
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Immunol.
Sec. Immunological Tolerance and Regulation
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1572789
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The Autoimmune Regulator, AIRE, acts as a transcriptional regulator in the thymus, facilitating ectopic expression of thousands of genes important for the process of negative T-cell selection and immunological tolerance to self. Pathogenic variants in the gene encoding AIRE are causing Autoimmune polyendocrine syndrome type 1 (APS-1), defined by multiorgan autoimmunity and chronic mucocutaneous candidiasis. More recently, Genome Wide Association Studies (GWAS) have also implicated AIRE in several common organ-specific autoimmune diseases including Autoimmune primary adrenal insufficiency, type 1 diabetes and pernicious anemia. We developed a highly sensitive cell-system approach based on HEK293FT cells transfected with AIRE that allowed us to characterise and functionally evaluate the transcriptional potential of genetic variants in the AIRE gene. We confirm that our cell system recapitulates the expression of the vast majority of known AIRE induced genes including well-characterised tissue restricted antigens (TRAs), but also increases the total number of identified AIRE induced genes by an order of magnitude compared to previously published strategies. The approach differentiates between categories of AIRE variants on the transcriptional level, including the nonsense variant p.R257* (near complete loss of function), the p.C311Y variant associated with dominantly inherited APS-1 (severely impaired function), and the polygenic risk variant p.R471C (slightly increased function) linked to common organ-specific autoimmunity. The increased activity of p.R471C compared to wildtype indicates different molecular mechanisms for monogenic and polygenic AIRE related autoimmunity.
Keywords: AIRE, autoimmune polyendocrine syndrome type, APECED, Autoimmune primary adrenal insufficiency, Type 1 diabetes (T1D), Pernicious anemia, RNAseq, HEK293FT
Received: 07 Feb 2025; Accepted: 25 Mar 2025.
Copyright: © 2025 Berger, Oftedal, Wolff, Husebye, Knappskog, Bratland and Johansson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Amund Holte Berger, Department of Clinical Science, University of Bergen, Bergen, Norway
Eirik Bratland, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
Stefan Johansson, Department of Clinical Science, University of Bergen, Bergen, Norway
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.