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Metabolic reprogramming is a hallmark of ovarian cancer, enabling tumor

progress ion , immune evas ion and drug res i s tance . The tumor

microenvironment (TME) further shapes metabolic adaptations, enabling

cancer cells to withstand hypoxia and nutrient deprivation. While organoid

models provide a physiologically relevant platform for studying these

processes, they still lack immune and vascular components, limiting their

ability to fully recapitulate tumor metabolism and drug responses. In this study,

we investigated the key metabolic mechanisms involved in ovarian cancer

progression, focusing on glycolysis, lipid metabolism and amino acid

metabolism. We integrated metabolomic analyses and drug sensitivity assays to

explore metabolic-TME interactions using patient-derived, adult stem cell-

derived and iPSC-derived organ tissues. Among these, we found that

glycolysis, lipid metabolism and amino acid metabolism play a central role in

tumor progression and chemotherapy resistance. We identified methylglyoxal

(MGO)-mediated BRCA2 dysfunction as a driver of immune escape, a role for

sphingolipid signaling in tumor proliferation and a role for kynurenine

metabolism in CD8+ T cell suppression. In addition, PI3K/AKT/mTOR and Wnt/

b-catenin pathways promote chemoresistance throughmetabolic adaptation. By

elucidating the link betweenmetabolic reprogramming and immune evasion, this

study identifies key metabolic vulnerabilities and potential drug targets in ovarian

cancer. Our findings support the development of metabolically targeted

therapies and increase the utility of organoid-based precision medicine models.
KEYWORDS

ovarian cancer, organoid, drug resistance, metabolic reprogramming, molecular
mechanisms, immune escape, personalized therapy
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1 Introduction

Ovarian cancer is a deadly gynecologic disease, causing over

152,000 deaths annually (1). While most patients initially respond

to platinum-based therapies, resistance mechanisms, including

paclitaxel resistance, hinder treatment progress (2, 3). This

highlights the urgent need to study ovarian cancer metabolism

and drug resistance to achieve precision therapy (3). However,

ovarian cancer’s high heterogeneity complicates research (4).

Organoid technology preserves the tumor microenvironment

(TME), mimics tumor heterogeneity (5–7). It allows the study of

developmental and pathogenic pathways that traditional animal

models struggle to replicate and supports real-time imaging at lower

costs and higher throughput than animal models, with a broader

range of cell types than 2D cultures (8, 9). Additionally, it simulates

drug penetration and metabolism, aiding in personalized

therapy (10).

In ovarian cancer, dysregulated signaling pathways and

metabolic reprogramming empower cancer cells to proliferate and

persist within the adverse tumor microenvironment (TME) (11).

Various signaling pathways control cell proliferation, survival, and

stemness, while metabolic reprogramming closely links to cisplatin

resistance (12–14). ovarian cancer organoids provide a realistic

model to study these pathways and processes, enhancing the

understanding of drug resistance mechanisms (15). This paper

examines different drug-related metabolic and signaling pathways

in ovarian cancer organoids, summarizes drug resistance, and

discusses limitations in personalized treatment to inform

clinical applications.
2 Different sources of ovarian cancer-
like organs

Organoids are tissue analogs with a certain spatial structure

formed by in vitro three-dimensional culture using adult stem cells,

pluripotent stem cells, or patient-derived cells (16, 17).They have

stable biological characteristics: tumor-derived organoids accurately
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replicate their structural, phenotypic, and genetic features, have

similar tumor heterogeneity, in TME effectively mimic immune

cells and stromal components, can be cultured in vitro long-term

culture (17), and the ability to preserve metabolic adaptations in

tumors, dynamically regulate glycolysis, lipid metabolism and amino

acid metabolism, to study metabolic reprogramming in a way that

more closely approximates the in vivo microenvironment, and to

generalize the formation of two events occurring in organoid bodies,

namely, the cellular adhesion of categorical aggregates and the

spatially specific cellular hematopoietic stereotypes (18). (Table 1).
2.1 Ovarian cancer-like organs derived
from induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) derived from patients

with early-onset ovarian cancer carrying BRCA1 gene mutations

possess the capability to differentiate into fallopian tube epithelial

(FTE)-like structures (19). Pathogenic BRCA1 mutations promote

the transformation of normal FTECs into high-grade serous ovarian

cancer cells (20). Additionally, these induced pluripotent stem cells

(iPSCs) exhibit embryonic stem cell-like morphology and display

pluripotent characteristics, including RNA expression of key

pluripotency factors and the production of pluripotency marker

proteins (21).
2.2 Ovarian cancer-like organs derived
from adult stem cells

Ovarian cancer-like organs derived from ASCs retain the

intratumoral heterogeneity and subclonal evolutionary capacity of

the primary tumor (21). Different tumor subtypes of these

organoids have differential responses to standard platinum-based

chemotherapy, including subtypes that become chemoresistant in

recurrent ovarian cancer, e.g. PDO can be used in drug screening

assays to determine and capture the response of different tumor

subtypes to platinum-based chemotherapy (22, 23).
TABLE 1 Organoid modeling in ovarian cancer.

Organoid
source

Genetic
mutation

Specificities Related Metabolic
Mechanisms

References

iPSC source BRCA1 iPSC-like organs mimic the transformation of fallopian tube epithelium
to plasmacytoid ovarian cancer in patients with early-onset ovarian
cancer and contain pluripotency markers (OCT4, SOX2, etc.)

Dependence on Wnt signaling to
enhance stem cell properties

(19, 21)

ASC source FBXW7 Heterogeneity and subclonal evolutionary capacity of the primary tumor
is preserved and responds differently to platinum-based drugs

Can be used to assess chemotherapy
resistance and capture resistance by
different tumor subtypes

(22, 23,
115, 116)

Patient-
derived PDO

TP53 and
BRCA
mutations

OC PDO preserves genomic characteristics of the original tumor and
drug response is consistent with the patient

Preservation of TME features to
mimic HGSC heterogeneity

(3)

High-grade
plasmacytoid
carcinoma
(HGSOC)

TP53 and
BRCA
mutations

TP53 mutations, DNA repair defects and genomic instability HGSOC contains genes from BRCA1
or BRCA2 mutant lines with specific
types of DNA repair defects
(HR defects)

(3, 28, 117)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1573686
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1573686
2.3 Patient-derived ovarian cancer-
like organs

Ovarian cancer patient-derived organoids (OC PDOs), established

from ovarian cancer patient specimens, preserve the genomic features

of the original tumor, including mutations, copy number variations,

and other genomic alterations (24).OC PDOs also replicate the

heterogeneity of the original tumor and exhibit drug responses that

align with the clinical outcomes observed in patients (25).

The fallopian tube is notably recognized as the primary tissue of

origin for ovarian cancer, particularly high-grade serous ovarian

carcinoma (HGSOC), with fallopian tube epithelial cells (FTEC)

considered the cells of origin for HGSOC. These cells are enriched

with stem cells dependent on Wnt signaling and have the ability to

form organoids stably and efficiently (26). Patient-derived HGSOC

organoids are morphologically and molecularly consistent with

their parent tumors, exhibiting features of nuclear pleomorphism,

prominent nucleoli and dense chromatin formed by TP53

mutations (27).

HGSOC frequently harbors BRCA1 or BRCA2 mutations and

homologous recombination (HR) defects, leading to synthetic

lethality in HR-deficient cells and sensitivity to PARPi (e.g.,

olaparib) (28). However, most HGSOC-like organoids possess

functional HR repair, making them resistant to PARPi (27).

Both HGSOC and their organoids exhibit genomic instability,

TP53 mutations, and distinct mRNA and miRNA expression

profiles (29, 30). While many differentiated HGSOC-like

organoids lack the patient’s immune microenvironment and

vascular system, some newer versions show histological and

molecular diversity, including CD34+ endothelial cells that retain

critical immune and vascular structures (31). This enhancement

better replicates tumor complexity, providing a more effective

model for studying HGSOC pathomechanisms. (Figure 1A)
3 Mechanisms of basal metabolic
regulation in ovarian cancer-
like organs

Metabolic reprogramming, a hallmark of ovarian cancer, allows

cells to adjust energy metabolism for rapid proliferation and

survival in diverse conditions (32). Ovarian cancer cells typically

achieve metabolic pattern remodeling by enhancing glycolytic

activity and inducing the Warburg effect (33). Additionally, these

cells can regulate fatty acid and amino acid metabolism and inhibit

oxidative phosphorylation to meet their growth requirements.
3.1 Glycolysis

3.1.1 MGO
Methylglyoxal (MGO) as a highly reactive dicarbonyl

metabolite. It is an important endogenous dicarbonyl metabolic
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component in the human body and is present in many different

tissues and organs (34).

As obtained in studies of non-malignant breast cells or patient-

derived organ tissues, MGO induces cancer-associated mutant

single base substitutions (SBS), triggers BRCA2 proteolysis, and

transiently disables the tumor-suppressor function of BRCA2 in

DNA repa i r and rep l i ca t ion , l ead ing to func t iona l

haploinsufficiency (35, 36). According to Knudson’s “two strikes”

theory, tumor development usually requires two mutations: the first

mutation may be inherited, and the second occurs in somatic cells

(37). And defects in functional haploinsufficiency mean that even

without complete loss of complete mutations in both genes, tumors

may still result. This approach bypasses Knudson’s “double

whammy” requirement for tumor initiation in the presence of

partially preserved BRCA2 function (38).

Smith-Beckerman DM et al. reported that glyoxalase 1 (Glo1) is

upregulated in FH-OSE cells of women with ovarian cancer

carrying a BRCA1 mutation. Glo1 plays a key role in clearing

methylglyoxal (MGO), catalyzing its conjugation with GSH to form

less toxic products (39). This suggests that MGO accumulation in

ovarian cancer may serve a protective role when BRCA2 is

impaired, potentially impacting BRCA2 function and influencing

ovarian cancer progression through Glo1 regulation. However, the

role of Glo1 in MGO metabolism suggests that MGO may affect

BRCA2 function, but whether it directly induces BRCA2

degradation requires further experimental verification.
3.1.2 D-2HG
D-2HG is a metabolite produced primarily by isocitrate

dehydrogenase (IDH) mutant tumor cells (40). In TME, D-2HG

significantly weakened the defense function of nearby CD8+ T cells

and acutely impaired their antitumor activity, including decreasing

granzyme B expression and inhibiting IFN-g release, which further

weakened their immune response (41, 42). In addition, D-2HG

inhibits the proliferation and cytokine (e.g., IL-2, IFN-g, TNF-a)
production of immune cells by inhibiting LDH activity, disrupting

glycolytic fluxes and NAD+/NADH balance, thereby reducing their

ability to kill cancer cells (43, 44). D-2HG also modifies the glucose

metabolism of CD8+ T cells, further inhibiting their proliferation

and cytotoxicity (42, 45, 46).

D-2HG accumulation is usually caused by LDH1 or LDH2

mutations. In EOC cells, low LDH1 expression leads to D-2HG

accumulation, which inhibits CD8+ T cell proliferation and

cytotoxicity and promotes immune escape (47). It has been

shown that the use of LDH inhibitors (e.g., oxalate and GSK)

significantly reduces D-2HG production in samples from glioma

patients with LDH1 mutations, thereby inhibiting immune escape

and delaying tumor progression. It was also demonstrated that

LDH2 enhances metabolic remodeling and promotes OC growth by

enhancing the activity of the TCA cycle (48). These results suggest

that in ovarian cancer-like organs, LDH inhibitors may restore T

cell activity and enhance tumor immune response by reducing D-

2HG concentration (42).
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3.1.3 Hexokinase 2
Hexokinase-2 (HK2), which catalyzes the first step of glycolysis, is

highly expressed in ovarian cancer cells (49). It was shown that HK2

supports rapid proliferation and survival of tumor cells by promoting

glycolysis and enhancing cellular energy production (50). In the

presence of sufficient oxygen, tumor cells increase glucose uptake and

tend to ferment glucose into lactic acid, a phenomenon known as the

“Warburg effect” (51). HK2 induces it, resulting in the formation of a

more acidic environment around the cancer cells (50). This acidic

microenvironment suppresses immune cell function through a

combination of direct and indirect mechanisms. Lactate

accumulates in the tumor microenvironment and binds to

GAPDH, thereby directly inhibiting immune cell function and

proliferation (52). In addition, the acidic environment not only

inhibits the production of cytokines associated with anti-tumor

immune responses, but also enhances the migration of tumor cells

by decreasing the migration and infiltration ability of the immune

cells while enhancing their migration (53–56). Together, these factors

make it more difficult for immune cells to effectively reach and

function at the tumor site. In addition, the acidic environment can

promote the proliferation and activation of regulatory T cells (Tregs),

thus indirectly inhibiting the function of CD8+ T cells and NK cells

(57, 58). The acidic environment reduces the viability and killing

ability of anti-tumor immune cells (e.g., CD8+ T cells and NK cells)

and promotes the proliferation of regulatory T cells (Tregs) (59, 60).

Therefore, it can be hypothesized that the HK2-induced Warburg

effect can regulate the CD8+ and NK cells through acidifying the

microenvironment in ovarian carcinoma carcinoids (51).

In ovarian cancer cells, there exists a negative regulatory

relationship between AMPK phosphorylation and HIF-1a protein

(61, 62). The activation of AMPK inhibits glycolysis and further

suppresses the function of HIF-1a by promoting its degradation

(63). However, the overexpression of HIF-1a can conversely inhibit

the activation of AMPK and prevent the metabolic shift from

glycolysis to OXPHOS (64). Therefore, the proliferation of

ovarian cancer cells can be inhibited by silencing the activation of

AMPK and suppressing the HIF-1a protein through transient

receptor potential melastatin 7 (TRPM7), thereby adjusting the

metabolic network and shifting the preferred glycolysis to oxidative

phosphorylation (OXPHOS) (65, 66).
3.2 Lipid metabolism

Sphingolipids are mainly composed of sphingomyelin and fatty

acids, which are widely present in cell membranes (67). synthesizing

sphingolipids from scratch is an important pathway for tumor

immune evasion. Sphingolipids, as specific sphingolipids, can

promote cell growth and survival in cancer cells (68).

The hypoxic tumor microenvironment induces the expression of

the secreted protein ESM1 through the transcription of HIF-1a (57,

69), which in turn promotes the SUMOylation of PKM2 and the

subsequent formation of PKM2 dimers (70). This process promotes

the Warburg effect and the nuclear translocation of PKM2, which

ultimately leads to STAT3 phosphorylation (71, 72). Enhancement of
Frontiers in Immunology 04
fatty acid synthesis in ovarian cancer (70). Because it was found that

shikonin inhibits the molecular interaction between ESM1 and

PKM2, thus preventing the formation of PKM2 dimers and

inhibiting glycolysis and fatty acid synthesis in ovarian cancer (70).
3.3 Amino acid metabolism

Amino acid metabolism regulates immune escape by

modulating immune cell function (73, 74). For example, the

Kynurenine pathway in tryptophan metabolism directly promotes

immune escape by activating Treg cells and inhibiting CD8+ T cell

activity (45, 46, 75). Arginine promotes T cell and NK cell function,

resulting in enhanced proliferation, differentiation and effector

function, thereby increasing the anti-tumor activity of immune

cells (76, 77).

Therefore, it can be inferred that in the study of ovarian cancer-

like organs, the survival of tumor cells can be effectively interfered

with by regulating the amino acid metabolic pathway. For example,

interfering with tyrosine catabolism in epithelial ovarian cancer

(EOC) as the main disease model can inhibit DNA damage caused

by genotoxic chemotherapeutic drugs (78). Depletion of fumarate

acetoacetate hydrolase (FAH), a key enzyme in tyrosine metabolism,

reduces the sensitivity of EOC to chemotherapy (78). In addition,

tyrosine metabolism also plays an important role in tumor immune

escape. Tyrosine can be converted to tryptophan, which in turn

affects the activity of the Kynurenine pathway and promotes tumor

cell immune escape (75, 79). Therefore, intervening in tyrosine

metabolism may not only enhance the anti-tumor response of

immune cells, but also improve the efficacy of chemotherapeutic

agents and enhance the therapeutic effect. (Figure 1B)
4 signaling pathways in ovarian
cancer-like organs

The tumor microenvironment (TME) consists of a wide range

of non-cancer cells, non-cellular components and molecules

released by them (80, 81), and is characterized by hypoxia, low

pH and high redox state (82). However, cancer cells can survive in

this hypoxic, nutrient-depleted environment (83). In particular,

ovarian cancer cells often adapt to this microenvironment by

enhancing glycolysis, and this metabolic reprogramming also

enables tumor cells to rapidly produce energy and metabolic

intermediates that support tumor cell proliferation and

survival (11).
4.1 Glycolysis

Multiple signaling pathways regulate glycolysis, impacting

tumor proliferation, migration, survival, and resistance to

chemotherapy. For instance, serine/threonine kinase Aurora-A

binds to the transcription factor SOX8, phosphorylating its

Ser327 site, which increases FOXK1 expression and regulates
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genes linked to cellular senescence and glycolysis, such as LDHA

and HK2. This promotes glucose metabolism and induces cisplatin

resistance. Similarly (84), the TCEB2/HIF1A axis enhances cisplatin

resistance by promoting glycolysis and angiogenesis (85).

Furthermore, increased FBN1 expression in cisplatin-resistant

ovarian cancer models indicates that the Fibrillin-1/VEGFR2/

STAT2 axis plays a regulatory role in glycolysis and angiogenesis,

thereby contributing to cisplatin resistance (86).
4.2 Fat metabolism

Fatty metabolism also undergoes metabolic reprogramming

(11). For example, STC1 in the FOXC2/ITGB6 signaling axis can

promote lipid metabolism by up-regulating lipid-related genes such

as mitochondrial brown lipolytic coupling protein 1 (UCP1),
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TOM20 and perilipin1 (87). ESM1 promotes fatty acid synthesis

and angiogenesis in ovarian cancer through the PKM2-dependent

Warburg effect within a hypoxic TME, while shikonin effectively

disrupts the interaction between ESM1 and PKM2, subsequently

inhibiting glycolysis, fatty acid synthesis, and angiogenesis in

ovarian cancer (70). (Figure 1D)
5 Modulating effects of
chemotherapeutic agents

5.1 Basic metabolism

Berberine, an alkaloid with antitumor properties, inhibits the

Warburg effect in ovarian cancer cells by enhancing TET3-

mediated demethylation via the TET3/miR-145/HK2 signaling
FIGURE 1

(A) Organoid models of ovarian cancer from three different sources. (B) Schematic diagram of the glycolytic metabolic pathway in ovarian cancer
cells, with the dotted line indicating the normal pathway in the absence of SBS action. (C) Chemotherapeutic agents and their targets. Mechanisms
of action of chemotherapeutic agents and networks of resistance-related gene and protein interactions. (D) Mechanisms of metabolic regulation by
signaling pathways.
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pathway (88). Moreover, berberine modulates autophagy and

glycolysis in ovarian cancer through the LINC01123/P65/

MAPK10 signaling axis (89).

Cryptotanshinone (CT) can inhibit cancer growth by inhibiting

glycolysis and oxidative phosphorylation (90). Isovalerolactone, has

anticancer activity. It has been shown to inhibit glycolysis and

suppress cisplatin resistance in ovarian cancer cells (91). LDH can

repolarize macrophages from a tumor-promoting M2 phenotype to

a tumor-suppressive M1 phenotype by facilitating this phenotypic

shift (92). Conversely, the platinum complex (DDP) downregulates

the expression of LDHA and LDHB, thereby inhibiting glycolysis

and glucose oxidation (93).
5.2 Signaling pathways

FOXO1 acts as a cell-specific coregulated transcription factor

(94). For instance, within the miRNA-374a/FOXO1 signaling axis,

propofol induces cell cycle arrest and decreases ovarian cancer cell

viability by downregulating miR-374a, thereby alleviating its

inhibition of FOXO1 (95). Additionally, FOXO1 influences

ovarian cancer cell proliferation, migration, and invasion through

apoptosis regulation in the EZH2/FOXO1 pathway (96). As an

antitumor flavonoid, baicalein promotes apoptosis through the

inhibition of the EZH2/FOXO1 signaling pathway (97).

The PI3K/AKT/mTOR pathway is a highly active cell signaling

cascade in advanced ovarian cancer (12, 98). Xanthopterin suppresses

ovarian cancer proliferation and cisplatin resistance by targeting the

PU.1/CLEC5A/PI3K-AKT pathway (99). Ropivacaine, on the other

hand, inhibits stemness and accelerates iron death of ovarian cancer

cells by inactivating the PI3K/AKT signaling pathway (100).
5.3 Signal regulation in drug
resistance mechanisms

The transcription factor SP1 enhances cisplatin resistance

through multiple mechanisms. Beyond SP1-induced MCF2L-AS1,

which activates the IGF2/MEK/ERK pathway (101), SP1 also

transcribes multidrug resistance-associated proteins (MRPs) and

key enzymes involved in arachidonic acid (AA) metabolism (e.g.,

12-lipoxygenase), thereby promoting chemoresistance and

metastasis in ovarian cancer (102). Moreover, circITGB6

promotes cisplatin resistance in ovarian cancer by forming the

circITGB6/IGF2BP2/FGF9 RNA-protein ternary complex, which

facilitates the polarization of tumor-associated macrophages

(TAMs) towards the M2 phenotype (103, 104).

We also identified ex vivo and in vivo factors such as miR-219-

5p, Baohuoside I, and Astragaloside II (ASII) that could modulate

cisplatin resistance by regulating autophagy in ovarian cancer cells.

ASII can induce autophagy by inhibiting the AKT/mTOR signaling

pathway (105), while Boswellia serrata I suppresses autophagy

through downregulation of the HIF-1a/ATG5 signaling axis

(106). Moreover, miR-219-5p inhibits Wnt/b-catenin signaling

and autophagy in ovarian cancer cells by targeting HMGA2 (105)
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and reduces cisplatin resistance by suppressing Wnt/b-catenin
signaling and autophagy through HMGA2 targeting in these

cells (107).

PARPi resistance involves various heterogeneous mechanisms,

making it crucial to understand its molecular basis in patients to

address chemoresistance and refine personalized treatments (108).

Utilizing organoid technology, researchers are creating patient-

derived organoids to predict responses to PARP inhibitors

(PARPi) and explore strategies to overcome drug resistance in

ovarian cancer (109). Notably, the Wnt/b-catenin pathway

contributes to resistance in both cisplatin and PARPi (107). For

instance, the ubiquitin-conjugating enzyme E2S (UBE2S) promotes

PARPi resistance in ovarian cancer by activating Wnt/b-catenin
signaling (110). Additionally, targeting polyploid giant cancer cells

(PGCC) in ovarian cancer organoids could enhance therapeutic

efficacy and reduce PARPi resistance (111). (Figure 1C)
6 Conclusion and prospect

This review systematically explores the application of ovarian

cancer organoid models in the study of metabolic reprogramming,

immune escape and drug resistance mechanisms, introducing and

integrating organoids into the metabolism-immunity-drug resistance

interaction framework. Metabolic reprogramming serves as a crucial

indicator of tumor progression and therapeutic resistance (112).

Organoid-based drug screening is more accurate and physiologically

relevant than traditional techniques and is more likely to identify new

strategies for treating metabolic disorders in ovarian cancer.

There are still limitations to this approach. Current cancer organoid

culture techniques lack control and reproducibility, requiring the

development of stable, reproducible platforms (9). Additionally,

organoid models often lack vascular networks and immune systems,

failing to fully replicate in vivo organ structure and function (113).

Organoid techniques are also more time-intensive than 2D cultures and

often require specialized media and growth factors (114). Despite

advances, organoids lack vascular and immune components, limiting

their ability to mimic tumor microenvironments and drug responses,

necessitating further improvements. In the future, we can integrate

immune and matrix co-culture, microfluidic dynamic culture system,

single cell metabolomics and clinical metabolism data to optimizemodel

stability and physiological relevance, so that it can better simulate the in

vivo metabolic environment and help precision medicine research.
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