. This problem encompasses various
factors such as machine processing speed, setup time, idle time,
and transportation time between machines, while simultaneously
optimizing both the maximum completion time and total electricity
price (TEP). The researchers devised two knowledge-based
initialization strategies to enhance performance. The deep
Q-network employed 34 state features to illustrate the scheduling
situation. Additionally, nine knowledge-based actions were utilized
to enhance the scheduling solution, complemented by a reward
mechanism aligned with dual objectives. The study effectively
showcased the success and performance of the suggested hybrid
approach in addressing the integrated FJSP through comprehensive
numerical assessments.

Table 3 is a brief overview of the applications of EMOEAs in
scheduling problems. Figure 8 shows the taxonomy on the use
of EMOEAs.

4.4 The application of EMOEAs in
other fields

The application prospects of EMOEAs are extensive. For
instance, in the manufacturing industry, it can be utilized to
optimize various product parameters to achieve the optimal
balance between performance and cost-effectiveness. In the
transportation sector, EMOEAs can be employed to plan traffic
routes. In healthcare issues, such as predicting patients’ disease risks
and treatment effects, as well as designing better treatment regimens.
In the financial domain, it can be used to optimize investment
portfolios to achieve better returns and risk control.

Zhang Z. et al. (2023) have proposed a cost-oriented hybrid
model multi-person assembly line balancing approach to address the
uncertain demand environment. They have also designed a MOEA
based on RL to solve the problem. The algorithm comprises a
priority-based solution representation, as well as a new task-
worker-sequence decoding approach that considers robustness
and idle time reduction. The authors have put forward five types
of crossover and three types of mutation operators, with QL strategy
determining the crossover and mutation operators for each iteration
to effectively obtain the pareto solution set. Finally, a time-based
probabilistic adaptive strategy has been devised to efficiently
coordinate the crossover and mutation operators. Liu et al.
(2022b) proposed a problem decomposition framework to
address MOPs, which involves decomposing MOPs into multiple
objective knapsack problems and traveling salesman problems
(TSP). They employed MOEAs and DRL methods to solve
MOKP and TSP.

Huang et al. (2020) put forward an adaptive terrain roughness
multi-objective differential evolution algorithm based on
information entropy and RL strategies, aimed at addressing the
issues of redundant search and mapping imbalance in multi-
objective problems. The algorithm estimates the local terrain’s
unimodal or multi-modal topological structure through
information entropy and combines with RL strategies to
determine the optimal probability distribution of the algorithm’s
search strategy set, thus effectively improving the convergence of the
search algorithm during the optimization process. Zhang Y. et al.
(2021) proposed a multi-objective deep reinforcement learning and
EA for complex problems, applied to solve the multi-objective
vehicle routing problem with time windows. The algorithm
employs a decomposition strategy to generate a set of sub-
problems for attention models, and introduces comprehensive
contextual information to enhance the attention models. Song
et al. (2022) investigated the problem of trajectory control and
task offloading in a drone-assisted mobile edge computing
system, using an evolutionary multi-objective reinforcement
learning (EMORL) algorithm. They improved the original
EMORL’s multi-task and multi-objective proximal policy
optimization by retaining all new learning tasks in the
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descendant population. Wang M. et al. (2023) employed a MOEA
combines decomposition and harris hawks learning for medical
ML, and applied it to medical cancer gene expression datasets as
well as clinical data for lupus nephritis and pulmonary arterial
hypertension.

In its early stages, the evolution of EMOEAs has already
demonstrated significant potential across diverse fields. Through
thorough exploration of algorithms and their applications, one can
anticipate a forthcoming wave of innovation and development.

EMOEAs are poised to become potent instruments for
optimizing a range of practical problems, thereby driving
progress and fostering innovation in relevant domains.

5 Conclusion

Despite being combined with ML, particularly the popular RL in
recent years, the capability of MOEAs for optimizing multiple

TABLE 3 The application of EMOEAs in shop scheduling problems.

Types of shop
scheduling

Methodology Optimization
objectives

Ref

ML assists MOEA Permutation flow-shop MLL-based hybrid
MOEA/D

Cmax+TTD Pericleous et al. (2017)

IG+QL Cmax Karimi-Mamaghan et al.
(2023)

ML-MOMA Cmax+total flowtime+TTD Wang and Tang (2017)

Flexible job-shop LRVMA Cmax+EC Li et al. (2023)

SLGA Cmax Chen et al. (2020)

MOMA-LD Cmax+MW+TMW Lou et al. (2022)

Job-shop FEM Cmax+TT+TIT+TWC+TEC Li et al. (2021b)

Hybrid workshop QHH-BS Cmax+TEC Cheng et al. (2022)

Distributed Shop CMA +adapted NEH+QL Cmax+TEC Wang et al. (2023a)

RLBSO Cmax+TEC Zhao et al. (2023b)

CWWO+RL Cmax Zhao et al. (2021b)

The collaboration between MOEA
and ML

Flexible job-shop Knowledge-based
EDA-DQN

Cmax+TEP Du et al. (2023)

RL-based MOEA/D Cmax+TMW Li et al. (2022a)

Distributed shop CMAQ Cmax+TEC Zhao et al. (2023b)

CMA + RL Cmax+TEC Wang and Wang (2021)

HHQL TEC+TTD Zhao et al. (2023a)

FIGURE 8
Taxonomy on the use of EMOEAs.
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objectives has not been fully demonstrated (Zhan et al., 2023),
indicating significant room for improvement in MOEAs driven
by RL. This paper focuses on presenting recent achievements in
the field of shop scheduling and presents potential challenges that
shop scheduling might face in the future:

First and foremost, research involving the utilization of
EMOEAs to address shop scheduling problems remains in its
nascent stage. Thus far, majority efforts have been largely
confined to theoretical exploration, with limited instances in
widespread implementation within actual production systems.
Additionally, both MOEAs and ML methods have yet to receive
exhaustive investigation in theory. The foundational theoretical
research pertaining to EMOEAs presents a formidable challenge
(Chai et al., 2013). Different categories of knowledge acquired
during the evolutionary process may prove intricate to
mathematically define, posing an imminent issue demanding
resolution for practical applications (Liu et al., 2023).

Secondly, EMOEAs face challenges related to interpretability
and robustness. Shop scheduling involves optimizing multiple
objectives, such as minimizing production time and maximizing
resource utilization. However, real-world shop scheduling data often
exhibits complexity, variability, noise, and uncertainty. These factors
can lead to ML models being influenced by biased approximations.
Therefore, it is a significant undertaking to make significant progress
in gaining a more profound comprehension of the ML models that
can efficaciously contribute to evolutionary work in scheduling
problems. Additionally, being able to provide a clear explanation
for the strong performance of a chosen ML model in specific real-
world scheduling applications is also a substantial endeavor.

Thirdly, with the emergence of EMOEAs, the issues surrounding
fairness and verifiability in comparing their performance have
become even more pronounced (Ishibuchi et al., 2022). When
appraising the performance of MOEAs, ensuring absolute equity
has grown exceedingly intricate due to the myriad of factors
necessitating careful consideration. These factors encompass
varying population sizes, a diverse array of testing problems,
multiple performance evaluation indicators, and fluctuations in
the conditions for algorithm termination, potentially leading to
wholly disparate performance comparison outcomes.

Furthermore, the current majority of ML models often exhibit
challenges in achieving comprehensive explication of their
performance. Given this context, in light of these circumstances,
determining how to rigorously verify and analyze the performance
of emerging EMOEAs holds paramount significance in a
scientifically rigorous manner (Osaba et al., 2021).

Finally, in distributed shop scheduling, there aremultiple objectives
that need to be optimized, such as minimizing production costs,
maximizing production efficiency, and minimizing production
cycles. These objectives may have mutual constraints and conflicts,
and achieving a balance and trade-off among them is a challenging
problem. The application of RL to the problem of multi-objective
optimization in distributed shop scheduling holds significant potential
for many applications and research endeavors. It has the capability to
offer enhanced decision support for industrial production by enabling
more intelligent and efficient processes.

Moreover, current research often only focuses on the
optimization of machine resources, neglecting the impact of
worker resource allocation on production efficiency. In fact, shop

scheduling problems not only involve the allocation of machine
resources but also require consideration of worker allocation and
scheduling because machines need to be operated by workers.
Therefore, future research needs to further consider the issue of
dual resource constraints for machines and workers.

To advance the development of EMOEAs for addressing
application problems in scheduling, the following potential
directions and future research opportunities are presented below.

• The optimization of EMOEAs is a crucial research direction.
This involves integrating high-performing ML models that
excel in both performance and computational economy with
MOEAs. Rather than just emulating prevalent ML models, the
focus is on the integration of these models. This integration
aims to enhance efficiency and effectiveness. Mitigating
computational costs is a key consideration. This includes
not only the computational expenditure of evaluating ML
models but also the fine-tuning process of the learning models
themselves. Consequently, finding the optimal equilibrium
between learning and optimization becomes a subject
worthy of profound investigation in future research.

• Applying MOEAs to assist ML in the context of shop
scheduling is also a burgeoning research direction. Within
ML, the quality of data and the selection of features are pivotal
to model performance. MOEAs prove instrumental in
discerning optimal feature subsets, thereby curtailing data
dimensions and augmenting both training efficiency and
model efficacy (Zhou et al., 2021). In the ML domain,
hyperparameters wield substantial influence over model
performance. Employing MOEAs facilitates the automated
quest for fitting hyperparameter combinations that strike a
balance among diverse performance indicators (Liu and Jin,
2019). Concerning model selection, MOEAs serve to guide the
curation of the most suitable ML model for specific tasks. By
optimizing multiple indicators, models that excel across
various performance facets can be ascertained (Yang et al.,
2018). In real-world datasets, the ubiquity of noise necessitates
models fortified by MOEAs, enabling commendable
performance amidst noisy data realms. For voluminous
datasets, MOEAs aid in selecting the most representative
sub-samples, thus mitigating training time while upholding
model performance. Moreover, they engender equilibrium
across multiple performance benchmarks and contribute to
enhancing model interpretability to a significant degree.

• Technological advancements have the potential to greatly
enhance the effectiveness of Evolutionary EMOEAs when
used to the resolution of scheduling problems (Tan and
Ding, 2015). Technological advancements have the
potential to greatly enhance the effectiveness of EMOEAs
when used to the resolution of scheduling problems (Li
et al., 2020a). To achieve better outcomes in complex and
dynamic real-world scheduling environments, the
development of tailored hardware and software solutions
can be considered. Lastly, automated design also stands as
a crucial direction driving the advancement of EMOEAs (Yi
et al., 2023). Through automated design, it is possible to
further elevate the performance of EMOEAs, reduce
manual intervention, and expedite the optimization process.
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The objective of this work is to examine and analyze efficient
methodologies for resolving real-world scheduling challenges, with a
specific focus on the utilization of EMOEAs. In comparison to
traditional MOEAs, EMOEAs have exhibited significant
potential and competitiveness. The paper commences with a
straightforward shop scheduling problem and subsequently
extends its scope to encompass various diverse scheduling
issues. Then, by contrasting conventional MOEAs with recent
EMOEAs, the application of EMOEAs is expounded upon from
three perspectives: ML assists MOEAs, MOEAs assists ML, and
the collaboration between MOEAs and ML. Finally, an
exploration of potential challenges that EMOEAs might
encounter in future applications is undertaken, followed by
the presentation of several prospective research directions.
These directions aim to propel the further advancement of
EMOEAs in the realm of shop scheduling problems.
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