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Pancreatic cancer is an aggressive tumor with high metastatic potential which

leads to decreased survival rate and resistance to chemotherapy and

immunotherapy. Nearly 90% of pancreatic cancer comprises pancreatic ductal

adenocarcinoma (PDAC). About 80% of diagnoses takes place at the advanced

metastatic stage when it is unresectable, which renders chemotherapy regimens

ineffective. There is also a dearth of specific biomarkers for early-stage detection.

Advances in next generation sequencing and single cell profiling have identified

molecular alterations and signatures that play a role in PDAC progression and

subtype plasticity. Most chemotherapy regimens have shown only modest

survival benefits, and therefore, translational approaches for immunotherapies

and combination therapies are urgently required. In this review, we have

examined the immunosuppressive and dense stromal network of tumor

immune microenvironment with various metabolic and transcriptional changes

that underlie the pro-tumorigenic properties in PDAC in terms of phenotypic

heterogeneity, plasticity and subtype co-existence. Moreover, the stromal

heterogeneity as well as genetic and epigenetic changes that impact PDAC

development is discussed. We also review the PDAC interaction with sequestered

cellular and humoral components present in the tumor immune

microenvironment that modify the outcome of chemotherapy and radiation

therapy. Finally, we discuss different therapeutic interventions targeting the

tumor immune microenvironment aimed at better prognosis and improved

survival in PDAC.
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1 Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is the predominant

form of aggressive pancreatic cancer, characterized by high mortality

rates, originating from the ductal cells that form the pancreatic ducts

(1). Microscopically margin-free surgical removal of the pancreas is the

only viable and potentially curative method. The majority of

individuals exhibit this condition at a non-resectable stage,

reinforcing the necessity for early diagnosis and identification.

Unfortunately, aggressive disease progression and early metastasis

contribute to late diagnosis, with less than 20% of patients presenting

with a resectable tumor at diagnosis (2). In addition, phenotypic

heterogeneity in PDAC refers to the variation in cell types and

characteristics within a tumor. This heterogeneity is a significant

factor in the disease progression, chemotherapy resistance, and

overall prognosis. The metastatic potential is also extremely high and

tumors spread mainly through lymphatic and blood vessels. Most of

the patients already have metastasis in the liver and lymph nodes at the
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time of diagnosis (3, 4) (Figure 1A). Recent reviews on PDAC

heterogeneity, tumor immune microenvironment (TiME), and

emerging therapies shed light into the current research (5–7). We

intend to provide an understanding about PDAC and the molecular

and immune landscape affecting various therapeutic interventions.

Then we discuss the difficulties associated with phenotypic

heterogeneity affecting chemotherapy, adjuvant therapies

and immunotherapy.
2 Stages in PDAC development

In pancreas, acinar to ductal metaplasia is a usually reversible

phenomenon of healing upon injury or inflammation. However,

this becomes irreversible due to accumulation of KRAS mutation.

This KRAS hyperactivation in acinar cells makes them incapable to

redifferentiate and puts a halt at the duct-like cell stage leading to

pancreatic intraepithelial neoplasia (PanIN) (8, 9) (Figure 1B).
FIGURE 1

Stages in PDAC development. (A) PDAC can be pathologically categorized on the basis of TNM staging system i.e. size and extent of the tumor,
spread to lymph nodes and metastasis. Stage 1 is when the tumor is restricted to the pancreas; stage 2 when the tumor has spread to 2 or 3 nearby
lymph nodes; stage 3, when the tumor has spread to 4 or more nearby lymph node and may have also reached nearby blood vessel; stage 4, when
the cancer has metastasized in other organs (liver, lungs etc.). (B) Acinar to ductal metaplasia is a normal regeneration process happening in
pancreas during inflammation. However, due to KRAS hyperactivation, acinar cells fail to redifferentiate and progresses to duct-like cells forming
pancreatic intraepithelial neoplasia (PanIN). PanINs are microscopic papillary or flat non-invasive epithelial neoplasms arising in pancreatic ducts
characterized by mucin-containing cuboidal to columnar cells. With accumulation of subsequent additional mutations, the cancer progresses to a
demoplasia condition causing PDAC.
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PDAC exhibits genetic heterogeneity and presents with several

clinical characteristics associated with epithelial neoplasms.

Patient stratification is essential based on histology and molecular

characteristics for effective therapy. The three well established

precursor lesions of pancreatic cancer includes PanIN, intraductal

papillary-mucinous neoplasm (IPMN) and mucinous cystic

neoplasm (MCN) (10, 11) Atypical flat lesion is yet another

precursor (12). PanINs are microscopic papillary or flat non-

invasive epithelial neoplasms arising in pancreatic ducts

characterized by mucin-containing cuboidal to columnar cells.

IPMNs are tumors of the duct epithelium characterized by

mucin-producing epithelial neoplasms, usually with papillary

architecture. They arise from the main pancreatic duct or branch

ducts. Activating KRAS mutations are observed in 50% of IPMNs;

its prevalence increases as does the degree of dysplasia (13).

Oncogenic KRAS mutations are the most common genomic

alterations identified in PDAC followed by tumor protein p53

(TP53), cyclin-dependent kinase inhibitor 2A (CDKN2A), and

suppressors of mothers against decapentaplegic homolog 4

(SMAD4) (14, 15). Progression from low grade PanIN-1 to

PanIN-2 and high grade PanIN-3 lesions are with 45% incidence

of KRAS mutations in PanIN-1 stage along with telomere

shortening in 90% of cases (16, 17). Overexpression of another

PDAC associated gene, p21(WAF1/CIP1) occurs early in the

development of PanIN (18). Inactivation of CDKN2A and TP53 is

found in IPMNs with high grade dysplasia, loss of SMAD4 is

observed in a small subset. Prevalence of KRAS mutations and

aberrant nuclear TP53 accumulation is noted with increasing

degree of dysplasia in MCN (19). With gradual acquisition of

gene mutations, the cancer progresses with increase in

desmoplasia, a condition of excessive formation of fibrous

connective tissue causing PDAC.
2.1 PDAC subtypes

Transcriptional profiling using microdissected PDAC samples

has led to identification of major molecular subtypes, namely

classical, quasi-mesenchymal and exocrine-like (20). The classical

subtype (CLA) showed high expression of epithelial and adhesion-

associated genes, such as the transcription factor GATA6; this is

associated with a favorable prognosis in terms of survival following

PDAC resection. Quasi-mesenchymal subtype exhibits high

expression of mesenchymal-associated genes, relatively less

dependent on KRAS than CLA and is associated with poor

prognosis. Finally, the exocrine-like subtype revealed high

expression of digestive exocrine enzyme genes (21). Moffit’s

classification identified two tumor specific subtypes, Basal like (BL),

CLA subtype and two stromal subtypes (22). BL shows poor

prognosis and therapy resistance to gemcitabine-based

chemotherapy and FOLFIRINOX; CLA subtype is responsive to

erlotinib, an EGFR antagonist (23–25). Puleo et al. classified PDAC

into five subtypes: Pure-basal-like, Stroma-activated, Desmoplastic,

Pure-classical, and Immune-classical (26). This classification was

based on the influence of TME and the tumor cells. These PDAC
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subtypes have characteristics of both cancerous and immunological

cells that may be sensitive to drug therapy. Espinet et al. explored the

molecular mechanisms driving subtype heterogeneity in PDAC and

its influence on therapy response. It highlights the role of immune

cells, transcriptional networks, and epigenetic factors in shaping

PDAC subtypes, particularly in BL subtype with therapy resistance

(27). Growing evidence supports the coexistence of BL and CLA

subtypes (28). A significant proportion of tumors comprises cells that

co-express CLA and BL markers, thereby creating a continuum

between these two phenotypes, due to cytokine gradients secreted

by tumor and stromal cells in a paracrine manner within various

spatially distinct microenvironments (29–31).
3 Genomic and epigenomic aspects

3.1 Activating and inactivating mutations

The Cancer Genome Atlas (TCGA) pancreatic cancer study

reveals a low burden of tumor mutation, typically < 50 mutations;

only a few cases showing > 80 mutations. However, recurrent

mutations occurring in certain cancer-associated genes are the

main cause of the disease pathogenesis (32). The most common

activating mutation that occurs in approximately 65.4% of

pancreatic cancer cases is KRAS mutation (32, 33). The KRAS

mutation that initiates PDAC takes place over a period of 12

years (34).

Molecular pathogenesis in PDAC is marked by the alterations

in the canonical genes. Genetic analyses indicate that PDAC tumors

harbor multiple high-potency oncogenic and tumor suppressive

lesions. Whole genome sequencing revealed that genetic aberrations

lead to the development of PDAC. Approximately 90% of PDAC

patients have KRAS mutations (35), resulting in the formation of

pancreatic lesions called PanIN. 50-74% have inactivating

mutations in TP53, 46-60% in CDKN2A mutations, and ~31–

38% have mutations in SMAD4, which can occur at the late

stages (36, 37). Activation of oncogenic KRAS (38) or inactivation

of tumor suppressor TP53 (39), SMAD4 (40) or CDKN2A (41),

Krüppel-like Factor 5 (KLF5), is increased in PDAC which

promotes proliferation and also acinar-to-ductal metaplasia,

PanIN, and leads to tumor growth in mice (42). Genetic analysis

has provided insights into the altered signaling pathways (43).

The KRAS gene encodes a small GTPase, acting as a molecular

switch cycling between an active GTP-bound and inactive GDP-

bound state for various cellular processes, proliferation and survival.

KRAS protein, once bound to GTP, is capable of interacting with

downstream proteins and activates the effector signaling pathways

that drives cancer growth. Thus, the mutation in KRAS gene leads

to impairment of GTPase activity hampering other signaling

pathways, including inactivation of tumor suppressor pathways

(44–46). KrasG12D mutation alone leads to formation of PanIN

(47, 48). In addition to KRAS, the mutational inactivation of TP53

(49), SMAD4 (50) and CDKN2A (47, 51) tumor suppressor genes

leads to progression of PanIN formation to rapid and high-

frequency metastatic PDAC.
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CDKN2A gene codes for cell cycle inhibitors, p16 signalling and

SMAD4, which act as transducers of the transforming growth factor

beta (TGF-b) signalling pathway, and are two commonly mutated

tumor suppressors found in about 20% of PDAC cases (52).

CDKN2A encodes p16INK4A and p19ARF through a common locus

on chromosome 9p (53). p16INK4A is a cell cycle inhibitor acting at

the G1-S checkpoint through cyclin-dependent kinases (CDKs) (54),

whereas p19ARF binds to mouse double minute 2 homolog (MDM2),

an E3 ubiquitin-protein ligase inhibiting p53 degradation and thus,

causes cell cycle arrest independent of CDKs (55). Large homozygous

deletions, missense mutations, promoter methylation of CDKN2A

along with promoter silencing, inactivates both these protein

(p16INK4A and p19ARF), resulting in almost universal loss of

CDKN2A leading to PDAC (33).

Approximately 50-74% of pancreatic cancers have inactivating

mutations in TP53, the most frequently detected genetic alteration

(56). About 66% of TP53 mutations are missense affecting its DNA

binding domain (43, 56); nonsense mutations, frameshifts and

homozygous deletions are considered vital mechanisms of TP53

inactivation in PC (43). In late-stage pancreatic cancers, almost 50%

of all mutations in TP53 cause loss of protein expression leading to

null alleles (56). Integrated mutation profiling of actionable cancer

targets (MSK-IMPACT study) and the GENIE project suggests

mutations of TP53 in about 70% PDAC subsets (52). p53 mutations

are observed in some PanIN lesions, but not in IPMN, developing at

the later stage where two-thirds of the mutations are missense

mutations (57).

SMAD4 or DPC4 (deleted in pancreatic cancer locus 4) gene

that is inactivated in about 60% of PDAC cases in late stages, is an

intracellular transcriptional mediator of the TGF-b signaling

pathway (58, 59). TGF-b is one of the most commonly mutated

signal transduction pathway in PDAC (60, 61). However,

inactivating mutation in TGFb receptor 1 (TGFBR1), TGFBR2,

activin A receptor type 1B (ACVR1B) or SMAD3 has been identified

in about 10% cases, possibly via inhibiting TGF-b signaling (14, 43).

KLF11 is a transcription factor that increases TGF-b signaling by

inhibiting Smad7, a negative regulator of the pathway. This

facilitates growth inhibition and tumor suppression in normal

epithelial cells. In pancreatic cancer cells harboring oncogenic Ras

mutations, the Erk-MAPK pathway phosphorylates KLF11, thereby

impairing its association with mSin3A corepressor and inhibiting

Smad7 suppression. The inactivation of KLF11 results in

diminished TGF-b signaling, which facilitates the growth of

pancreatic cancer (62).

A study involving 142 pancreatic cancer patients, using next-

generation sequencing platforms showed heterogeneity among

2,016 non-silent mutations and 1,628 copy-number variations

(14). Sixteen mutated genes, along with KRAS, CDKN2A and

TP53, were identified. They are Myeloid/lymphoid or mixed-

lineage leukemia protein 3 (MLL3), AT-rich interactive domain-

containing protein 1A (ARID1A), AT-rich interactive domain-

containing protein 2 (ARID2), Transforming growth factor-b
receptor type II (TGFBR2), and Splicing Factor 3b Subunit 1

(SF3B1), Enhancer of polycomb homologue 1 (EPC1), Dual
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specificity mitogen-activated protein kinase kinase 4 (MAP2KA),

Ataxia telangiectasia mutated (ATM), Zinc finger imprinted 2

(ZIM2), Sodium leak channel non-selective protein (NALCN),

Melanoma-associated antigen 6 (MAGEA6), and Solute carrier

family 16 member 4 (SLC16A4). Somatic aberrations in genes

guiding axons in SLIT/ROBO signaling were also observed (14,

24). ATM (gene product mutated in human genetic disorder ataxia

telangiectasia) is one of the most commonly mutated DDR genes

which is sporadically mutated in familial pancreatic cancer (63).

ATM encodes for PI3K-related serine/threonine protein kinase

capable of repairing DNA double-strand breaks, have been

identified with somatic mutations in 2 to 18%, and 1 to 34% of

germline mutations in PDAC patients (64).

To avoid cross-contamination of tumor cells with non-neoplastic

cells, prior to sequencing, each tissue sample was first immunolabeled

for the proteins encoded by most commonly altered tumor-

suppressor genes inactivated in PDAC (CDKN2A, TP53, and

SMAD4) (65). The activating mutations of KRAS are almost

ubiquitous and inactivation of TP53, SMAD4 and CDKN2A occur

at the rates of >50%. Missense mutations were identified in TP53,

ARID1A and in SMAD4 corresponding to the immunolabeling

patterns which were uniformly present in all samples studied (65).

Whole-genome sequencing and copy number variation (CNV)

analysis of 100 PDAC samples suggested prevalence of gene

disruption due to chromosomal rearrangements, which affected

TP53, SMAD4, CDKN2A, ARID1A and ROBO2 (37). The study

showed a total of 857,971 somatic point mutations with small

insertions and deletions, where 5,424 genes exhibited a total of

7,888 non-silent mutations. Out of 11,868 somatic structural

variants, 10114 were intra-chromosomal and 1754 inter-

chromosomal translocations. In the case of intra-chromosomal

locations, 5860 showed intrachromosomal rearrangements, 1629

inversions, 1393 deletions, 579f inversions, 346 amplified

inversions, 128 duplications, and 179 tandem duplications (37).

This study came up with 4 subtype classification of PDACs, on the

basis of variations in chromosomal structure with potential clinical

relevance; stable (subtype-1), locally rearranged (Subtype-2),

scattered (subtype-3) and unstable (subtype-4). In case of subtype-

1, the tumor genomes had ≤ 50 structural variation events and often

showed aneuploidy. In subtype-2, there were rearranged genomes

with regions of amplifications containing known oncogenes such as

KRAS, SOX9 and GATA6, in addition to genes of therapeutic targets

such as ERBB2, MET, CDK6, PIK3CA and PIK3R3, among 1–2% of

patients. This subtype also showed complex genomic rearrangement

events such as breakage–fusion–bridge or chromothripsis resulting in

a ring chromosome. In 36% of samples (subtype-3), a moderate range

of non-random chromosomal damage was observed. The unstable

type (subtype-4) seen in 14% of samples showed high genomic

instability with >200 structural variation events, suggesting

sensitivity to DNA-damaging agents. Mutations in BRCA pathway

genes accounted for approximately half of the patients with a high

BRCAmutational signature and overlapping deleterious mutations in

BRCA1, BRCA2 and PALB2 with unstable genomes pointing

towards deficiencies in DNA damage repair (37).
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3.2 Circulating DNA markers

Different types of circulating DNA are traced in liquid biopsies,

such as total circulating cell free cfDNA, circulating tumor-specific

cell-free DNA (ctDNA), mRNA, and microRNA (miRNA)

containing tumor-derived markers. cfDNA is double-stranded

fragmented DNA found at a low level under physiological

concentrations, but its level increases under chronic and acute

pathological conditions including cancers (66). The concentration

of cfDNA in blood ranges between 0–5 and >1000 ng/ml in cancer

patients while in the range of 0 and 100 ng/ml in healthy

individuals (67).

cfDNA, which are greater than 10 kb, are mostly released in the

blood or in body fluids from healthy cells of hematopoietic origin, or

from cancer cells probably due to apoptosis and necrosis of tumor

tissue during cancer treatment (68). However, shorter fragments of

DNA (<100bp) mostly comprises of ctDNA, mitochondrial DNA

(mtDNA), and bacterial DNA. ctDNA is single or double-stranded

DNA harboring tumor specific somatic mutations, and thus, its use as

a biological marker has drawn much attention and considered a

promising prognostic factor for PDAC (69, 70). Its smaller size makes

them difficult to detect and quantify. The half-life of ctDNA ranges

between 16 and 150 mins, and thus, also provides lower sensitivity

during early detection in liquid biopsies (67, 70–72). The presence of

ctDNA in the blood has been linked to relapse and residual disease

after PDAC surgery, possibly due to surgery- induced injury to the

tumor tissue releasing the DNA (72–74).

In a study to investigate whether ctDNA could identify minimal

residual disease (MRD) and predict relapse of PDAC after surgery,

panel-captured sequencing was performed to detect somatic mutations

in 27 patients and 65 plasma samples (75). ctDNA was detected in 18

of 27 preoperative plasma samples, resulting in a detectable rate of

66.67% and reaching 100% for stage IV PDAC. Nine patients were

positive for post-operative ctDNA and had a markedly reduced

disease-free survival (DFS) with ctDNA-negative ones. Compared to

matched tumor tissue, the frequency of mutant genes was lower in

ctDNA, suggesting poor shedding into peripheral blood in PDAC

patients and low allelic frequency that is hard to detect considering the

genomic heterogeneity and multiple mutations in PDAC. However,

about 90% recurrence patients were postoperative ctDNA-positive,

suggesting sensitivity of postoperative ctDNA analysis than CT

scanning in MRD identification (75).

Study of serum samples from 61 metastatic PDAC patients

suggested higher association of cfDNA concentration (median

concentration being 33 ng/mL) and fragmentation (100–1100 bp)

levels with poorer survival in metastatic PDAC (76).

5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)

markers from cfDNA have recently been considered as important

markers for non-invasive diagnosis for PDAC. A recent study

involving high throughput sequencing (cfMeDIP-seq) and cell-

free 5hmC sequencing methods, global loss of 5hmC in the

PDAC samples was observed by Integrative Genomics Viewer

(77). 5hmC enriched regions were high in coding DNA sequence

(CDS), 5′UTRs, exons, 3′UTRs, and promoters, but introns and

intergenic regions were depleted in 5mC as well as 5hmC. Upon
Frontiers in Immunology 05
comparing the distribution, 5mC peaks were found two-fold higher

than 5hmC peaks where only 16.7% overlapped with 5hmC peak

sites. The overlapping peaks were in five types of histone

modifications (H3K36me3, H3K27ac, H3K4me1, H3K4me3, and

H3K27me3). Over 80% of 5mC peaks occurred at sites distinct to

5hmC, where 17,340 genes carried both the types of modifications.

Combining both 5mC and 5hmC features and paired datasets from

PDAC and healthy samples, around 51 features were found that

could discriminate PDAC from healthy samples and disparity of the

weighted diagnosis score (wd-score) was statistically significant.

The wd-score with the 5hmC model could also distinguish stage I

patients from stage II–IV PDAC patients (77).

A significant global decrease in 5hmC signal was seen in PDAC

compared to non-cancer cohort, which increased over 3’UTR,

transcription termination sites (TTS) and intron regions and

decreased over promoters (78). Few studies also suggested overlap

in gene centric functional regions such as in promoters, untranslated

regions (3′UTRs and 5′ UTRs), TTS, exons and short interspersed

repetitive elements that increased in comparison to genomic

background. In almost all PDAC stages, 5hmC decrease over

H3K4me3-marked active TSS sites was noted. Among top 50

hyperhydroxymethylated and hypohydroxymethylated genes,

PDAC tissue-derived hyper-hydroxymethylated genes were capable

of discriminating between non-cancer and PDAC cfDNA samples.

Hydroxymethylation in genes such as GATA4, GATA6, PROX1,

ONECUT1, and MEIS2, which plays an important role in

development and functioning of pancreas, as well as in genes

YAP1, TEAD1, PROX1, IGF1, were found involved in cancer

pathogenesis (78).

In addition, altered miRNA expression has also been associated

with various cancers. miRNAs regulate gene expression at the

transcriptional level. Significant upregulation of various miRNAs

in PDAC serum samples includes, miR-215-5p, miR-122-5p, and

miR-192-5p and decreased levels of miR-30b-5p and miR-320b,

compared to chronic pancreatitis and hepatocellular carcinoma.

Hence, this panel can serve as a non-invasive biomarker for an early

detection of PDAC (79).
3.3 PDAC biomarkers

Proinflammatory cytokine IL-8, along with CA19-9 and

carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6),

is considered a biomarker for PDAC diagnosis (80). Canonical

markers cytokeratin 17 (CK17) for the BL subtype, GATA6 for the

CLA subtype, and CK19 as a pan-cancer cell marker are also useful

biomarkers (31). A serum biomarker panel of CA-125 and CA19-9

could be used for effective clinical management of PDAC patients

undergoing neoadjuvant chemotherapy (NAC) (81). Yet another

biomarker, CCL3 which is tumor derived, directs TGFb signaling

inducing macrophages to acquire its M2 phenotype and Lif

secretion and sustaining a mesenchymal/basal-like subtype. TGFb
inhibition by galunisertib redirects macrophage polarization to M1,

reducing Lif and shifting PDAC cells to a more epithelial/CLA

phenotype, improving gemcitabine sensitivity (61). Mutant KRAS
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ctDNA is detected in patients at diagnosis, Neoadjuant

chemotherapy and after resection. Clearance of ctDNA during

NAC was associated with improved overall survival (OS).

Detection of mutant KRAS G12V after NAC and resection was

associated with shorter OS (82). Aberrant expression of microRNAs

(miR) is known to be indicators of PDAC therapy resistance or

therapeutic response (83). PDAC serum samples showed a

significant overexpression of miR 215 5p, miR 122 5p, and miR

192 5p. On the other hand, PDAC had substantially lower levels of

miR 30b 5p and miR 320b than hepatocellular carcinoma and

chronic pancreatitis. This panel can therefore be used as a non-

invasive biomarker for an early identification of PDAC (79).

Methylated DNA markers (FER1L4), along with CA 19-9, are

also identified as blood-based biomarker for enhancing early

detection and diagnostic sensitivity (84). Crucial biomarkers like

CXCR4 and CD4 were identified which dysregulate the immune

system, highlighting the significance of immune associated

pathways (85). Differentially expressed genes were identified,

mainly PLAU and COL17A1 (86). Another set of differentially

expressed genes which can act as biomarkers pertinent to PDAC

includes CDK1, CDC20, KIF11, DLGAP5, CCNB1, BUB1, and

CEP55 as hub genes which affect PDAC survival rate (87).
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3.4 Epigenetic alterations- a potential
driver for PDAC

Epigenetic mechanisms regulate gene transcription, and the

proper functioning of these mechanisms is essential for normal

development and tissue differentiation. Appropriate gene

expression is maintained through self-regulatory mechanism that

defines the epigenetic landscape and thus, any deviation or aberration

can lead to cancer. The advancement in epigenomics has enriched

our knowledge in understanding PDAC at the translational level.

Evidences support that epigenetic alterations also contribute to the

PDAC progression, a mechanism by which a genotype can have

different phenotypic effects (88) (Figure 2). Although genetic

mutations drive PDAC initiation, possibly triggering the early

neoplastic lesions, they are it is not the only reason to explain its

aggressive nature, as with tumour progression, the epigenomic

landscape controls the gene expression directing the heterogenetic

differentiation. Epigenetic mechanisms, including aberrant DNA

methylation and histone modifications, and nucleosome

remodeling significantly contribute to inter- and intratumoral

heterogeneity, disease progression and metastasis (89). Epigenetic

modifications correlate with distinct PDAC subtypes in patient-
FIGURE 2

Epigenetic drivers of PDAC. Epigenetic mechanisms, including aberrant DNA methylation and histone modifications, chromatin remodeling, long
non-coding RNAs (IncRNAs) and microRNAs (miRNAs), significantly contribute to inter- and intratumoral heterogeneity, disease progression and
metastasis in PDAC. Epigenetic modifiers such as DNA methyltransferases, histone methyltransferases, histone acetyltransferases, histone
demethylases, or deacetylases are mutated which contributes to PDAC. Mutations in epigenetic regulators such as TET2, DNMT3A, ASXL1, ARID1A/B,
PBRM1, MLL2/3/4, KDM6A, SMARCA2/4 are evident in PDAC. Significant upregulation of various miRNAs such as miR-215-5p, miR-122-5p, and miR-
192-5p and decreased levels of miR-30b-5p and miR-320b, were observed in PDAC compared to chronic pancreatitis and hepatocellular
carcinoma. Protein arginine methyl transferase is also overexpressed in PDAC. The DKK1-Super Enhancer (DKK1-SE) in PDAC is characterized by
aberrantly active histone modifications. Epigenetic modifications correlate with distinct PDAC subtypes in patient-derived xenografts, suggesting that
distinct epigenetic states may underpin inter patient PDAC transcriptional heterogeneity.
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derived xenografts, suggesting that distinct epigenetic states may

underpin inter patient PDAC transcriptional heterogeneity (90).

Epigenetic modifiers such as DNA methyltransferases, histone

methyltransferases, histone acetyltransferases, histone demethylases,

or deacetylases are mutated which also contributes to PDAC (91). A

subset of PDAC patients have germline premature truncating variant

mutations in epigenetic regulators (e.g., TET2, DNMT3A, and

ASXL1) (92). In addition, whole exome and genome sequencing

identified somatic mutations in the epigenetic regulators and

chromatin remodeling complexes like ARID1A/B, PBRM1, MLL2/

3/4, KDM6A, SMARCA2/4 (36, 37).

ATAC-seq (Assay for Transposase-Accessible Chromatin using

sequencing) to analyze chromatin accessibility of surgically resected

PDAC between patients found 1092 differentially accessible

chromatin peaks. Subsequent computational TF motif analysis

identified 61 TFs with binding motifs within these chromatin

regions. These TFs included tumor-promoting ZKSCAN1 from

the open chromatin regions of metastatic patients and tumor

suppressor HNF1B from the open chromatin regions of non-

metastases patients; and this can remodel chromatin landscape

and accessibility to recruit or prevent TF binding as a mechanism to

initiate tumor metastasis (93).

Histone methylation is one of the most complicated epigenetic

modification process and arginine methyl transferase plays a major

role. Arginine methyl transferase is overexpressed in PDAC. This

induces expression of GLUT1 and HK2, which reduces the

effectiveness of chemotherapeutic drugs (94). Furthermore,

arginine methyl transferase inhibitors, in combination with

chemotherapeutic drugs or immunotherapy, increased the anti-

tumor effects by increasing CD8+ T cell count (94, 95).

Dickkopf-1 (DKK1) is increased in multiple tumors, and its

silencing leads to tumor inhibition across diverse malignancies. The

DKK1-Super Enhancer (DKK1-SE) in PDAC is characterized by

aberrantly active histone modifications. Its principal component,

enhancer e1, in conjunction with AP1 transcription factors JUND

and FOSL2, triggers chromatin remodeling, hence facilitating the

transcriptional activation of DKK1. The elimination of DKK1-SE

significantly slows PDAC growth and alleviates the complexities of

its microenvironment. DKK1-SE facilitated the advancement of

PDAC by enhancing DKK1 expression, highlighting that the

aberrant activation of DKK1 is induced by the epigenetic

reprogramming of PDAC, thereby offering novel insights into the

role of dysregulated histone modification in the progression of

PDAC (96). Further understanding of the epigenetic landscape in

PDAC could offer new potential biomarkers and tailored

therapeutic approaches.
3.5 Long non-coding RNAs

About 25% of the RNA in human cells is made up of long non-

coding RNAs (lncRNAs); PDAC carcinogenesis is frequently linked

to their dysregulation (97). They modulate transcriptional and post-

transcriptional gene expression, chromatin remodeling and

epigenetic regulation (98). It is also reported to be involved in
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various steps of pancreatic cancer development and have a potential

value in the diagnosis, treatment and prognostic prediction of

PDAC (99). lncRNAs are highly upregulated in liver cancer

(HULC) and Plasmacytoma variant translocation1 (PVT1) levels

in tissue or plasma corelate with PDAC progression and clinical

outcomes. lncRNAs that are upregulated in PDAC include HOX

Transcript Antisense Intergenic RNA (HOTAIR), metastasis-

associated lung adenocarcinoma transcript 1 (MALAT1), and

H19 (100, 101).
3.6 Pathological conditions leading
to PDAC

The microbiome has emerged as a contributor to oncogenesis in

several gastrointestinal tract malignancies including pancreatic

cancer. The dysbiosis of the microbial populations leads to

inflammatory reactions and influences the immunological

response of the host, therefore promoting cancer growth, as well

as influencing the efficacy of anti-cancer treatment. Infection with

E. faecalis may be involved in chronic pancreatitis progression,

ultimately leading to development of pancreatic cancer (102).

Although studies on the influence of bacteria on pancreatic

cancer are still in their early years, it is clear that gut and oral

microbiomes can act as potential pancreatic cancer diagnostic

biomarkers and therapeutic targets (103). Pancreatic cancer

immunogenicity increases with gut microbiota removal, which

polarizes CD4+ T cells to Th1 and increased CD8+ T cell

infiltration while decreasing MDSC infiltration (104). There is yet

another complex relationship between Diabetes and PDAC (105).

Long standing Type 2 Diabetes Mellitus is a known risk factor for

PDAC (106).
4 Tumor immune microenvironment

The pancreatic TiME is indispensable for pancreatic cancer

progression. It is a highly immunosuppressive environment,

characterized by desmoplastic reaction with abundant stromal

response. Reciprocal communication between cancer and stromal

cells induces changes in cellular components of the PDAC TME,

which can prime the primary tumor for metastasis and cell

migration. The cells comprise of variable numbers of infiltrating

immunosuppressive cells, such as tumor-associated macrophages

(TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T

cells (Treg cells), dysfunctional T cells and distinct cancer-associated

fibroblast (CAF) subtypes, tumor-associated neutrophils, together

with heterogenous extracellular matrix (ECM) impact patient

prognosis and therapeutic outcome (6).
4.1 Immunosuppressive TME in PDAC

PDAC is characterized by the immunosuppressive TME with

complex and diverse tumor infiltrating immune suppressive stromal,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1573522
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ramesh et al. 10.3389/fimmu.2025.1573522
ECM and malignant tumor cells that contribute to poor prognosis

and immunotherapy resistance. Several immunosuppressive cells are

predominant in the TME that includes MDSCs, Tregs, and TAMs.

4.1.1 Myeloid-derived suppressor cells
MDSCs are the heterogenous population of immature myeloid

cells (CD15+, CD11b+), which have a significant role in

immunosuppression (107). Immunosuppression mediated by

MDSCs takes place via multiple signaling pathways. MDSCs

suppress the anti-tumor functions of T cells and NK cells which

leads to dismal prognosis; IL-6 is identified as a regulator of MDSC

accumulation (108). Immunosuppression and immune evasion by

MDSCs are also mediated by epidermal growth factor receptor-

mitogen-activated protein kinases (EGFR-MAPK) - dependent

upregulation of PD-L1 expression on tumor cells (109). It suppresses

the anti-tumor immune functions of CD8+ T cells. Three major subsets

of MDSCs have been identified in cancer and other chronic

inflammatory conditions are: polymorphonuclear (PMN-MDSC),

granulocytic (Gr-MDSC) and monocytic (M-MDSC) (110). Due to

the immature nature of MDSCs, yet another phenotype, early-stage

MDSC (eMDSC) has been proposed MDSC (110). Though they are

not phenotypically different, they have distinct functional properties.

M-MDSCs are typically differentiated by the surface markers

CD11b+Ly6G−Ly6Chi and PMN-MDSC with CD11b+Ly6G+Ly6Clo.

In PDAC patients, the amount of MDSCs in systemic

circulation and bone marrow can be corelated with the stage of

the disease (111). GM-CSF is one of the several growth factors

implicated in this increase which is produced by malignant

pancreatic epithelial cells (112). GM-CSF is a regulator of

inflammation and immune suppression.

4.1.2 Tumor associated macrophages
Resident macrophages differentiate into TAMs which have two

phenotypes, M1 and M2; M1 express IL-1b and TNF-a
(proinflammatory) and M2 phenotype is CD163+ and IL-10

producer (anti-inflammatory). Monocytes that infiltrate tumors

exhibit phenotypes that share characteristics of M1 and M2; in

the early stages of cancer, M1 phenotype predominates. As the

disease progresses, they exhibit more of an anti-inflammatory M2

phenotype, leading to tumor evasion, which correlates with poor

prognosis in PDAC patients. Both TAMs and MDSCs are known to

promote pancreatic cancer stem cells (CSC) by the release of

proinflammatory cytokines via STAT3 and NF-kB signaling

which enhances CSC proliferation. MDSCs are known to

differentiate into M2 macrophages in the PDAC TME under

hypoxic conditions mediated by HIF-1a (113, 114).

HOXA9, a transcription factor, can potentiate PDAC progression

by stimulating CD163 expression on TAM (115), which further

increases therapy resistance (116). Twist is yet another

transcription factor that contributes to tumor progression by

ep i the l i a l - to - mesenchymal t rans i t ion (EMT) and

immunosuppression by reducing CD8+T and NK cells in the

TME (117).
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4.1.3 Regulatory T cells
Tregs are the major players of immune suppression in PDAC

TME. Treg modulation, in conjunction with other chemotherapy

regimen, has emerged as a novel method for PDAC therapy.

MDSCs also influence the production of Tregs, which have

important role in immunotolerance (118). They are identified by

forkhead box protein 3 (FOXP3) protein expression and high levels

of IL-2 receptor alpha chain, CD25. Tregs bind to DCs and prevent

them from activating CD8+T cells. Alternatively, TGF-b promotes

the proliferation of Tregs, inhibiting antigen presentation by DCs

(119, 120). Tregs inhibit the immune response against PDAC cells

facilitating the premalignant stage to invasive PDAC (121), and

thus, leading to higher mortality rates (122).

4.1.4 Tumor associated neutrophils
Tumor associated neutrophils (TANs) represent an important

cell population in PDAC TME, displaying extensive plasticity

between anti-tumorigenic N1 and pro-tumorigenic N2

neutrophils in the TME, and is contributing to survival and

immune infiltrations. Significantly increased N2 neutrophils favor

tumor and is associated with poor survival. OS and recurrence free

survival are associated with high infiltration of N1 neutrophils

(123). N2 neutrophils improve angiogenesis via the secretion of

matrix metalloproteinase and VEGF (124). They also promote

metastasis by enhancing the expression of Bv8, S100A8, and

S100A9 (premetastatic proteins). TANs secrete chemokine ligand

5 (CCL5) in abundance, and upregulate nectin2, subsequently

enhancing cancer cell migration and invasion (125) by inhibiting

the cytotoxic activity of CD8+ T cells. Secreted CCL5 and CCL17

also attract Tregs to TME that promote tumor progression (126).

TGF-b, which is abundant in PDAC TME, also has a role in

neutrophil polarization; blocking TGF-b improved antitumor

TANs (127).

4.1.5 Cancer associated fibroblasts restricting
tumor infiltrating immune cells

Cancer associated fibroblasts (CAFs) are a major non-neoplastic,

cellular constituent of the desmoplastic stroma in PDAC and can be

derived from pancreatic stellate cells (PSCs) (128), tissue-resident

fibroblasts, and tumor-infiltrating mesenchymal stem cells (MSCs)

(129). CAFs are characterized by fibroblast activation protein (FAP)

and a-smooth muscle actin (a-SMA), fibroblast-specific protein 1

(FSP1), and platelet-derived growth factor receptors alpha/beta

(PDGFRa/b). In PDAC, CAFs are heterogenous, constituting

myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs) and

antigen-presenting CAFs (apCAFs). myCAFs and iCAFS switch

between phenotypes based on the context (130). Fibrillar collagens,

fibronectin, elastin, laminins and hyaluronan are ECM components in

PDAC, which is secreted by myCAFs (131). They are the source of

ECM and provide nutrients to tumor cells and make them more

aggressive. Furthermore, they modulate cancer progression by various

cytokines/chemokines like TGF-b, VEGF, IL-6, CXCL12. CAF

migration and differentiation, mediated by ARP2/3, have been
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implicated in the initiation of PDAC (132). Immune escape of CAF’s

mediated by releasing immunosuppressive cytokines and chemokines,

such as IL-6, IL-1b, CXCL1, CXCL2, and CXCL12, and expressing

immune checkpoint ligands (133).

ECM secretion by CAFs also builds the mechanical barrier and

interstitial pressure in the TME that impedes drug delivery and

immune cell infiltration leading to hypoxic TME. To ameliorate the

hydrostatic pressure, hyaluronidase was used to breakdown

hyaluronan in an attempt to improve drug delivery and tumor

response (134, 135). A phase II trial of PEGylated hyaluronidase

(PEGPH20), in combination with chemotherapy (gemcitabine/nab-

paclitaxel), achieved 40% response, and the progression free

survival (PFS) was 6.0 months (136).

Sonic hedgehog (Shh) signaling is overactive in PDAC. This

overexpression leads to desmoplastic reaction (137, 138). Shh is a

soluble ligand expressed by neoplastic cells in PDAC, which drives

formation of a fibroblast-rich desmoplastic stroma (137, 139). By

deleting the Shh in a PDAC mouse model, the stromal content was

reduced by restraining tumor angiogenesis.

Mast cells in the TME promote in vivo growth of PDAC (140).

Mast cell-derived factors like IL-13 and tryptase stimulate PSC

proliferation leading to production of TGF-b2 and Smad2

phosphorylation (141). This results in desmoplastic stroma which

promotes proliferation of PSCs and eventually leading to

poor prognosis.

4.1.6 Cytokines and chemokines
Chemokines are key drivers of inflammation, and the major

promoters of cancers. However, a combination of chemokines

(CCL19, CCL21, CXCL9, CXCL10, CXCL12 and XCL1) together

with cytokines IL-2, IL-12, granulocyte–macrophage colony-

stimulating factor (GM-CSF), stimulate T cells, NK cells or tumor

antigen-pulsed DCs (142, 143) contributing to TME. Therefore,

targeting chemokines or chemokine receptors is a promising

strategy for enhancing immunotherapy in PDAC.

Role of CCL2 in M-MDSC migration into tumor site and

accumulation occurs via CCR 2, 4, and 5 (144). CXCR2 is a

chemokine receptor that mediates MDSC recruitment to the

PDAC TiME. CXCR2+ MDSCs migrate in response to ligands

like CXCL1, CXCL2, and CXCL5, which are often secreted by

PDAC cells. Targeting CXCR2 has shown potential in reducing

MDSC infiltration and enhancing antitumor immunity.

4.1.7 Soluble factors
There are many soluble mediators that play a significant role in the

PDAC immune response. Properdin, the only known positive regulator

of the alternative complement pathway, is significantly elevated in the

early stages of PDAC but declines in advanced disease. Neutrophils,

which store properdin in their granules, contribute to its increased

expression in patients, with high neutrophil infiltration correlating with

the CLA PDAC subtype and improved survival outcomes (145).

Properdin exhibits anti-tumorigenic properties by promoting

apoptosis in BL PDAC cell lines. However, its levels are markedly

reduced in the blood of PDAC patients, suggesting that complement

suppression aids immune evasion and reduces the efficacy of cancer
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immunotherapy. Human surfactant protein D (SP-D) is another

soluble factor that modulates cytokines and chemokines. Kaur et al.

studied the role of SP-D in suppressing EMT in PDAC by

downregulating TGF-b signaling (146). A recombinant fragment of

human SP-D, containing homotrimeric neck and C-type lectin

domains, has been shown to induce apoptosis in pancreatic cancer

cell lines through the Fas-mediated pathway (147). These studies

suggest that soluble factors can potentially be used to therapeutically

target pancreatic cancer cells. Another complement component, C1q,

plays a pro-metastatic role in PDAC, particularly in hepatic metastases.

C1q expression progressively increases from normal pancreatic tissue

to primary tumors and then to hepatic metastases driven by M2

macrophages, which are known for their tumor-promoting and

immunosuppressive functions. C1q facilitates PDAC cell migration

and invasion, contributing to disease progression. Additionally,

alterations in the TME, including upregulation of the complement

cascade, have been linked to enhanced metastatic potential in PDAC

(148). Recent spatial transcriptomic study uncovered the role of C1q in

contributing to the establishment of the immune-suppressive

microenvironment that supports tumor progression. The role of C1q

in promoting metastasis, especially in liver metastases, is critical as it

interacts with immune cells, particularly macrophages, influencing the

tumor’s ability to thrive in new locations. This insight supports the idea

that complement subcomponents such as C1q can aid in tumor

adaptation to the metastatic niche, promoting PDAC spread (149).
4.2 Aberrant signaling pathways in PDAC

Aberrant cell signaling is an important hallmark of cancer

progression. Cancer cells as well as the cells in the stromal

microenvironment continuously interact and perceived by cellular

signaling networks. Signaling pathways that drive tumor progression

and therapy resistance include KRAS, TGF-b, Notch, hypoxia-
inducible factor (HIF), and Wnt/b-catenin. Aberrant signaling

results from multiple genetic and epigenetic alterations such as the

mutation in driver genes (KRAS, CDKN2A, p53), genomic

amplification of regulatory genes (MYC, IGF2BP2, ROIK3),

deregulation of chromatin-modifying proteins (HDAC, WDR5),

among others. Pancreatic cancer cells need continuous K-Ras

signaling for their proliferation and survival. Inactivation of GTPase

due to mutation constitutively activates Ras signaling and downstream

effector pathways (150). The downstream effectors in pancreatic cancer

predominantly act through canonical Raf/MAPK/extracellular signal-

regulated kinase (Erk), PI3Ks/(PDK-1)/Akt, RalGEFs, and

phospholipase Ce (150). The most recurrently mutated signal

transduction pathway in PDAC is TGFb signaling, thus, inhibition

of this pathway can lead to therapeutic approach (60, 151).
4.3 Microbiome influence on
chemotherapy resistance

Systemic therapy in PDAC patients eventually leads to drug

resistance and there is evidence to suggest that microbiota have
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potential to induce chemotherapy resistance (152). Intratumor bacteria

are found in many cancers including PDAC (153). The most common

bacteria in the PDAC intratumor microbiome are Gamma-

proteobacteria, with the dominant genus Pseudomonas (104), which

carries long-form cytidine deaminase that metabolizes the

chemotherapeutic drug gemcitabine (2′,2′-difluorodeoxycytidine),
into its inactive form (2′,2′-difluorodeoxyuridine). The anti-cancer

efficacy of gemcitabine is negatively affected by the cytidine

deaminase activity of Mycoplasma, which leads to drug catabolism in

the TME (154). This deamination is further potentiated by

mycoplasma-derived pyrimidine nucleoside phosphorylase (PyNP)

activity. Intratumoral microbiota of BL PDAC are Acinetobacter,

Pseudomonas, and Sphingopyxis, which are associated with worse

prognosis due to induction of inflammation (155). Microbial

dysbiosis is another reason for gemcitabine and albumin-bound

paclitaxel resistance (156).
4.4 Metabolic regulation of PDAC

Tumor tissues have lower levels of glucose, high glycolytic

intermediates, creatine phosphate, and the amino acids glutamine

and serine, which are the main metabolic substrates, according to

metabolomic comparisons between human PDAC tumor tissue and

normal surrounding tissue (157). Acetyl-CoA, which is produced

from acetate, is linked to protein acetylation. These regulatorty

processes include altered cellular signaling, epigenetic alterations,

gene expression, DNA replication, and DNA damage repair.

Immunohistochemical (IHC) examination of pancreatic cancer

samples reveals increased histone acetylation. Another defining

feature of tumor growth is acidosis, which may result from an

overactive glycolytic metabolism. Acidosis affects tumor

metabolism by increasing mitochondrial activity and decreasing

glycolysis (158). Targeting the metabolic nodes is another mode for

improving therapy in PDAC.
5 Intratumor heterogeneity

Intratumor heterogeneity is another major hurdle for effective

therapeutic options. Heterogeneity is observed in CSCs,

transcriptional and epigenetic variation, epithelial mesenchymal

transition and metabolic difference (159). Tumor initiating capacity

or the stemness of PDAC may be attributed to the presence of CSCs

in cancer cell populations. It is identified by various cell surface

markers CD133, CXCR4, CD44, CD24 and EpCAM and several

other markers (160, 161). Yet another marker is cell surface

tetraspanin, CD9, for both murine and human PDAC CSCs (162).

mRNA binding proteins, Msi1 and Msi2, have been characterized in

murine PDAC having tumor initiating capacity. Furthermore, Msi2

directly binds and modulates the transcript levels of epigenetic

modifiers such as Brd4 and Hmga2 (163). Different therapeutic

strategies have been developed to target CSCs (164).

Transcriptional and epigenetic control indicate a great ability of

PDAC neoplastic cells to modify their phenotypic identity.
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Epigenetic co-regulators and lineage-specific TFs are important

indicators of PDAC subtype specificity and disease progression.

The function of AP1 TFs in the heterogeneity of PDAC has recently

been reported, emphasizing the divergent tumor states driven by

JUNB/AP1 and cJUN/AP1. JUNB preserves a CLA phenotype by

inhibiting inflammatory signals and stabilizing differentiation

factors such as GATA6, while cJUN fosters a BL phenotype

through TNF-a-mediated macrophage recruitment (165). The

absence of JUNB results in an inflammatory milieu, diminishing

T cell infiltration and facilitating BL transition. Targeting TNF-a by

immunotherapy and chemotherapy increases T cell presence,

inhibits macrophages, and enhances survival in mice, indicating a

potential therapeutic approach to mitigate PDAC immune

suppression and aggressiveness (165).
5.1 Stromal heterogeneity

Stromal microenvironment influences the intratumoral

composition of PDAC (166). Normal and activated stromal

subtypes are identified according to the PDAC subtype

classification (22), the latter having worse outcomes. Patients with

activated stroma have higher myCAF and csCAF myofibroblastic

and immunogenic fibroblasts, M2 macrophages and Tregs. Normal

stroma has higher PSCs (167).
6 Therapeutic strategies in PDAC

Chemotherapy profoundly alters the PDAC TME and might

lead to further resistance to immunotherapy due to reduced

inhibitory check point molecule expression and interactions

involving CD8+T cells (31). As it tends to develop therapy

resistance and has such a worse prognosis, PDAC is a malignant

tumor with a very high mortality rate. Although chemotherapy,

radiation therapy and immunotherapy are standard treatments,

systemic chemotherapy is still the most used approach. However,

immune checkpoint inhibitors, which have had considerable

success in treating other solid tumor types show limited

effectiveness in PDAC. A key feature of PDAC is its inherent

resistance to drug therapy. This inherent chemoresistance arises

from various cellular mechanisms, including drug efflux, stemness

properties, cell cycle regulation, and an elevated apoptotic threshold

in response to drug exposure. These resistance mechanisms are

driven by multiple oncogenic signaling pathways and dysregulated

cellular processes (168). The various therapeutic options in PDAC

are schematically represented in Figure 3.
6.1 Surgical resection

Surgery is considered as the primary treatment option for PDAC,

along with adjuvant. Since 1940, Pancreaticoduodenectomy (PD) has

been widely applied; Whipple reported the classical procedure

including distal gastrectomy and total duodenectomy and this has
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been modified (169). Specific techniques used in the surgery are as

follows: artery first approach (170), uncinate process first (171),

triangle operation (172, 173), venous bypass first (174–176),

periarterial divestment (177, 178), Vascular (Venous and Arterial)

Resection (179), multivisceral resection (180, 181), MIS/Robotic

Surgery (182–184), laparoscopic and robotic distal pancreatectomy

(185, 186), and laparoscopic and robotic pancreatoduodenectomy

(187, 188). Over years, pancreatic surgical procedures have improved

leading to 5% reduction in mortality (189).
6.2 Chemotherapy

Chemotherapy is the primary therapeutic option for locally

progressed, metastatic, or recurrent PDAC. A combination of nab-

paclitaxel and gemcitabine has been approved as a first-line therapy
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for locally advanced unresectable or metastatic PDAC due to a

higher median OS rate than gemcitabine alone (190).

6.2.1 Neoadjuvant chemotherapy
Neoadjuvant chemotherapy, refers to chemotherapy administered

before primary treatment with surgery and/or radiation therapy (191).

A phase III randomized trial of gemcitabine alone versus gemcitabine

plus capecitabine in metastatic PDAC patients demonstrated improved

objective response rate and progression-free survival (192). The

FOLFIRINOX regimen (folinic acid, 5-FU, irinotecan, and

oxaliplatin) has shown a 31.6% response rate in patients with stage

IV disease, although with increased hematologic and neurologic

toxicity (193).

A phase III trial investigated the safety and efficacy of nab-

paclitaxel plus gemcitabine versus gemcitabine monotherapy in

metastatic PDAC. Despite increased rates of peripheral neuropathy
FIGURE 3

Various therapeutic options for treatment of PDAC patients. (A) Surgical resection (a. Pancreaticoduodenectomy, b. artery first approach, uncinate
process first, triangle operation, c. venous bypass first, d. periarterial divestment, vascular resection, multivisceral resection, f. MIS/Robotic Surgery, g.
laparoscopic and robotic distal pancreatectomy/robotic pancreatoduodenectomy. (B) Neoadjuvant Chemotherapy (a. FOLFIRINOX regimen stage IV
disease, b. novel combination of nab-paclitaxel, c. oxaliplatin, 5-fluorouracil, and leucovorin in advanced PDAC patients, d. phase III NALIRIFOX trial,
e. FOLFIRINOX and losartan); Adjuvant chemotherapy (a. ESPAC-4 and PRODIGE 24, b. modified FOLFIRINOX regimen, c. JASPAC-01, d. CONKO-
005, e. combination of nab-paclitaxel and gemcitabine). (C) Radiotherapy in combination with different drugs (durvalumab, rucosopasem
manganese, and NBTXR3). (D) Immunotherapy (a. durvalumab with or without tremelimumab, b. IRE (Irreversible Electroporation) + Nivolumab (arm
B), c. Lipid nanoparticle embedded IL-12 mRNA, d. NLM-001 + chemotherapy (Gemcitabine and Nab-Paclitaxel) +Zalifrelimab; Antibody therapy (a.
durvalumab with tremelimumab, b. nab-paclitaxel and gemcitabine, c. dual antagonist for CCR2 and CCR5 with nivolumab and gemcitabine/ nab-
paclitaxel, d. nab-paclitaxel and gemcitabine + camrelizumab and radiotherapy. (E) Cellular therapy (a. chimeric antigen receptor T-cell (CAR-T), b.
targeting antigens (CD24, PSCA, CEA, MUC-1, MSLN, FAP-a, Her-2), c. dual targeting MSLN and CEA, d. TnMUC1-targeted CAR-T cells, e. CAR-T
cells expressing heparanase. (F) Vaccine therapy (a. dendritic cell vaccine (mDC3/8), b. vaccination against ADAM12).
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and myelosuppression, the combination therapy improved OS,

progression-free survival, and response rate (190). A phase I trial

confirmed the improved safety and tolerability profile of nab-

paclitaxel plus gemcitabine, along with considerable anti-tumor

activity (194).

A study found that drug funding decisions led to increased

uptake of newer treatments and improved survival in advanced

pancreatic cancer patients receiving first-line palliative

chemotherapy. Both FOLFIRINOX and gemcitabine/nab-paclitaxel

demonstrated survival benefits in specific patient populations (195).

A more recent study evaluated the novel combination of nab-

paclitaxel, oxaliplatin, 5-fluorouracil, and leucovorin in advanced

PDAC patients, showing improved activity and potential as an

alternative to FOLFIRINOX with less gastrointestinal toxicity (196).

The phase III NALIRIFOX trial (liposomal irinotecan with

fluorouracil, leucovorin, and oxaliplatin) versus nab-paclitaxel

and gemcitabine in metastatic PDAC patients showed

improvements in overall and progression-free survival (197).

For patients who are receiving extended neoadjuvant

FOLFIRINOX followed by surgical resection, survival outcomes

increase by reducing the tumor for better access to surgery (198).

Yet another study targeting the desmoplastic stroma on locally

advanced PDAC showed better response with neoadjuvant

FOLFIRINOX followed by chemoradiotherapy (CRT) and then

surgical attempt. Losartan was included in this study as it could

inhibit the renin-angiotensin system signaling that improved the

delivery of chemotherapy to the tumor and inhibited collagen I

synthesis (199, 200). Treatment with FOLFIRINOX and losartan

was associated with a significant reduction in plasma

thrombospondin-1 and TGF-b levels.

6.2.2 Adjuvant chemotherapy
Adjuvant therapy is given to PDAC patients as a curative

therapy after surgery. The current standard of treatment has been

established by the ESPAC-4 and PRODIGE 24 studies, even though

single-agent adjuvant therapy with gemcitabine or 5FU has

demonstrated survival advances. In 732 patients, ESPAC-4

indicated that gemcitabine/capecitabine increased OS compared

to gemcitabine alone. In contrast to gemcitabine in the adjuvant

context, modified FOLFIRINOX (lower irinotecan and no bolus 5-

FU) also improved OS, according to PRODIGE 24, a major global

phase 3 study (193, 201). Adjuvant therapy with a modified

FOLFIRINOX regimen (fluorouracil, leucovorin, irinotecan, and

oxaliplatin) led to significantly longer survival than gemcitabine

among patients with resected pancreatic cancer, at the expense of a

higher incidence of toxic effects (202). APACT phase III trial that

used adjuvant nab-paclitaxel and gemcitabine in comparison with

gemcitabine alone showed better OS with combination therapy

(203). The PREOPANC-3 trial is a randomized, multi-center, phase

III trial; patients were either given 8 cycles of mFOLFIRINOX

before surgery and 4 cycles after (arm 1), or surgery followed by 12

cycles of mFOLFIRINOX (arm 2) (204).

Earlier clinical trials using JASPAC-01, where S1, an oral drug

containing tegafur (prodrug of flurouracil), gimeracil (inhibitor of

dihydropyrimidine dehydrogenase), and oteracil potassium (reduce
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gastrointestinal toxicity) were recognized to be a standard adjuvant

chemotherapy for patients with resected PDAC compared to

adjuvant gemcitabine (205). Yet another trial, CONKO-005,

involved adjuvant chemotherapy with targeted therapy using

Gemcitabine and Erlotinib in comparison with Gemcitabine

monotherapy in patients after R0 (resection for cure or complete

remission) resection of PDAC which did not provide an improved

survival benefits (206).
6.3 Radiation

Although there is little evidence that adjuvant radiation therapy

works, it is widely used. The first randomized trial was the GITSG

study in 1985, which examined 43 PDAC patients with negative

surgical margins and compared adjuvant chemoradiation (40 Gy

split-course with weekly 5-FU) (207). The original trial was

prematurely ended due to inadequate patient enrolment

(intended target was 100 patients), although it showed an OS

benefit with CRT (median survival of 20 months versus 11

months). Even though CRT subsequently became the accepted

adjuvant treatment, its benefit for survival has been questioned by

various randomized trials (208, 209). Hepatic artery infusion

chemotherapy may help avoid hepatic metastases and enhance

long-term survival following a radical pancreatectomy for PDAC.

However, considering the current investigation was retrospective

and involved only a limited number of individuals, a larger,

prospective study is required to verify these findings (210).

Furthermore, with the development of new systemic therapies

and a greater emphasis on managing local disease, radiation

therapy is probably going to become even more significant (211).

Current research is making use of radiation therapy combined with

different drugs for locally advanced PDAC. Some of the drugs that

are being tested include durvalumab, a PD-L1 inhibitor;

rucosopasem manganese, which mimics superoxide dismutase;

and NBTXR3, a radio-enhancer (212, 213). Whether neoadjuvant

chemoradiation will improve OS in PDAC is difficult to

predict (214).
6.4 Immunotherapy

Vaccines, adoptive cell therapies, and checkpoint inhibitors are

all examples of cancer immunotherapies. These are designed to alter

the activation of co-inhibitory and co-stimulatory receptors on

immune cells, particularly T cells, which are critical for modulating

adaptive immunological responses. To increase T cell activity against

PDAC, clinical trials have assessed the use of immune checkpoint

inhibitors that target the cytotoxic T lymphocyte antigen-4 (CTLA-4)

and programmed cell death-1 (PD-1/PD-L1 pathways). PD-1/PD-L1

inhibition regulates the anti-tumor T cell response in peripheral

tissues, while CTLA-4 blockade impacts Treg cell activity and

enhances immunity against tumors. Blocking immunotherapy

interferes with the interaction between the PD-1 receptor on T-

cells and its ligand, PD-L1, which is often expressed on tumor cells.
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This interaction affects T cell action that normally blocks them from

effectively targeting cancer. However, using this therapy, specific

antibodies to block this interaction between natural immunity

against tumor tissue is boosted (215).

A phase II randomized trial used durvalumab with or without

tremelimumab, in 65 patients with previously treated metastatic

PDAC. In both the combination therapy (3.1%) and the

monotherapy (0%), the objective response rate were extremely low.

It was challenging to determine whether treatment response and PD-

L1 expression or microsatellite instability status were related due to

the small number of patients recruited in the study (216).

A randomized phase I trial to study the safety of the

combination therapies IRE (Irreversible Electroporation) +

Nivolumab (arm B) targeting the PD-1 receptor on T-cells and

CpG (Toll-Like Receptor 9) ligand stimulated dendritic cells to

release type I IFN, activated NK and infiltrating CD8+T cells and

created a more pro-immunogenic TME. More studies should be

done to prove the safety and clinical reproducibility (217).

Novel therapeutic strategies for the reversal of T cell exhaustion

is a good treatment option. IL-12, a potent proinflammatory

cytokine, enhances T cell effector function. Lipid nanoparticle

embedded IL-12 mRNA utilized for the intratumoral delivery has

proven safe and tolerable (NCT03946800) along with stereotactic

body radiation therapy for the optimal activity which resulted in

long term OS (218).

Another study utilized two prognostic genes to categorize M2-

like TAMs in PDAC into anti-tumor bM2-like TAMs and pro-tumor

mM2-like TAMs. The bM2-like TAMs activate T lymphocytes via

ALCAM/CD6 and produce prognosis-favorable aSMA+

myofibroblasts by secreting TGFb, providing insights into TAM

heterogeneity, prognosis prediction, and immunotherapy for PDAC

(219). SLC12A5 is an integral membrane potassium-chloride

cotransporter mainly involved in maintaining chloride homeostasis

in neurons, is a potential prognostic biomarker for human cancer

(220). ENPP2 (ATX) encodes a secreted enzyme that functions as

both a phosphodiesterase and a phospholipase. Higher expression of

these genes was correlated with improved survival in PDAC patients.

This provides a new target for immunotherapy in PDAC.

Another ongoing phase Ib/IIa trial examined safety and efficacy

of NLM-001, the Hedgehog inhibitor and chemotherapy

(Gemcitabine and Nab-Paclitaxel) +Zalifrelimab, CTLA-4 blocker

within the 17 months’ time frame, the outcome is yet to be

reported (221).

6.4.1 Antibody therapy
The most used approach for immunomodulation is monoclonal

antibodies (222); targeting PD-1/PD-L1 and CTLA-4 has proven

highly effective across numerous solid tumors. Combination of

antibody and chemotherapy targets the tumor specific receptors such

as anti-EGFR/VEGF antibody for increased improvement in

tumorigenesis (223). A study that added cetuximab to the standard

therapy showed no significant change in OS rate and toxicity (224). A

phase II clinical trial tested durvalumab (anti-PD-L1 monoclonal

antibody) with tremelimumab (anti-CTLA-4 monoclonal antibody)
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versus durvalumab monotherapy in individuals, previously treated

with chemotherapy for metastatic PDAC, did not increase OS rate

(216). This highlights the need for translational studies that can

circumvent the immunosuppressive and desmoplastic stroma of

PDAC TME. Dual antagonist for CCR2 and CCR5 with nivolumab

and gemcitabine/nab-paclitaxel in Borderline Resectable and Locally

Advanced PDAC appeared to be safe and neoadjuvant use did not lead

to delay in surgery (225).

A clinical trial of two years is being conducted to study the

safety and efficacy of nab-paclitaxel and gemcitabine plus

camrelizumab (Anti-PD-1 antibody) and radiotherapy versus

nab-paclitaxel and gemcitabine monotherapy for locally advanced

PDAC which showed super efficacy over the latter (226).

6.4.2 Vaccine therapy
DCs are the potent APCs which stimulate helper T cells (227). In

PDAC, an open label trial to determine effects of a DC vaccine

(mDC3/8) (primer and booster) for resective PDAC has been carried

out, but the results are not published yet (228). Precision based and

immunotherapy based clinical trials will open therapeutic options

such as PARP inhibitors and PD-1 blockade for well defined subtypes

of PDAC (229).

Targeting the desmoplastic stroma is an essential step for an

effective therapy in PDAC. Disintegrin metalloprotease, ADAM12,

expressed in CAFs and tumor cells, is reactivated in fibroblasts during

fibrogenesis in desmoplasia. Vaccination against ADAM12 depletes

CAFs and delays tumor growth, by reducing ADAM12+ CAFs, and

decreases deposition of ECM. It also increases cytotoxic CD8 +T cell

response and re-localization of T cells within the tumor tissue.

Furthermore, it induces vascular normalization with decreased

tumor hypoxia. This study highlights the importance of

immunotherapies based on immunization that target CAFs and

tumor desmoplasia (230).
6.5 Cellular therapy

Chimeric antigen receptor T-cell (CAR-T) therapy uses a

patient’s own T cells, which are collected and genetically modified

to recognize and destroy cancer cells carrying a specific target

antigen (231). CAR T-cell therapy in PDAC targets antigens such

as CD24, Prostate stem cell antigen (PSCA), CEA, Mucin-1 (MUC-

1), Mesothelin (MSLN), FAP-a, and human epidermal growth

factor receptor 2 (Her-2) (232, 233). Dual targeting of cancer

antigens in KRAS mutated PDAC, MSLN and CEA by

computational approaches for elucidation of anti tumor response

has been tested (234). Engineered CAR-T cells made to express

heparanase (HPSE) showed improved capacity to degrade the ECM,

which promoted tumor T cell infiltration and antitumor activity, a

strategy to treat stroma-rich solid tumors (235). A recent phase I,

open-label, multi-center, first-in-human trial of TnMUC1-targeted

CAR-T cells in patients with advanced TnMUC1-positive solid

tumors and multiple myeloma including PDAC is being

conducted (236).
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7 Strategies to overcome
heterogeneity and future directions

Identifying the key oncogenic drivers can navigate PDAC

therapeutics. This includes precision-based therapies against denoted

KRAS mutation like G12D, G12V, G12R, G12C and other mutations

(229). Since epigenetic changes drive much of the heterogeneity in

PDAC, targeting thesemodifications can also be considered. Drugs that

inhibit DNA methylation, histone modifications, and non-coding

RNAs need to be investigated. Transcriptionally defined molecular

subtype-based treatment regimen by gene expression profiling and

immunotherapeutic approaches that can reprogram the TiME can

revolutionize PDAC treatment. Another strategy could target

immunosuppressive myeloid cells and reprogram DCs, macrophages

and CAFs, leading to increased CD8+ T lymphocyte activity against

PDAC cancer cells.

Efforts to enhance immune infiltration in PDAC TME have

included targeting CXCR4, to increase T-cell chemotaxis. In fact, a

combination of PD-1 and CXCR4 inhibition resulted in enhanced

T-cell expansion and tumor cell death in pre-clinical models (237).

CD40 activation may represent a strategy to reverse T-cell

exhaustion, enhancing the anti-cancer effects of the TiME.

Consistent with this notion, agonistic CD40 antibodies were

shown to increase T-cell mediated cancer death and, in

combination with chemotherapy, may rescue ICI sensitivity (238).

There is an insufficiency of preclinical pancreatic cancer models

that replicate the extracellular, cellular, and biomechanical components

of tumor tissues to evaluate responses to immunotherapy. To

overcome this constraint and investigate the effects of

immunotherapy in conjunction with chemotherapy, a multicellular

3D cancer model with a star-shaped poly (ethylene glycol)–heparin

hydrogel matrix has been developed. Human pancreatic cancer cells,

CAFs, and myeloid cells are cultured within hydrogels to replicate

essential elements of tumor tissues, and cellular responses to therapy

are evaluated. The combination of the CD11b agonist ADH-503 with

anti-PD-1 immunotherapy and chemotherapy results in a substantial

decrease in tumor cell viability, proliferation, metabolic activity,

immunomodulation, and the release of immunosuppressive and

tumor-promoting cytokines (239).

Using a combination of drugs that target different signaling

pathways can help in overcoming resistance and heterogeneity.

Multifaceted mechanisms are operating in the PDAC TME,

influencing the response to chemotherapy, radiotherapy, and

immunotherapy. Precision-based therapeutic decisions will help to

overcome the heterogeneity in PDAC. Understanding the underlying

reason to chemotherapy resistance can improve the efficiency of drugs.

Advanced techniques like scRNA-seq and spatial transcriptomics can

help in understanding the heterogeneity at a cellular level. This can lead

to more personalized treatment approaches.
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ACVR1 activin receptor type-1
Frontiers in Immunol
ARIDIA AT-rich interactive domain 1A
ARP2 Actin Related Protein
ASXL Additional sex combs-like
ATM ataxia telangiectasia mutated
ATAC-seq Assay for Transposase-Accessible Chromatin sequencing
BEAMing beads, emulsion, amplification, magnetics
BL Basal like
BRCA breast cancer
Brd bromodomain
CA carbohydrate antigen
CAF cancer associated fibroblasts
CAR-T cell Chimeric antigen receptor (CAR) T-cell
CCL Chemokine (C-C motif) ligand
CCNB1 cyclin cyclin B1
CDC Cell division cycle
CDKs cyclin dependent kinase
CDKN2A cyclin-dependent kinase inhibitor 2A
CDS coding DNA sequence
CEP55 centrosomal protein 55
cfDNA circulating cell free DNA
CK Cytokeratin
CLA classical
CNV copy number variation
COL17A1 collagen type XVII alpha 1 chain
CRT chemoradiotherapy
ctDNA circulating tumor-specific cell-free DNA
CT computerized tomography
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
CSC Cancer stem cell
CXCR4 CXC chemokine receptor 4
CXCL1 chemokine (C-X-C motif) ligand 1
DKK1 Dickkopf-1
DPC4 deleted in pancreatic cancer 4
DLGAP5 discs large-associated protein
DNMT3A DNA methyltransferase 3A
ECM extra cellular matrix
EGFR epidermal growth factor receptor; eMDSC, early-stage

myeloid-derived suppressor cells
EMT epithelial-to-mesenchymal transition
EPC1 enhancer of polycomb homolog 1
EPCAM Epithelial cell adhesion molecule
ENPP2 ectonucleotide pyrophosphatase/phosphodiesterase 2
ERBB2 erythroblastic leukemia viral oncogene homolog 2
FOXP3 forkhead box protein 3
FSP1 ferroptosis suppressor protein 1
ogy 21
Gr-MDSC granulocytic myeloid-derived suppressor cells
HER2 human epidermal growth factor receptor 2
HMGA 2 high-mobility group A2
HPSE Heparanase
HIF hypoxia-inducible factor
HOTAIR HOX Transcript Antisense Intergenic RNA
HK hexokinase 2
HULC highly upregulated liver cancer
IGF1 insulin-like growth factor 1
IHC Immunohistochemistry
IL Interleukin; IPMN, intraductal papillary-mucinous neoplasm
KRAS Kirsten rat sarcoma viral oncogene homolog
KLF Krüppel-like factor
Lif leukemia inhibitory factor
lncRNA long non coding RNA
MALAT1 metastasis-associated lung adenocarcinoma transcript 1
MAPK mitogen activated protein kinase
MEIS2 Meis homeobox 2
MDM2 Murine double minute 2
MDSCs myeloid-derived suppressor cells
MCN mucinous cystic neoplasm
miR micro RNA
MLL Mixed-Lineage Leukemia
MRD minimal residual disease
mRNA messenger RNA
mtRNA mitochondrial RNA
NALCN Sodium leak channel, non-selective
NAC Neoadjuvant chemotherapy
NF-KB nuclear factor-kappa B
NK cells Natural killer cells
PC pancreatic cancer
PDAC pancreatic ductal adenocarcinoma
PanIN pancreatic intraepithelial neoplasia
PSC pancreatic stellate cells
PVT1 plasmacytoma variant translocation 1
TAM tumor associated macrophages
TAN tumor associated neutrophils
TCGA The cancer genome atlas
TGF-b transforming growth factor beta; TME, tumor microenvironment
TNM Tumor, Node, Metastasis
TiME tumor immune microenvironment
Treg cells regulatory T cells
VEGF Vascular endothelial growth factor
5mC 5-Methylcytosine
5hmc 5 hydroxymethyl cytosine
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