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Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related

mortality globally. The tumor microenvironment (TME) plays a pivotal role in

HCC progression, characterized by dynamic interactions between stromal

components, immune cells, and tumor cells. Key immune players, including

tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs),

cytotoxic T lymphocytes (CTLs), regulatory T cells (Tregs), MDSCs, dendritic cells

(DCs), and natural killer (NK) cells, contribute to immune evasion and tumor

progression. Recent advances in immunotherapy, such as immune checkpoint

inhibitors (ICIs), cancer vaccines, adoptive cell therapy (ACT), and combination

therapies, have shown promise in enhancing anti-tumor responses. Dual ICI

combinations, ICIs with molecular targeted drugs, and integration with local

treatments or radiotherapy have demonstrated improved outcomes in HCC

patients. This review highlights the evolving understanding of the immune

microenvironment and the therapeutic potential of immunotherapeutic

strategies in HCC management.
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1 Introduction

HCC constitutes 80-90% of Liver cancer cases, alongside intrahepatic

cholangiocarcinoma and mixed-type carcinoma (1, 2). The tumor microenvironment

(TME), a key driver of cancer progression, dynamically evolves from premalignant

stages to advanced tumor development (3, 4). This evolution is characterized by the

transition from a premalignant microenvironment to a tumor-promoting

microenvironment, both of which adapt as the tumor progresses (5).

The immune microenvironment, comprising TILs, CTLs, Tregs, TAMs, and MDSCs,

plays a pivotal role in the development and progression of HCC (6). HCC is frequently
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asymptomatic in its early stages, leading to the majority of cases

being diagnosed at advanced phases, which significantly limits

surgical intervention. Traditional therapeutic approaches often

exhibit limited efficacy and are associated with high rates of

recurrence. In contrast, immunotherapy has emerged as a

transformative strategy, leveraging advances in immunobiology to

enhance anti-tumor immune responses. This review summarizes

the roles of immune cells within the TME and recent advancements

in immunotherapy for HCC.
2 Immune microenvironment in HCC

2.1 TAMs

TAMs exhibit M1 and M2 phenotypes, with M2 promoting

immune evasion and tumor progression. Glycolytic pathway

inhibition suppresses M2 polarization (7). Receptor-interacting

serine/threonine-protein kinase 3 (RIPK3)-deficient TAMs

enhance M2 polarization via fatty acid oxidation, whereas

decitabine modulates metabolism to boost anti-tumor immunity

(8). TAMs drive HCC invasion, metastasis, and recurrence,

correlating with poor prognosis (9). Hypoxia induces IL-1b
release via TLR4/TIR-TRIF/NF-kB, promoting epithelial-

mesenchymal transition (EMT) (10, 11). TAMs produce

inflammatory cytokines, including TNF-a, IL-b, IL-6, and IL-23.

They also expand Th17 cells and suppress immunity by upregulating

PD-1, CTLA-4, and GITR (12–15). TGF-b upregulates TIM-3 on

TAMs, enhancing tumor growth via NF-kB/IL-6 (16). Mitochondrial

fission in HCC activates TLR9/NF-kB, increasing CD163+ TAM

infiltration and CCL2, linked to poor prognosis (17). Furthermore,

TAMs interact with cancer-associated fibroblasts (CAFs) via

cytokines such as TGF-b and stromal cell-derived factor-1 (SDF-1),

promoting M2 polarization, fibrosis, and immunosuppression,

enhancing tumorigenesis and immune evasion (18).
2.2 TILs

TILs, comprising T, B, and NK cells, are crucial in antitumor

immunity (19–22). FOXP3+ regulatory T cells (Tregs) act as tumor

suppressors, while immunohistochemical studies demonstrate that

immune cells regulate both antitumor responses and tumor-

promoting conditions within the TME (23, 24). In HCC, the role

of TILs in immune surveillance varies, with the balance between

regulatory and cytotoxic T cells significantly influencing tumor

progression (25). TILs are emerging as potential prognostic

biomarkers in HCC, although findings on the impact of FOXP3+

and CD8+ T cells on prognosis remain conflicting (26–29).
2.3 CTLs

CTLs, guided by CD4+ T helper (Th) cells, target abnormal cells

and initiate cytotoxic responses to eliminate tumors. Activated DCs
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support CTL function by providing CXCL16 and IL-15, which

promote CTL accumulation and survival (30, 31). Despite immune

suppression via hypoxia, metabolic competition, insufficient CD4+

T cells, and high expression of regulatory molecules (e.g., VEGF,

CXCL17, IL-10, IDO), the presence of CD8+ CTLs in HCC

correlates with improved survival (32–37). However, Fas/FasL

expression in CD8+ T cells and endothelial cells, induced by

VEGF-A and PGE2, accelerates CD8+ turnover, diminishing

antitumor response (32, 38, 39). Additionally, CTLs are further

suppressed by IL-2 and indoleamine 2,3-dioxygenase (IDO)

secreted by CD14+ DCs (40).
2.4 Tregs

Tregs, marked by CD25 and FOXP3, maintain immune

tolerance but promote tumor progression in the TME. They

infiltrate cancers like melanoma, suppressing anti-tumor

responses via CCL6/CCL20 and TCR/IL-10/TGF-b pathways (41,

42). In HCC, Tregs are elevated in tumor tissues and blood, with

increased CD4+CD25+ cells (43, 44). LncRNAs and pro-

inflammatory signals enhance Treg differentiation; lnc-Epidermal

growth factor receptor (EGFR) overexpression inhibits

ubiquitination via AP-1/NFAT1, aiding immune suppression

(45). Tregs are key immunotherapy targets, with sorafenib

reducing Tregs by blocking TGF-b (46). Various microRNAs,

including miR-150-5p and miR-142-3p, are implicated in

immunosuppression mediated by Treg cell-derived extracellular

vesicles, which foster a tolerogenic state in dendritic cells (47).
2.5 Myeloid-derived suppressor cells

MDSCs exhibit immunosuppressive functions by inhibiting T

cell activation, inducing T cell anergy, suppressing NK cell

cytotoxicity, and polarizing macrophages towards a pro-tumor

phenotype (48). MDSCs are broadly categorized into two subsets:

monocytic (M-MDSCs) and polymorphonuclear (PMN-MDSCs).

Under physiological conditions, MDSCs differentiate into

macrophages, granulocytes, and dendritic cells; however, during

inflammation or tumorigenesis, they undergo expansion and

transform into immune-suppressive TAMs (49). Within the

TME, MDSCs exert their immunosuppressive effects by depleting

cysteine, upregulating inducible nitric oxide synthase (iNOS) and

arginase-1 (ARG-1), impairing T cell function, promoting

regulatory T cell (Treg) expansion, and generating reactive

oxygen species (ROS) to inhibit NK cell activity (50). Notably,

KRAS mutations in M-MDSCs suppress interferon regulatory

factor 2 (IRF2), leading to the release of CXCL3, which recruits

additional MDSCs and inhibits cytotoxic T cells (51). Clinical

studies have demonstrated that elevated M-MDSC populations in

HCC patients are closely associated with the induction of CD4+

CD25+Foxp3+ Tregs and the suppression of NK cell activity

through NKp30-dependent cell contact (52, 53). Furthermore,

CCRK expression in tumors promotes MDSC accumulation, with
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high CCRK/IL-6/CD11b/CD33 levels linked to poor prognosis (54).

Preclinical HCC models show CCRK signaling recruits MDSCs to

establish an immune-suppressive TME, reversible by targeting

CCRK or IL-6 (55). Besides, Treg-derived exosomes amplify the

immunosuppressive capacity of MDSCs (56).
2.6 Dendritic cells

DCs is recognized as the most potent antigen-presenting cells,

predominantly exist in an immature state in vivo, where they exhibit

exceptional efficiency in antigen uptake. They activate T

lymphocytes for anti-tumor responses, stimulate B cell

maturation, and activate Th and NK cells. DCs are classified into

cDC1 (myeloid-derived) and cDC2 (lymphoid-derived) subtypes.

They present antigens via MHC-I/II pathways and induce co-

stimulatory signals (e.g., B7/CD28) to activate CTLs for anti-

tumor immunity (57). Antigen delivery by DCs may involve

exosome vesicles (58). In HCC, LAMP3+ DCs, expressing CD80/

83 and CCR7, migrate to liver lymph nodes, interacting with Tregs

via CD86-CD28 and exhausted T cells via CD86-CTLA4 (5). HCC

patients show reduced circulating pDCs and cDCs, with decreased

co-stimulatory molecule expression, negatively correlating with IL-

10 levels (59, 60). CD303+ pDCs in HCC tumors co-localize with

type 1 Tregs and correlate with poor prognosis (61, 62).
2.7 Natural killer cells

NK cells, innate lymphocytes, mediate tumor cell killing via

perforin/granzyme exocytosis, FASL/RAILR binding, and IFN-g/
TNFa secretion. Classified into CD56dim (mature, cytotoxic,

b l o o d - d om i n a n t ) a n d CD 5 6 b r i g h t ( i mm a t u r e ,

immunomodulatory, lymphoid organ-resident) subsets (63). In

the TME, NK infiltration is limited, with suppressed function due

to altered chemokine profiles, fructose-1,6-bisphosphatase-induced

glycolysis suppression, and adenosine-mediated maturation

inhibition (64, 65). High NK and CD8+ T cell presence correlates

with favorable prognosis and tumor apoptosis in early HCC (66).

However, in stage III HCC (67), CD56dim NK frequency declines,

while immunoregulatory NKs expand, with tumor-infiltrating

CD56dim NKs expressing PD-1/NKG2A, linked to poor

prognosis (68, 69). Sorafenib enhances NK activity via

macrophage-derived cytokines (IL-12, IL-18, IL-1b), suggesting
NK activation contributes to its anti-tumor efficacy (70, 71).
2.8 Tumor-associated neutrophils

TANs are guided into tumors by chemokines (CXCL1/2/5/6/8,

CCL3/5) binding to CXCR1/2 receptors (72). TANs exhibit dual roles:

promoting tumor growth via angiogenesis, ECM remodeling, and

immunosuppression, or mediating anti-tumor responses through

ROS, RNS, and direct cytotoxicity. Polarization to N1 (anti-tumor,

IFNb/IL-1b-driven) or N2 (pro-tumor, TGF-b/IL-6/7/8-driven)
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phenotypes influences tumor dynamics (73). The neutrophil-

lymphocyte ratio is a prognostic marker in liver cancer (74).

Neutrophil-tumor cell clusters enhance metastasis via upregulated

cell cycle and DNA replication genes (75). N2 TANs induce stem cell-

like phenotypes in HCC through BMP2/TGF-b2/miR-301b-3p

signaling and CXCL5 feedback loops (76, 77). They recruit

macrophages/Tregs via CCL2/CCL17, inducing sorafenib resistance

(78), and form NETs, promoting HCC progression (79) (Figure 1).
3 Immunotherapy

3.1 Immune checkpoint inhibitors

3.1.1 PD-1/PD-L1 inhibitors
The PD-1/PD-L1 axis, expressed on immune and tumor cells

respectively, suppresses immune activation and cytotoxic function,

particularly in liver malignancies (80). Clinical trials demonstrate

PD-1 inhibitors’ efficacy: nivolumab (CheckMate-040) showed 23%

ORR and 28.6-month median OS in sorafenib-naïve HCC (81),

while pembrolizumab (KEYNOTE-240) improved survival versus

placebo (82). Camrelizumab achieved 14.7% ORR and 14.2-month

median OS in Chinese HCC patients (83). with comparable

outcomes among PD-1 inhibitors (81, 83–85). PD-L1 inhibitors

show promise, with atezolizumab plus bevacizumab (IMbrave 150)

demonstrating superior 12-month survival versus sorafenib in

unresectable HCC (86).

3.1.2 CTLA-4 inhibitors
CTLA-4, a homolog of CD28 expressed on activated CD4+ and

CD8+ T lymphocytes, competes with CD28 for binding to B7

ligands, thus inhibiting T lymphocyte activation (87). CTLA-4

inhibitors relieve this inhibitory signal, activating specific effector

T cells to induce or enhance anti-tumor immune responses.

Ipilimumab is currently the only approved CTLA-4 inhibitor. A

study of 21 HCC patients treated with ipilimumab showed a partial

response rate (PR) of 17.6% and a disease control rate (DCR) of

76.4%, demonstrating its significant therapeutic effect (88).

3.1.3 Glucocorticoid-induced tumor necrosis
factor receptor agonists

GITR agonists enhance anti-tumor immune responses through

co-stimulation, making them a novel target in cancer

immunotherapy. Preclinical studies have shown that GITR

agonists promote the activation of CD8+ and CD4+ effector T

cells while inhibiting the activity of tumor-infiltrating T cells. A

phase I clinical trial of the GITR agonist monoclonal antibody

TRx518 demonstrated promising safety and immune effects in

patients with advanced cancer (NCT01239134) (89).
3.2 Cancer vaccines

Cancer vaccines are therapeutic vaccines targeting tumor-

associated antigens, stimulating the body’s immune response to
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target and kill tumor cells. The main types of cancer vaccines

include peptide vaccines, DC vaccines, and oncolytic virus vaccines.

3.2.1 Peptide vaccines
Tumor peptide vaccines, utilizing surface antigens or

intracellular peptides, activate T cell-mediated anti-tumor

immunity (90–92). Glypican-3, overexpressed in HCC,

demonstrated clinical efficacy, with Sawada et al. (93) showing

reduced recurrence and improved survival when combined with

surgery versus surgery alone. Multi-drug resistance protein 3

vaccines also enhanced survival in advanced HCC (94, 95).

Glypican-3 trials induced CTL responses in 30/33 patients, with

partial/stable disease and improved OSR objective survival rates

(OSR) (96, 97). Phase II studies confirmed reduced post-surgical

recurrence (93). Alpha-fetoprotein (AFP) vaccines activated HCC

immunity (98), with hAFP-DCs enhancing anti-tumor effects in

mice (99). AFP-derived peptides (AFP357,403) showed safety and

efficacy, including complete remission (100), while AFP158-specific

TCR genes enabled T cells to target HCC cells (101).
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3.2.2 DC vaccines
Dendritic cells (DCs), as highly potent antigen-presenting cells,

can be effectively sensitized using tumor antigen extracts to elicit

robust and specific immune responses. Accumulating evidence

demonstrates that DC-based vaccines significantly enhance the

proliferation and activation of CD8+ T lymphocytes while

elevating serum interferon-gamma (IFN-g) levels in patients with

hepatocellular carcinoma (HCC), thereby contributing to improved

overall survival (OS) (102). Meta-analyses confirm DC

immunotherapy as an effective adjuvant for HCC, boosting

antitumor immunity, survival rates, and reducing recurrence, with

good safety (103). Notably, MIZUKOSHI et al. (104) provided

compelling evidence that the combination of transcatheter arterial

embolization (TAE) with DC infusion significantly amplifies

tumor-specific T lymphocyte responses and enhances antitumor

immunity compared to TAE monotherapy, highlighting the

synergistic potential of this combined therapeutic approach. Post-

surgery, RFA, TACE, or PEI followed by DC immunotherapy

reduced recurrence risk and enhanced tumor-specific immunity
FIGURE 1

The role of immune cells in HCC.
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(105). Combining DC vaccines or CIK with conventional

treatments improved prognosis, OSR, and reduced recurrence

(106). DC monotherapy significantly improved 1-year OSR,

demonstrating its clinical utility as an HCC adjuvant therapy.

3.2.3 Oncolytic virus vaccines
Oncolytic viruses proliferate only within tumor cells, causing

tumor cell lysis, and exert dual effects by specifically killing tumor

cells and activating the body’s antitumor immune response. JX-594,

an oncolytic vaccinia virus, has been shown to have therapeutic

effects in liver cancer. Heo et al. (107) injected the JX-594 virus

vaccine into liver cancer tissue, confirming its therapeutic effect and

demonstrating early efficacy. Additionally, Pexa-Vec, another

oncolytic virus, has garnered widespread attention in HCC

treatment. A clinical trial combining Pexa-Vec with sorafenib for

advanced HCC patients showed that the combination treatment

slowed disease progression and prolonged survival in patients with

advanced HCC (108).
3.3 Cytokines

Cytokines, including IFN, IL, colony-stimulating factors, and

TNF are immune cell-secreted signaling molecules. IFN exhibits

antiviral, immune-regulating, anti-angiogenic, and pro-apoptotic

effects, crucial in tumor treatment. Lee et al. (109) found PEGylated

IFN reduced recurrence in post-surgery liver cancer patients.

Bertelli et al. (110) showed IL-2 prolonged survival in inoperable

HCC patients, highlighting cytokines’ role in liver cancer therapy.
4 Adoptive cell therapy

4.1 CAR-T therapy

CAR-T therapy involves genetically modifying T lymphocytes

to express receptors targeting tumor antigens, which recognize

specific ligands to exert antitumor effects (111). Target antigens,

overexpressed in tumors but minimally in normal tissues, are

crucial for efficacy. Common targets in liver cancer include

GPC3, AFP, hepatocyte growth factor receptor, and MUC1.

GPC3 CAR-T delayed disease progression in HCC with good

safety (112). GPC3-CAR T cells showed tumor-clearing effects in

HCC patient-derived xenograft models (113). A phase I trial

(NCT02395250, NCT03146234) reported 2 of 13 advanced HCC

patients achieved PR, supporting CAR-GPC3 T cell therapy’s safety

and efficacy (114).
4.2 CIK therapy

Previous clinical studies have shown that CIK cell therapy

enhances immune function, clears residual tumor foci, and

reduces tumor recurrence. Currently, DC and CIK cells are co-

cultured to form DC-CIK cells. By presenting tumor antigens to
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CIK cells, DCs make the immune response more specific, enhancing

CIK cell-mediated tumor cell killing. Wang et al. (115) showed that

after co-culturing GPC3-transfected DCs with CIK cells, the

differentiation and IFN-g secretion of CIK cells were promoted,

inducing a specific killing effect against GPC3-expressing liver

cancer cells. DC-CIK cell immunotherapy has broad application

prospects in liver cancer treatment.
4.3 TCR-T therapy

TCR-T therapy targets tumor antigen peptides presented by the

major histocompatibility complex (MHC), with its antitumor

activity primarily depending on CD8+ T lymphocytes. As the

hepatitis B virus (HBV) genetic fragments can integrate into the

chromosomes of liver cells during chronic infection, TCR-T therapy

can target HBV antigens in HCC cells, making TCR-T therapy

particularly advantageous in HBV-related HCC (116).
4.4 NK cell therapy

NK cells, comprising 30%-50% of intrahepatic lymphocytes, are

crucial in immune defense against viral infections and tumor

development. Dysfunction in NK cells, including reduced

numbers and functional defects, facilitates tumor immune

evasion, contributing to HCC (117). Allogeneic NK cell

immunotherapy is increasingly used in clinical trials. Combining

irreversible electroporation with NK cell therapy significantly

improved median OS in stage IV HCC patients (NCT03008343)

(118). Another trial (NCT01147380) infused donor-derived

activated NK cells into liver transplant recipients, showing safety

and feasibility in preventing metastasis and recurrence (119).

Genetic modification of NK cells is also explored to enhance

specificity and efficacy.
5 Combination therapy

5.1 Dual ICI combination

Dual ICI combination therapy demonstrates synergistic effects,

enhancing response rates and efficacy. Studies on PD-1/PD-L1 and

CTLA-4 inhibitors in melanoma have informed HCC trials. In

CheckMate 040, nivolumab and ipilimumab in sorafenib-treated

HCC patients yielded an ORR of 34%, DCR of 51.2%, and 60-

month survival of 29% (120). The CheckMate 9DW trial provided

updated evidence supporting the significant OS benefits over

sorafenib (121). The HIMALAYA trial established the

combination of tremelimumab and durvalumab as an effective

first-line therapy, achieving a median OS of 16.4 months

compared to 13.8 months with sorafenib (122). GITR agonist

antibodies with PD-1 inhibitors may overcome monotherapy

resistance (89, 123). They enhance TIL responses in advanced

HCC (124), which indicates improved anti-tumor efficacy.
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5.2 ICI combined with molecular
targeted drugs

Molecular targeted drugs inhibiting tumor angiogenesis can

suppress the tumor’s immune-suppressive microenvironment and

enhance immunotherapy sensitivity (125, 126). Combining

immunotherapy with targeted treatment yields synergistic anti-

tumor effects. Atezolizumab plus bevacizumab showed superior

efficacy in advanced unresectable HCC than sorafenib alone (86).

KEYNOTE-524 (127) and LEAP-002 trial (128) reported elevated

ORR or OS in advanced HCC. These findings highlight the efficacy

o f ICI combined wi th ta rge t ed drugs , ove rcoming

monotherapy limitations.
5.3 ICI combined with local treatment

HCC treatments like ablation and interventional therapies

release tumor antigens, induce necrosis, and activate immune

cells (CD8+ T-cells, NK cells). Combined with immunotherapy,

they enhance anti-tumor effects. A study showed ablation with

tremelimumab increased CD8+ T-cells, with median OS of 12.3

months (129). TACE, a non-surgical HCC treatment, induces

tumor necrosis. DC-CIK with TACE prolonged PFS than TACE

alone, suggesting immunotherapy combined with local treatments

benefits non-surgical HCC patients (130).
5.4 ICI combined with radiotherapy

Combining 131I-Metoxymab, a radioactive fragment targeting

HCC-associated CD147, with radiofrequency ablation (RFA)

significantly lowered 1- and 2-year recurrence rates compared to

RFA alone (131). This finding highlights the therapeutic potential of

McAb-mediated radiotherapy through dual cytotoxic mechanisms

in liver cancer treatment. In HCC murine models, combined

Radiotherapy and anti-PD-L1 therapy enhanced survival and

tumor control versus monotherapies, with Radiotherapy -induced

PD-L1 upregulation via IFN-gamma/STAT3 potentially boosting

immunotherapy (132). A matched analysis showed Radiotherapy

addition to anti-PD-1 and anti-angiogenic therapy improved ORR,

OS, and PFS (133) (Table 1).
6 Conclusion

The immune microenvironment plays a pivotal role in the

progression of hepatocellular carcinoma, with immune cells both

promoting tumor growth and suppressing anti-tumor responses.

The intricate interplay between TAMs, TILs, and MDSCs shapes

the immune landscape, influencing the effectiveness of therapies.

Immunotherapy, particularly the use of immune checkpoint

inhibitors, has revolutionized treatment strategies for HCC,

offering new hope for patients with advanced disease. The

combination of ICIs with molecular targeted drugs, local
Frontiers in Immunology 06
TABLE 1 The immunotherapies in HCC.

Category Subcategory Details

Immune checkpoint
inhibitors (ICI)

PD-1/PD-L1 Inhibitors

PD-1/PD-L1 axis
suppresses immune
function in HCC. Trials:
Nivolumab (23% ORR),
Pembrolizumab
(improved survival),
Camrelizumab
(14.7% ORR).

CTLA-4 Inhibitors

CTLA-4 inhibits T cell
activation. Ipilimumab
shows 17.6% PR and
76.4% DCR in HCC.

GITR Agonists

Enhance T cell
activation; TRx518
shows safety and
immune effects in HCC.

Cancer vaccines

Peptide Vaccines

GPC3, AFP vaccines
improve survival and
recurrence rates
in HCC.

DC Vaccines
DC vaccines enhance
CD8+ T cells, improve
OS in HCC.

Oncolytic
Virus Vaccines

JX-594 and Pexa-Vec
show promising results
in HCC.

Cytokines Interferons, ILs, TNFs
IFN, IL-2, and TNF
show potential in
HCC treatment.

Adoptive cell
therapy (ACT)

CAR-T Therapy
GPC3-targeted CAR-T
shows efficacy in HCC.

CIK Therapy

DC-CIK therapy
enhances immune
response and tumor
killing in HCC.

TCR-T Therapy
Targets tumor peptides;
useful in HBV-
related HCC.

NK Cell Therapy
NK cell immunotherapy
shows potential in HCC.

Combination therapy

Dual ICI Combination
PD-1/PD-L1 + CTLA-4
combo improves anti-
tumor efficacy.

ICI + Molecular
Targeted Drugs

Atezolizumab +
bevacizumab and
pembrolizumab +
lenvatinib show
improved outcomes.

ICI + Local Treatment

Immunotherapy with
ablation, TACE
improves progression-
free survival.

ICI + Radiotherapy

Radiotherapy combined
with anti-PD-L1
enhances survival and
tumor control.
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treatments, or radiotherapy holds significant promise for improving

treatment outcomes. However, HCC immunotherapy faces

limitations due to low response rates and resistance, driven by

TME-induced immune suppression, T-cell exhaustion, and

immunosuppressive cells. Combination therapies show variable

efficacy and pose risks of immune-related adverse events,

necessitating deeper insights into resistance mechanisms and

predictive biomarkers.
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