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Industrial informatics brings computational intelligence to industry, powering the
“software-ization” of manufacturing processes. However, when faced with the
myriad of legacy systems that cannot be fully replaced cost-effectively,
practitioners must retrofit computational intelligence into legacy systems. This
modernization of legacy industrial systems is deceptively challenging: poor
retrofitting can cause more harm than good, hindering overall metrics. We
argue for a theoretical framework for modernizing legacy industrial systems.
We illustrate the challenge within the context of the real-time performance of
industrial cyber-physical systems by depicting a formalization of the problem and
illustrating its impact through Monte Carlo methods. We show how knowledge of
extant system internals constrains possible optimizations. We conclude by
highlighting several research directions, including some recommendations, that
must be pursued to establish a common theoretical underpinning that can inform
practitioners.
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1 Introduction

Industrial informatics (Bi, 2017) is a field that broadly consists of applying computing
technologies to industrial environments (Lee et al., 2014). Its goal, within the context of
Industry 4.0 (Lasi et al., 2014), is to move away from traditional, fully electro-mechanical
systems toward cyber-components, that is, software-controlled industrial processes (Parri
et al., 2021). This has several advantages over established practices, including safer and more
secure environments, thanks to new monitoring technologies (Zhou and Peng, 2020);
resilience and fault-tolerance (Gao et al., 2015); distributed and remote control and
operation (Buse and Wu, 2004); and improved efficiency, thanks to the integration of
optimization algorithms and artificial intelligence (Gaudio et al., 2021). The practice of
developing industrial informatics is fairly codified in the literature, starting from industrial
internet of things (Butun et al., 2020) to the broader umbrella of Industry 4.0 (Ghobakhloo,
2020).

However, one key aspect the literature lacks in the deployment of industrial informatics
is a comprehensive theoretical framework (and associated tooling) for how to modernize
extant industries—retrofitting state-of-the-art industrial informatics into legacy systems. In
the industrial context, blank-slate designs are seldom, if ever, the case; rather, (costly) legacy
equipment is augmented to meet the goals of upgrades, requiring practitioners to employ ad
hoc approaches to the scenario at hand (Lins et al., 2017).

Examples of such challenges can be found in the literature, including Ben-Guang et al.
(2000), Hills et al. (2016), Guerreiro et al. (2018), Lins and Oliveira (2020), and Tran et al.
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(2022). Unfortunately, almost all are confined in scope to the specific
environment in which the authors were working, reflecting the lack
of, and need for, a more holistic understanding of retrofitting
practices in the discipline to help bring new technology to the
industry (Fryer and Garcia, 2020).

Therefore, in alignment with the authors’ experience with
retrofitting real-time systems (Tavares et al., 2012; Gomes et al.,
2015), this paper presents a perspective on the problem regarding
real-time operation which attempts to begin the scholarly
development of such a comprehensive framework. We offer the
following contributions:

• Formalizing the problem of retrofitting real-time (cyber-
physical) industrial systems with computational intelligence
as a minimization problem.

• Illustrating that many free terms in this formalism are not
easily obtainable, nor reasonable bounds easily estimated,
constituting the fundamental problem of dealing with
legacy systems.

• Demonstrating the potential negative impact of poorly chosen
approaches through a Monte Carlo simulation method.

• Deriving how knowledge of the internals of extant systems
constrains possible optimization.

• Providing some insights into what is required to inform these
practices in the future.

2 Retrofitting legacy systems: a model

2.1 Legacy execution

Consider an industrial environment with N legacy systems. Prior
to the integration of computational intelligence, each system Si, i ∈ [0,
N [ is running a set of Ti tasks, where ti,j denotes task index j in set Ti,
and j ∈ [0, f(i) − 1 [ for each system, where f(i) is the number of total
tasks in the function of a system (i.e., each system runs an arbitrarily
different number of tasks), with e (ti,j) denoting the execution time of
task ti,j. For simplicity, we assume that each set Ti consists exclusively
of periodic tasks, where p (ti,j) denotes the period of task
ti,j—expressed as the percentage of task execution over a total unit
of work for a system, such that 1

p(ti,j) represents the number of times
the task executes per total unit of work. In the authors’ professional
experience, this is generally true, with the exception of asynchronous
fault-handling tasks. This model excludes these tasks, as, in the event
of faults, handling is of higher priority (and, typically, safety-critical);
thus, regular scheduling is typically paused. It is certainly possible to
incorporate asynchronous tasks in the model, but the increased
complexity is beyond the scope of this paper and is reserved for
the future.

If all tasks are periodic, optimum scheduling (if feasible) can be
achieved using rate monotonic scheduling (RMS) (Baruah and
Goossens, 2003)). Assuming a full unit of work is achieved
whenever the task with the longest period executes, then the total
time required per unit of work for a system Si, denoted e (Si), is given by

e Si( ) � ∑f i( )−1

k�0

e ti,k( )
p ti,k( ). (1)

It will be relevant for subsequent sections to note that, in many
cases, ∃ti,j ∈ Ti such that e (Si) ≫ e (ti,j).

2.2 Retrofitting intelligence

Now let us consider the integration of computational
intelligence on a legacy industrial system. Each system Si is
equipped with additional functionality, responsible for the
following operations:

1. Monitoring internal operation, including several diagnostic and
performance metrics.

2. Communicating that information to a centralized computational
intelligence, responsible for using that data to obtain actionable
information, make global optimizations, and refer updates back
to each system.

3. Receiving updates from the central system and updating the
system’s internal operation accordingly.

A notable example of this sort of operation is workload
balancing. For example, in simple serial manufacturing systems,
effective throughput is dominated by the system with the lowest
individual throughput. Thus, when any one system decreases its
throughput (due to supply availability, maintenance operation,
etc.), central intelligence can update other systems in that serial
chain to match the lowest system’s throughput, decreasing
unnecessary operation that could lead to costs and lifetime
degradation.

In more complex systems, especially when other metrics other
than just throughput are being considered, more sophisticated
updates can be performed to meeting several distinct goals.

In a system with augmented intelligence, denoted S′i, this
additional functionality is contained in a new task ti,c, such that
each system is now running a new set of tasks T′i � Ti ∪ ti,c with
corresponding execution time and period. New total time required
per unit of work e(S′i) is now given by

e S′i( ) � ∑f i( )−1

k�0

e ti,k( )
p ti,k( ) + e ti,c( )

p ti,c( )> e Si( ) � ∑f i( )−1

k�0

e ti,k( )
p ti,k( ). (2)

Note that, in the period of ti,c, p (ti,c) constrains the level of
temporal granularity upon which system Si can be measured and
acted upon. A short period offers fine-grained measurement and
control, at the expense of potentially severe performance
degradation; conversely, a long period has a minimal effect on
performance, at the expense of coarse-grained operation. For
every system, there is likely a minimum period pi

min, below
which actuation is no longer feasible.

2.3 Global scheduling

Synchronizing distributed systems is notoriously challenging. In
the case of industrial systems at scale, the optimum scenario would be
all tasks ti,c, i ∈ [0, N [ running at different times, such that there is no
contention for the communication medium nor for the central
intelligence compute power. In practice, there is significant
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overlap, resulting in an execution time for each task ti,c given by
e′(ti,j) = e (ti,j) + λ(x), x ∈ [0, N [, where λ(x) represents delay as a
function of x concurrently executing tasks, modeling medium and
compute power contention.

With preliminaries outlined, we can finally formalize the
overarching problem:

min
p tn,c( ),∀n∈[0,N[

∑i−1
n�0

e S′n( ), subject to : p tn,c( )<pn
min,∀n ∈ [0, N[ (3)

or, in full,

min
p tn,c( ),∀n∈[0,N[

∑i−1
n�0

∑f n( )−1

k�0

e tn,k( )
p tn,k( )+ e tn,c( )+λ x( )

p tn,c( ) ,

subject to :p tn,c( )<pn
min,∀n∈[0,N[.

(4)

Note that this is not an exclusive formalization: we have
chosen to use sum minimization (arguably, the simplest
problem) when we could have chosen mean, median, or several
other norms as the metric to minimize. The specific choice is
highly domain-specific, depending on the needs of the specific
global system. The goal here is to illustrate that the optimization
problem is not particularly difficult from a mathematical
optimization perspective but that un-optimized systems can be
severely affected by a poor choice of parameters and, critically, the
difficulties arise from effectively determining p (ti,j) and finding
realistic bounds for λ(x).

2.4 Simulated evaluation

To illustrate the impact of this challenge, consider the
following simulation implemented as a Monte Carlo method.

We implement 100 scenarios, where the number of systems is
sequentially increased, such that, for each scenario, there are Si, i ∈
[0, N [ systems where N is the scenario number. In each scenario,
each system executes f(i) tasks, with corresponding periods and
execution times. For simplicity, these values are heuristics and are
kept consistent across scenarios and homogeneously across
systems.

For each scenario, we introduce a computational intelligence
task per system, whose execution time and periods are random
variables drawn from a normal distribution centered at a positive
integer, left-truncated at 1 and right-truncated at the smallest
execution time and highest period of the system, respectively,
rounded to the nearest integer. The delay λ(x) is approximated as
the percentage of concurrent execution time, as given by the
smallest execution time of all computational tasks multiplied by
the highest period—a percentage of the amount of time the system
will exhibit contention (Carley et al., 2003). We repeated this
random experiment 100 times per scenario, reporting the sum of
total execution times for all systems (the function to be minimized
in Eq. 4), with results depicted in Figure 1. Table 1 shows the
corresponding mean and standard deviation for the average
system.

3 Leveraging global intelligence

Once systems are retrofitted with computational
intelligence, a central coordinating system can exploit this
additional information and actuation power to perform
global optimizations (which is, of course, the motivation
behind retrofitting in the first place). Regardless of what
precise optimization is performed, new system sum execution
time e (total) can be modeled as follows:

e total( ) � α ∑i−1
n�0

∑f n( )−1

k�0

e tn,k( )
p tn,k( ) + e tn,c( ) + λ x( )

p tn,c( )⎛⎝ ⎞⎠, α ∈ ]0, 1], (5)

where α is the inverse of the optimization factor, assuming this is
always positive (a negative optimization factor would correspond to
performance degradation).

FIGURE 1
Simulated execution of system contention for n ∈ [1, 100]
systems. Results obtained from 100 iterations per number of system,
with systems executing five tasks with execution times {10, 10, 20, 20,
30} and periods {4, 4, 6, 4, 2}.

TABLE 1 Average execution time and standard deviation per system.

Number of concurrent systems Mean σ

1 27.544 5.649

2 30.179 3.844

3 31.379 3.876

4 33.888 4.275

5 37.349 3.881

6 38.969 4.011

7 41.707 4.289

8 43.408 4.377

9 46.212 4.579

10 47.921 4.671
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The overarching problem can be formally expressed as satisfying

α ∑i−1
n�0

∑f n( )−1

k�0

e tn,k( )
p tn,k( ) + e tn,c( ) + λ x( )

p tn,c( )⎛⎝ ⎞⎠
< ∑i−1

n�0
∑f n( )−1

k�0

e tn,k( )
p tn,k( ), α ∈ ]0, 1],

(6)

which simplifies into

α

1 − α
∑i−1
n�0

e tn,c( ) + λ x( )
p tn,c( )⎛⎝ ⎞⎠< ∑i−1

n�0
∑f n( )−1

k�0

e tn,k( )
p tn,k( ), α ∈ ]0, 1]. (7)

The sum of execution times of computational tasks ∑i−1
n�0

e(tn,c)
p(tn,c) is

approximately constant for a given value of α = αa, such that we can
re-formulate the aforementioned statement as

α

1 − α
a + iλ x( )( )< ∑i−1

n�0
∑f n( )−1

k�0

e tn,k( )
p tn,k( ), α � αa. (8)

Borrowing from scheduling theory (Sinnen and Sousa, 2005;
Blagodurov et al., 2010; Johnson et al., 2010), it is safe to assume
there is a lower bound (typically non-0 but sufficiently close to 0) for
contention as a function of phase choices for the execution of
computational tasks (minimizing alignment of periodic execution).
An optimal formulation F for choosing these phases is predicated on
knowledge of periods and execution times of all extant tasks across
systems, formulated as K(Si), i ∈ [0, N [, K(Si) ∈ [0, 1], such that

λ x( ) � 1
F◦K Si( ), λ x( ) ∈ [λmin,∞ [, (9)

where F◦K(Si) denotes the function composition of F over K(Si)
equivalent to F(K(Si)) (note that contention is typically modeled as
having an infinite upper bound to denote system deadlock).
Replacing λ(x) in Eq. 8 and solving for K(Si), we obtain

α

1 − α
a + i

F◦K Si( )( )< ∑i−1
n�0

∑f n( )−1

k�0

e tn,k( )
p tn,k( ), α � αa, (10)

≡
i

F◦K Si( )<
1 − α

α
∑i−1
n�0

∑f n( )−1

k�0

e tn,k( )
p tn,k( )⎛⎝ ⎞⎠ − a, α � αa, (11)

≡ F◦K Si( )> i

1−α
α ∑i−1

n�0∑f n( )−1
k�0

e tn,k( )
p tn,k( )( ) − a

, α � αa, (12)

≡ K Si( )>F−1 i

1−α
α ∑i−1

n�0∑f n( )−1
k�0

e tn,k( )
p tn,k( )( ) − a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, α � αa. (13)

Thus, showing that total knowledge about the tasks of extant
systems required to optimize them when retrofitting computational
intelligence is a function of a possible optimization factor
(conversely, that optimization is a function of prior knowledge).
Thus, it is important to developmethodologies, theories, and tools to
determine system behavior (Section 5).

4 Case study

To illustrate the aspects considered in the model thus far,
consider the example industrial system depicted in Figure 2. The

two parallel systems produce items at different rates, depending on
operational parameters. The robotic arm picks items from the
intermediate item buffers and transfers them to subsequent
stations (not depicted) for further processing.

Through modernization efforts, all systems have been connected
to central intelligence through a communicationmedium, such as an
industrial ethernet. New computational tasks have been added to
each system; the goal is to communicate real-time production rates
to central intelligence so that it can optimize robotic arm operation
by moving it as little as possible (preserving power and potentially
using it for other operations in the downtime) as long as item buffer
rates are not exceeded.

Figure 3 depicts timing behavior before modernization (top);
parallel systems produce items at different rates, depicted in blue and
red, respectively, where a hyper-period corresponds to three
executions of the first system and two executions of the second.
In this example, assuming buffer capacity is greater than 1, and
executing a robotic arm operation as frequently as the production
rate of the first system is wasteful.

An incorrect approach to computational task execution is
shown in the middle of Figure 3, where the computational task
is depicted in green. Here, periods in both systems are chosen the
same as production tasks, resulting in both systems attempting to
access the shared medium at the same time, resulting in
contention. Total execution time is thus extended, delaying
production. On the other hand, a better chosen set of periods
results in the behavior depicted in Figure 3 (bottom), where no
contention is exhibited, resulting in non-decreased performance,
whilst preserving the advantages of optimized robotic arm
operation. Formally, systems 1 and 2 contain a single task, with
periods 1

p(ti,j) equal to
1

p(t1,0) � 3 and 1
p(t2,0) � 2, respectively, and

execution times e (ti,j) equal to e (t1,0) = 1 and e (t2,1) = 2,
respectively. From Figure 3, λ(2) = 1 for the poorly selected
case; thus, we can replace variables in Eq 4 with:

min
p tn,c( ),∀n∈[0,2[ ∑

0

n�0
∑0
k�0

e tn,k( )
p tn,k( ) + e tn,c( ) + λ x( )

p tn,c( )
� 1 × 3 + 2 × 2 + min

p tn,c( ),∀n∈[0,2[{ 1*2 + 1*1( ),

1 + λ x( )
3

( ) × 3 + 1 + λ x( )
2

( ) × 2( )}
� 7 + 3 � 10.

(14)

This shows that selecting periods for the computational tasks
equal to half the rate of the original tasks (and out of phase with each
other) results in no performance degradation. Critically, the values
in this case study can be verified experimentally and fairly simply; in
more complex systems, it would be difficult to estimate λ(x) and 1

p(ti,j)
without significant profiling.

5 Challenges and directions

Our simulated example, despite its simplicity, already clearly
illustrates the pitfalls of poor retrofitting of legacy systems. With
stochastically generated execution times and periods of
computational tasks, total sum execution time increases
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exponentially as the number of concurrent systems grows (Figure 1).
Per system, we can see that average execution time increases
(Table 1).

The negative impact of poor retrofitting decisions has several
impacts on practitioners. It greatly complicates the design effort,
adding to engineers’ cognitive load. It constitutes several additional

FIGURE 2
Example of a manufacturing system. Two parallel production systems output items to intermediate buffers at different rates. A moving system
transfers items to next processing stage. Solid gray lines represent communication medium (e.g., industrial ethernet).

FIGURE 3
Task execution slots; time progresses from left to right. Blue and red blocks represent systems 1 and 2 executing, respectively. Green blocks
represent corresponding computational tasks, with contention depicted. Top diagram depicts the non-intelligent (legacy) system; middle diagram
depicts effects of poorly chosen computational tasks periods, with significant contention; bottom diagram depicts correct choices, without contention.
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variables that constrain the optimization problem; critically, it poses
a discovery and estimation challenge for both known and unknown
“unknowns”. Whilst our focus in this paper was on the real-time
performance aspects of cyber-physical systems, that is merely
illustrative, the broader challenge encompasses not only this but
also includes throughput, communication, monitoring, security, and
safety.

We identify a few directions that researchmust pursue to solving
these challenges.

• Estimation methodology. With so many unknowns that
affect the problem and the infamous lack of reliable legacy
design documentation, a comprehensive methodology for
estimating required parameters is required. Practitioners
cannot rely on ad hoc approaches; know-how from the
disciplines of diagnostics and reverse engineering must be
formalized within the context of industrial informatics.

• Interdisciplinary pollination. Whilst the need for an
optimization approached has long been clear in traditional
industrial engineering, its need within industrial informatics
has not been so clear. We need to make known more
optimization methods available to practitioners of industrial
informatics (particularly those engaged with legacy systems)—
at the very least, broad adoption of linear programming
methods in industrial informatics.

• Theoretical framework. The previous directions must be unified
within a comprehensive, theoretical framework of modernization
on retrofitting intelligence within industrial informatics. Whilst
some work has begun this process (Zakoldaev et al., 2019), we are
far from a comprehensive theory that informs the discipline.
Algorithms, heuristics, best practices, and formalisms must
comprise the theoretical framework; this paper offers a small
contribution in that direction.

• Associated tooling.All these developments mean little if there
is no tool support to implement them in practice. In parallel

with establishing a theoretical framework, we must develop
hardware and software tools that aid in retrofitting legacy
systems if the next industrial revolution is to be fulfilled.
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