
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Immunol.
Sec. Cancer Immunity and Immunotherapy
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1583587
This article is part of the Research Topic The Role of Neutrophil Extra Cellular Traps (NETs) Formation in Tumor Microenvironment- from Basic Research to Clinical Applications View all 3 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Hypoxia plays a pivotal role in modulating immune responses, especially in neutrophils, which are essential components of the innate immune system. Hypoxia-inducible factor (HIF)-1α, a key transcription factor in hypoxic adaptation, regulates cellular metabolism and inflammatory responses. However, the impact of HIF-1α-dependent glycolysis on the formation of neutrophil extracellular traps (known as NETosis) under hypoxic conditions remains unclear.We employed two established neutrophil models, neutrophils isolated from human whole blood and DMSO-induced dHL-60 cells, to explore the role of HIF-1α in regulating glycolysis and its influence on NETosis under hypoxic conditions. We utilized western blotting, immunofluorescence staining, ELISA, and flow cytometry to evaluate the expression of key glycolytic enzymes and NETosis markers under hypoxia. Additionally, the effects of inhibiting HIF-1α with LW6 and blocking the glycolytic pathway with Bay-876 were investigated.Results: HIF-1α-dependent glycolysis, through the upregulation of key glycolytic enzymes, significantly enhances NETosis under hypoxic conditions. Pharmacological inhibition of HIF-1α with LW6 and glycolytic blockade with Bay-876 markedly reduced NETosis, underscoring the crucial role of metabolic reprogramming in neutrophil function during hypoxia.This study provides novel insights into the interplay between metabolic reprogramming and NETosis in response to hypoxic stress. We identify HIF-1α-dependent glycolysis as a key driver of NETs formation, advancing our understanding of the mechanisms underlying hypoxia-related inflammatory diseases. These findings also suggest that targeting metabolic pathways may offer potential therapeutic strategies for modulating immune responses in hypoxia-associated disorders.
Keywords: HIF-1α, Glycolysis, neutrophil extracellular traps, hypoxia, Neutrophils
Received: 26 Feb 2025; Accepted: 07 Apr 2025.
Copyright: © 2025 Ye, Yanjun, Xu, Juanli, Yang, Wuren and Ge. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Tana Wuren, Research Center for High Altitude Medicine, Qinghai University, Xining, China
Ri-Li Ge, Research Center for High Altitude Medicine, Qinghai University, Xining, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.