
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Immunol.
Sec. Cancer Immunity and Immunotherapy
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1576283
This article is part of the Research Topic Exploring the Intersection of Cancer Metabolism, Metastasis and Immunotherapy View all 6 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Gliomas, particularly glioblastoma (GBM), are among the most aggressive and challenging brain tumors to treat. Although current therapies such as chemotherapy, radiotherapy, and targeted treatments have extended patient survival to some extent, their efficacy remains limited and is often accompanied by severe side effects. In recent years, exercise therapy has gained increasing attention as an adjunctive treatment in clinical and research settings. Exercise not only improves patients' physical function and cognitive abilities but may also enhance the efficacy of conventional drug treatments by modulating the immune system, suppressing inflammatory responses, and improving blood-brain barrier permeability. This review summarizes the potential mechanisms of exercise in glioma treatment, including enhancing immune surveillance through activation of natural killer (NK) cells and T cells, and increasing drug penetration by improving blood-brain barrier function. Additionally, studies suggest that exercise can synergize with chemotherapy and immunotherapy, improving treatment outcomes while reducing drug-related side effects. Although the application of exercise therapy in glioma patients is still in the exploratory phase, existing evidence indicates its significant clinical value as an adjunctive approach, with the potential to become a new standard in glioma treatment in the future.
Keywords: Glioma, Exercise Therapy, drug treatment, Immune System, Blood-Brain Barrier
Received: 13 Feb 2025; Accepted: 02 Apr 2025.
Copyright: © 2025 Wu, Chen, Chen, Liu, Wu, Zhang, Chen, Xiao, Su, Shi, Yu, Wang, Ouyang, Jiang, Chen, Ye, Shen, Li, Reheman, Liu and Shen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Guanghui Wu, Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, China
Yisheng Chen, Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, China
Ming Liu, Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, China
Jiancheng Shen, Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.