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Background: Graves’ hyperthyroidism and its associated Graves’ orbitopathy are

common autoimmune disorders associated with significant adverse health

impact. Current standard treatments have limitations regarding efficacy and

safety, and most do not specifically target the pathogenic mechanisms. We

aim to review the latest development of targeted immunotherapies in these two

closely related disorders.

Summary: Targeted immunotherapies of Graves’ hyperthyroidism have recently

demonstrated clinical efficacy in early phase clinical studies. They include rituximab,

an anti-CD20 monoclonal antibody which causes rapid B cell depletion; ATX-GD-

59, an antigen specific immunotherapy which restores immune tolerance to

thyrotropin receptor; iscalimab, an anti-CD40 monoclonal antibody which

blocks the CD40-CD154 co-stimulatory pathway in B-T cell interaction; and K1-

70, a thyrotropin receptor blocking monoclonal antibody. Furthermore, there have

been major therapeutic advances in the management of Graves’ orbitopathy.

Mycophenolate has a dual mechanism of action both inhibiting the proliferation

of activated B & T cells as well as the mammalian target of rapamycin growth

intracellular pathway. Rituximab appears to be effective in active disease of recent

onset without impending dysthyroid optic neuropathy. Both tocilizumab (anti-

interleukin 6 receptor monoclonal antibody) and sirolimus (mammalian target of

rapamycin inhibitor) showed promise in glucocorticoid resistant active disease.

Teprotumumab, an anti-insulin-like growth factor-1 receptor monoclonal

antibody, demonstrated remarkable all-round efficacy across a wide disease

spectrum. Linsitinib, a dual small molecule inhibitor of insulin-like growth factor-

1 receptor and insulin receptor, displayed significant proptosis reduction in its phase

2b/3 study. Finally, Batoclimab, an anti-neonatal fragment crystallizable receptor

monoclonal antibody, which blocks recycling of pathogenic thyrotropin receptor

antibody, showed promising signals for significant proptosis reduction, disease

inactivation, overall response, and improvement of quality of life.

Conclusion: Therapeutic advances will continue to optimize our management of

Graves’ hyperthyroidism and its associated orbitopathy in an effective and

safe manner.
KEYWORDS

targeted immunotherapies, autoimmune thyroid diseases, Graves’ disease, Graves’
hyperthyroidism, Graves’ orbitopathy
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Introduction

Graves’ disease (GD) is a common autoimmune thyroid

disease affecting approximately 3% of women and 0.5% of men

during their lifetime (1). GD is the most frequent cause of

hyperthyroidism in iodine replete geographical areas. Recent

population-based studies demonstrated an increased risk for all-

cause mortality and acute cardiovascular diseases in patients with

hyperthyroidism (2, 3). Graves’ orbitopathy (GO) is the most

common extra-thyroidal manifestation of GD. The overall

prevalence of GO in GD patients is 40% and GO appears to be

slightly more prevalent among Asians when compared with

Caucasians (45% vs 37%) (4). Disfigurement and disability

resulting from GO carry a significant negative impact on

patients’ quality of life and psychological well-being, as well as

on our socioeconomic burden (5–7).

Current standard treatments for Graves’ hyperthyroidism (GH)

and/or GO, including thionamide antithyroid drugs (ATD),

radioactive iodine (RAI), thyroid surgery and systemic

glucocorticoids, have been established since the mid-20th century.

It was not until the past two decades that novel therapeutic

approaches have emerged which can better address the disease

mechanisms underpinning GH and GO. This review will

summarize the latest development of targeted immunotherapies

in these two closely related autoimmune disorders.
Graves’ hyperthyroidism: current
management landscape

According to recent global surveys, 80-90% of clinicians chose

ATD as the first-line treatment of new onset GH (8, 9), while RAI

became much less popular than a decade ago (9). This observation

is consistent with the latest recommendation by the European

Thyroid Association (ETA) (1). Continuation or resumption of

ATD was also preferred in around 60% of respondents in case of

persistence or recurrence of GH (9). The major drawbacks of ATD

include uncommon but severe toxicities (e.g. agranulocytosis,

hepatotoxicity, ANCA-positive vasculitis, and acute pancreatitis

[reported in methimazole users only (10)]), and high recurrence

rate of 50% after a standard 12-18 month course of treatment

(11, 12). In order to minimize risk of recurrence, long-term ATD for

more than 60 months has been proposed as a safe and effective

strategy which offers a high 4-year remission rate of 85% (13, 14).

RAI is associated with significant risk of progression or de novo

development of GO, especially in at-risk patients (15). Total

thyroidectomy results in rapid cure of hyperthyroidism but

surgical or anesthetic complications may occur. Lifelong thyroid

hormone replacement is required following successful RAI ablation

or total thyroidectomy. However, 5-10% of levothyroxine-treated

hypothyroid patients reported dissatisfaction despite normal serum

TSH level (16). Therefore, current standard treatments fail to

achieve durable remission of hyperthyroidism without the need

for long-term medications or causing iatrogenic hypothyroidism.
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In recent years, several novel therapeutic strategies have been

developed to treat GH by targeting the underlying immunopathogenic

mechanisms: (1) B cell depletion; (2) restoration of immune tolerance

to thyrotropin receptor (TSH-R); (3) interruption of B-T cell

interaction via CD40-CD154 co-stimulatory pathway; and (4)

interruption of TSH-R signaling.
Targeted immunotherapies of
Graves’ hyperthyroidism

Rituximab

Background and scientific basis
Rituximab (RTX) is a chimeric murine/human anti-CD20

monoclonal antibody. By causing rapid depletion of B cells (from

the stage of pre-B cells to mature and memory B cells, as well as

short-lived plasma cells) in periphery and lymphoid organs (17),

RTX is believed to inhibit B cell actions (e.g. antigen presentation,

cytokine release) and reduce the synthesis of pathogenic

autoantibodies through elimination of plasma cell precursors.

Hence, RTX has been established as an effective treatment of B-

cell malignancies (18) and various autoimmune disorders (19).
Summary of key clinical trials and
clinical application

In a non-randomized pilot study (20), 20 GH patients were

rendered euthyroid after about four months of methimazole

treatment, and then assigned to RTX (375mg/m2 weekly for four

doses) followed by ATD withdrawal or ATD withdrawal alone. Four

of 10 patients in RTX group remained in remission with a median

follow-up of around 2 years, while all patients in the observation

group, who had similar baseline TSH-R antibody (TSH-R-Ab) levels,

eventually relapsed by 14 months. Although both groups

demonstrated similar decline in TSH-R-Ab levels measured by

immunoassay, TSH-R stimulating antibody (TSAb) quantified by a

bioassay reduced significantly only in RTX group (21). In a single-

arm phase 2 study (22), 13 patients with relapsing GH received two

doses of RTX one gram with a 2-week interval. Nine patients (69%)

became euthyroid and remained in remission after a median follow-

up of 18 months and they all achieved significant reduction in TSH-

R-Ab levels. In another multicenter single-arm phase 2 study (23), 27

young patients (age 12-20) with new onset GH were given a single

dose of RTX (500 mg) and a 12-month course of ATD. Thirteen

patients (48%) remained in remission at 1 year after ATDwithdrawal.

Both remission and recurrence groups show similar baseline TSH-R-

Ab levels. The authors concluded that adjuvant RTX may improve

the likelihood of remission of GH in young patients whose remission

rate was predicted at 20-30% after a 12-month course of ATD.

Overall, the role of RTX in GH remains to be determined due to the

absence of a formal randomized controlled trial (RCT). Its high cost

and risk of severe side effects, including serum sickness-like reactions,

iridocyclitis, polyarthritis, and inflammatory bowel disease (24), bring

further concerns and limitations.
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ATX-GD-59

Background and scientific basis
Antigen-specific immunotherapy is an effective treatment for

common allergic conditions, especially atopy and stinging insect

hypersensitivity. Administration of the causative allergen (or

antigen) at gradually increasing quantities results in desensitization

and induction of immune tolerance (25). In recent decades, the

growing understanding of the mechanisms of immune tolerance and

autoimmunity has led to the development of antigen-specific

approaches for the treatment of autoimmune diseases (e.g. type 1

diabetes (26, 27) and multiple sclerosis (28)). Approaches to antigen-

specific therapy range from targeted deletion of autoreactive

lymphocytes to tolerization of autoreactive T cells and active

inhibition of autoimmune responses (29). For instance, immune

tolerance can be restored through administering synthetic peptides

(“apitopes”, i.e. antigen-processing independent T-cell epitopes) that

mimic naturally processed CD4+ T cell epitopes (30). A mixture of

two immunodominant apitopes based on the sequence of human

TSH-R (ATX-GD-59) was sufficient to suppress both the T-cell and

TSH-R-Ab response when administered in soluble form toHLA-DR3

transgenic mice immunized with human TSH-R (31).

Summary of key clinical trials and
clinical application

In an open-label, single arm, phase 1 study (32), 10 patients

with treatment-naïve mild to moderate GH (fT3 <= 15 pmol/L and

fT4 <= 35 pmol/L) received all 10 doses of intradermal ATX-GD-59

over 18 weeks. Seven patients (70%) demonstrated complete

(normalization of fT3 level, n=5) or partial response (reduction in

fT3 and fT4 levels, n=2) at treatment end. Two patients remained

euthyroid without ATD for a year after their last dose of ATX-GD-

59. Reductions in serum fT4 and fT3 levels were significantly

correlated with reductions in both TSH-R-Ab and TSAb levels.

ATX-GD-59 was well tolerated and most adverse events (85%) were

mild injection site reactions only. Antigen specific immunotherapy

is an attractive therapeutic option in GH due to the absence of

generalized immunosuppression and possibly durable drug-free

remission. Future RCTs will explore its potential to achieve safe

and effective long-term cure of GH.
Iscalimab

Background and scientific basis
The breakdown of immune tolerance in GH generates

autoreactive CD4+ helper T cells against TSH-R. T cell receptors

interact with MHC Class II molecules of antigen presenting cells

(primarily B cells) through which TSH-R peptides are presented.

The interaction is followed by synthesis and presentation of CD154

(CD40 ligand, CD40L) on T cells, which binds to CD40 on B cells

leading to co-stimulation of B cells. CD40-CD154 co-stimulatory

pathway is essential for T cell dependent humoral immune response

and plays an important role in the pathogenesis of GH by

promoting autoreactive B cell activation, intrathyroidal germinal
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center function and TSH-R-Ab production. CD40 expression in

thyroid tissue from GH patients was stronger than that in non-GH

samples. CD40 agonist promoted thyroid tissue proliferation,

thyroid hormone synthesis and thyroglobulin secretion in-vitro

(33). Iscalimab is a Fc-silenced (nondepleting), fully human,

pathway blocking anti-CD40 monoclonal antibody. It inhibited

CD154-induced activation of human leukocytes in-vitro. Animal

studies showed that it blocked primary and recall T cell-dependent

antibody responses in nonhuman primates and abrogated germinal

center formation without depleting peripheral B cells. Prolonged

renal allograft survival in cynomolgus monkeys was also

demonstrated (34). Iscalimab demonstrated favorable safety and

efficacy profile in patients with Sjogren’s syndrome (35) and

myasthenia gravis (36) according to recent phase 2 studies.

Summary of key clinical trials and
clinical application

In a phase 2, single-arm proof-of-concept trial (37), 15 GH patients

received 5 doses of intravenous (IV) iscalimab over 12 weeks, followed

by a 24-week follow-up period. Almost complete CD40 engagement

was evident for up to 20 weeks. Seven of 15 patients (47%, responders)

achieved normal fT4/total T3 level by week 24. Overall, there was

marked reduction of TSH-R-Ab levels (~40% at week 12 and ~70% at

week 20), and 4 patients (27%) had normalization of TSH-R-Ab by

week 20. All patients with baseline TSH-R-Ab less than 20 IU/L were

responders. Four of 7 responders (57%) developed recurrence by week

36. Non-responders tended to have higher clinical score (based on pre-

treatment age, goiter size, fT4 and TSH-R-Ab levels) which predicted

recurrence of GH after a course of ATD (38). In addition, 2 responders

who had GO at baseline showed ophthalmic improvement. Iscalimab

was generally well tolerated without major safety signals. Further

investigations of iscalimab in GH are warranted in view of its

promising preliminary results.
TSH-R blocking antibody

Background and scientific basis
Blocking the TSH-R from stimulation by TSAb represents the

most direct strategy in managing GH. The human TSH-R blocking

monoclonal antibody K1-70 was isolated in 2010 from a patient

with high TSH-R-Ab level who initially presented with

hyperthyroidism followed by hypothyroidism (39). In a

subsequent in-vivo study, K1-70 resulted in a dose-dependent

reduction of fT4 levels and inhibited the stimulatory effect of M22

on fT4 levels in rats (40). The same group reported the first

experimental use of K1-70 which resulted in ophthalmic

improvement (proptosis, inflammation), and possibly attenuation

on tumor progression in a patient with co-existing follicular thyroid

cancer and GH/GO (41).

Summary of key clinical trials and
clinical application

The safety, tolerability, pharmacokinetics and pharmacodynamics

of a single dose of K1-70 was evaluated in an open label, single arm,
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phase 1 study (42). Eighteen hyperthyroid or euthyroid ATD-treated

GH patients received a single dose of intramuscular (IM, 0.2mg/1mg/

5mg/25mg) or IV (50mg/150mg) K1-70. Significant effect on thyroid

function was only observed in all 9 patients who received higher doses

(25mg IM, 50mg/150mg IV) and they became hypothyroid on or

before day 28 post-dose. Six of these 9 patients also showed various

degree of ophthalmic improvement. Of note, remarkable proptosis

reduction of 4-8mm by day 14-70 was evident in 3 patients who

received K1-70 50/150mg IV. K1-70 was safe and well tolerated in all

patients at all doses. K1-70 is believed to hold great promise in both GH

and GO based on its sound mechanism of action, and future clinical

trials are eagerly awaited.
TSH-R small molecule ligands

Background and scientific basis
Multiple small molecule ligands have been developed to

modulate TSH-R signaling and prevent TSH-R activation. In-

vitro studies showed that TSH-R antagonists [NIDDK/CEB-52

(43); Org 274179-0 (44); ANTAG3 (45); VA-K-14 (46)] and

inverse agonists [NCGC00161856 (47); NCGC00229600 (48)]

were able to inhibit TSH/M22/TSAb mediated TSH-R

activation, as measured by cAMP production and mRNA

transcription for thyroglobulin, thyroperoxidase, sodium iodide

symporter, and TSH-R. In mice treated with M22, ANTAG3 also

successfully reduced serum fT4 level and mRNAs for sodium-

iodide cotransporter as well as thyroperoxidase (45). Another

TSH-R antagonist, SYD5115 (49), blocked M22/TSAb-mediated

TSH-R activation in TSH-R-overexpressed Chinese hamster ovary

cells and human orbital fibroblasts from GO patients. To date,

TSH-R small molecule ligands have not been evaluated in

human subjects.

The key clinical trials and mechanisms of action of targeted

immunotherapies for GH are summarized in Table 1 and

Figure 1, respectively.
Graves’ orbitopathy: current
management landscape

European Group on Graves’ Orbitopathy (EUGOGO) (15) and

American Thyroid Association (ATA)/European Thyroid Association

(ETA) (50) have published comprehensive management guidelines on

GO. Key general measures include referral to combined thyroid eye

clinics for multidisciplinary care, smoking cessation, restoration/

maintenance of stable euthyroidism, judicious use of RAI (with

steroid prophylaxis in high-risk patients), and local treatment for dry

eye syndrome as well as corneal exposure. Selenium supplementation

should be given to patients with mild active GO of recent onset, as it

improves eye manifestations and quality of life, as well as prevents

progression to more severe forms (15, 51). A recent small RCT

suggested that selenium also improved eyelid aperture in selenium-

replete patients with inactive moderate-to-severe GO (52). EUGOGO

recommends the combination of intravenous glucocorticoid (IVGC)
Frontiers in Immunology 04
and mycophenolate as the first-line treatment of active moderate-

severe GO (15, 53). High dose IVGC is the mainstay of treatment for

dysthyroid optic neuropathy (DON) and urgent surgical orbital

decompression should be considered if response is poor or absent

within 1-2 weeks (15, 50). In inactive and stable disease, rehabilitative

surgery may be required if there is residual functional impairment or

cosmetic concerns (15, 50).

There are several limitations of IVGC therapy. The overall

response rates were approximately 70% and 50% only in active

moderate-severe GO and DON, respectively (12, 54, 55). Some

responders develop disease reactivation after steroid withdrawal. The

addition of mycophenolate or atorvastatin improved the overall

response (53, 56). IVGC mainly improves inflammatory features, but

is ineffective in reversing orbital tissue remodeling, e.g. proptosis, ocular

dysmotility and diplopia (57). Severe cardiovascular and liver toxicities

occurred infrequently (15, 57). Over the past decade, advances in our

understanding of pathogenesis have fostered multiple clinical trials in

GO which evaluated the role of immunotherapies targeting B/T-cells,

pro-inflammatory cytokine interleukin-6 (IL-6), TSH-R and insulin-

like growth factor-1 receptor (IGF-1R) signaling, as well as TSH-R-Ab.
Targeted immunotherapies of
Graves’ orbitopathy

Mycophenolate

Background and scientific basis
Mycophenolic acid (MPA) is a competitive reversible inhibitor

of inosine monophosphate dehydrogenase (IMPDH), which

governs the rate-limiting step of de novo synthesis of guanosine

nucleotides in activated lymphocytes. As lymphocytes cannot

synthesize guanosine nucleotides via the salvage pathway, MPA

exerts dual antiproliferative effect on both B and T cells (58). In

addition, mycophenolate demonstrated antifibrotic property by

inhibiting fibroblast proliferation and functions via both IMPDH-

dependent and IMPDH-independent pathways (59–64).

Mycophenola te has a lso been shown to inhib i t the

phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of

rapamycin (mTOR) pathway, an important downstream signaling

pathway of orbital fibroblasts, in a rat model of epilepsy (65).

Summary of key clinical trials and
clinical application

In a multicenter RCT (53), 164 patients with active moderate-

to-severe GO were randomized to weekly IVGC 4.5g for 12 weeks

or a combination of IVGC for 12 weeks and mycophenolate sodium

720mg daily for 24 weeks. While the primary endpoints (response

rate by composite ophthalmic index at week 12, relapse rates at

weeks 24/36) were not met, the combination group demonstrated

superior response rate at week 24 (71% vs 53%) and sustained

response rate at week 36 (67% vs 43%). Post-hoc analysis further

showed that the combination group had more significant

improvement in clinical activity score (CAS), swelling of eyelid or

caruncle, orbital pain, chemosis, downgaze duction and elevation,
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as well as Graves’ orbitopathy quality of life questionnaire (GO-

QoL) visual functioning subscale. The safety and tolerability of

mycophenolate in GO were systemically evaluated (66–68). Most

side effects in the combination group were mild and there was no

treatment related serious adverse event. Gastrointestinal intolerance

was slightly more frequent among patients on combination therapy.

The addition of low dose mycophenolate did not significantly

increase the risks of serious infection, hepatotoxicity and

cytopenia. Therefore, EUGOGO recommends the combination of
Frontiers in Immunology 05
IVGC and low dose mycophenolate, which is safe and affordable, as

the first-line treatment of active moderate-to-severe GO (15).
Rituximab

Background and scientific basis
Apart from peripheral B cell depletion, complete (or near

complete) intra-orbital depletion of both B and T cells after RTX
TABLE 1 Targeted immunotherapies for Graves’ hyperthyroidism: summary of key clinical trials.

Therapeutics
Mechanism
of action

Study Design/
Patient population

Key Findings
Common/Important

toxicities

Rituximab Anti-CD20 MAb ◼ Prospective, controlled,
non-randomized study (20)

◼ 20 patients with untreated GH,
rendered euthyroid after ~4
months of MMI, then
withdrawn
➔ 10 RTX group (IV RTX
375mg/m2 weekly for 4 doses)
➔ 10 Control group
(Observation alone)

◼ 4/10 (40%) in RTX group remained
in remission with median FU of
25 months

◼ 10/10 (100%) in control group
relapsed by 14 months

◼ Serum sickness-like reactions

◼ Iridocyclitis

◼ Polyarthritis

◼ Inflammatory bowel disease

◼ Prospective, single-arm phase 2
study (22)

◼ 13 patients with relapsing GH

◼ Intervention: 2 doses of IV RTX
1g with a 2-week interval

◼ 9/13 (69%) euthyroid and remained
in remission after a median FU of 18
months (all responders achieved
significant reduction in TSH-R-Ab)

◼ Prospective, multicenter, single-
arm phase 2 study (23)

◼ 27 young patients (age 12-20)
with new onset GH

◼ Intervention: single dose of RTX
500mg + ATD for 12 months

◼ 13/27 (48%) remained in remission
at 1 year after ATD withdrawal (vs
predicted remission rate of 20-30%)

ATX-GD-59 Antigen-specific
immunotherapy which
restores immune tolerance
to TSH-R

◼ Open-label, phase 1, single-arm
study (32)

◼ 10 patients with untreated GH

◼ Intervention: 10 doses
of intradermal ATX-GD-59
over 18 weeks

◼ 5/10 (50%) euthyroid by week 18; 3
of them remained relapse free for a
year after last dose of study drug

◼ 2/10 (20%) had reduction in fT3/fT4

◼ Response in serum thyroid hormones
correlated with reductions in both
TSH-R-Ab and TSAb levels

◼ Mild injection site reactions

Iscalimab Anti-CD40 MAb blocking
CD40-CD154 co-
stimulatory pathway

◼ Open-label, phase 2, single-
arm, proof-of-concept
study (37)

◼ 15 patients with untreated GH

◼ Intervention: 5 doses of IV
iscalimab (10mg/kg) over
12 weeks

◼ 7/15 (47%) euthyroid by week 24;
4/7 (57%) responders relapsed by
week 36

◼ Marked reduction in TSH-R-Ab
levels; 4/15 (27%) achieved normal
TSH-R-Ab levels by week 20

◼ Nil

K1-70 TSH-R blocking MAb ◼ Open label, single arm, phase 1
study (42)

◼ 18 ATD-treated GH patients

◼ Intervention: Single dose of
K1-70 of 6 different regimens
(IM 0.2/1/5/25mg; IV
50/150mg)

◼ All patients on higher dosages (9/
18) had significant effect on
thyroid function (25mg IM; 50/
150mg IV) and all became
hypothyroid within 1 month

◼ 6/9 (67%) of these patients showed
GO improvement

◼ Significant proptosis reduction of
4-8mm in 3 patients on higher
dosages (50mg/150mg IV)

◼ Nil
ATD, antithyroid drug; FU, follow-up; GH, Graves’ hyperthyroidism; GO, Graves’ orbitopathy; IM, intramuscular; IV, intravenous; MAb, monoclonal antibody; RTX, rituximab; TSAb,
thyrotropin receptor stimulating antibody; TSH-R, thyrotropin receptor; TSH-R-Ab, thyrotropin receptor antibody.
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therapy has been confirmed in multiple reports (69). Since the

clinical improvement of GO post-RTX does not necessarily parallel

significant decline in TSH-R-Ab level, the efficacy of RTX may be

attributed to elimination of other B cell functions beside

autoantibody production (e.g. cytokine production, antigen

presentation, B-T cell co-stimulation, etc.) (17).

Summary of key clinical trials and
clinical application

Two RCTs evaluated the efficacy of RTX in patients with active

moderate-to-severe GO, but they demonstrated essentially opposite

outcomes. The Italian trial (70) compared RTX (1g twice at 2-week

interval or single dose of 500mg) with weekly IVGC (12 doses,

cumulative dose 7.5g). All patients in RTX group achieved disease

inactivation at week 24 (68.7% in IVGC group) and none developed

reactivation (31.2% in IVGC group). There was no significant

difference in Gorman score for diplopia and proptosis between

the two groups, but better ocular motility (in terms of total degree of

ductions) and less requirement of rehabilitative surgery were

observed in RTX group up to 18 months post-treatment.

However, RTX was not superior to placebo regarding CAS and

other secondary endpoints in the US trial (71).

In a subsequent joint post-hoc analysis, several key differences in

baseline characteristics, namely younger age (mean 51.9 vs 57.6),

lower TSH-R-Ab (mean 10.7 vs 28.1 IU/L) and shorter duration of

GO (mean 4.5 vs 30 months), may explain the favorable treatment

outcomes in the Italian trial (72). The absence of B cell orbital

infiltration in some GO patients may explain why they failed to

respond to RTX (69, 73). More recent retrospective series also

found reduced efficacy of RTX in glucocorticoid resistant active

moderate-to-severe GO with long disease duration (74, 75). Two

single-arm studies suggested that very low dose RTX (100mg once)
Frontiers in Immunology 06
with or without a short course of IVGC was also effective and better

tolerated than standard RTX/IVGC regimens in patients with short

duration of GO (76, 77) but the absence of control groups precludes

head-to-head comparison. A few RTX-treated patients in RCTs

developed transient deterioration or even frank DON, which could

be explained by cytokine release syndrome because of massive lysis

of intra-orbital B cells, leading to further oedema and expansion of

orbital tissue (72). Hence, RTX is only considered as a second-line

treatment of active moderate-to-severe GO of relatively short

duration (e.g. less than 9 months) without potential risk of DON

according to latest guidelines, and its role is mainly on disease

inactivation and prevention of relapses, but not on diplopia or

proptosis improvement (15, 50).
Tocilizumab

Background and scientific basis
IL-6 is a potent pro-inflammatory cytokine implicated in the

pathogenesis of various autoimmune diseases such as rheumatoid

arthritis, multiple sclerosis and systemic lupus erythematosus. TSH-

R activation (by TSH or M22) increased expression and production

of multiple chemo attractants including IL-6 from GO orbital

fibroblasts (78–80). In turn, IL-6 enhanced expression of TSH-R

in GO orbital fibroblasts (81). IL-6 supported B cell differentiation

and synthesis of autoantibodies (82). IL-6 suppressed regulatory T

cell induction while promoting the development and functions of

Th17 cells, a recently identified CD4+ T cell subset which plays an

important pathogenic role in GO (83–85). Higher serum levels of

IL-6 were noted in GD patients with GO than those without GO

(86). Greater lacrimal levels of IL-6 were also shown in GO patients

compared to healthy controls and they positively correlated with
FIGURE 1

Targeted immunotherapies for Graves’ hyperthyroidism – mechanisms of action. CD40L, CD40 ligand (CD154); MAb, monoclonal antibody; MHC Class II,
major histocompatibility class II molecule; TCR, T cell receptor; TSAb, thyrotropin receptor stimulating antibody; TSH-R, thyrotropin receptor.
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CAS (87, 88). Therefore, inhibiting the IL-6 pathway represents a

reasonable strategy in GO.

Summary of key clinical trials and
clinical application

Tocilizumab (TCZ) is a fully human IgG1 anti-IL-6 receptor

monoclonal antibody. A small RCT evaluated the efficacy of TCZ in

patients with glucocorticoid-resistant active moderate-to-severe GO

(89). 32 patients were randomized to TCZ (8mg/kg intravenously

once every 4 weeks for 4 doses) or placebo. 93.3% and 86.7% in TCZ

group showed improvement in CAS by at least 2/10 at week 16 and

week 40, respectively (vs 59% in placebo group at both weeks). CAS

of less than 3/10 was achieved in 86.7% and 80% in TCZ group at

week 16 and week 40, respectively (vs 35.2 and 47.1% in placebo

group). Overall, the clinical benefits were improvements in soft

tissue involvement and CAS, but it did not have significant effect on

proptosis and diplopia. The potent anti-inflammatory effect of TCZ

in active GO appears promising, although the small sample size and

the arbitrary definitions of glucocorticoid resistance limited its

interpretation and application. Thereafter there has been great

enthusiasm about applying TCZ in glucocorticoid resistant GO. A

recent systematic review and meta-analysis (90) analyzed 12 studies

with 219 patients who received TCZ for glucocorticoid resistant

active moderate-to-severe GO, and most were single-arm

prospective or retrospective cohort studies. TCZ demonstrated

significant improvement in CAS (effect size 0.98, mean reduction

4.6), proptosis (effect size 0.5, mean reduction 2.04mm), diplopia

(effect size 0.48), and TSH-R-Ab levels (mean reduction 10.62

IU/L).

TCZ is overall safe and well tolerated. Common side effects of

TCZ include mild neutropenia, hypercholesterolemia and transient

rise in liver enzymes. Severe toxicities (e.g. diverticulitis and

gastrointestinal perforation, serious infection) were rare. Based on

the promising findings from multiple observational studies, TCZ

can be employed for disease inactivation in glucocorticoid-resistant

active moderate-to-severe GO (15, 50). Future RCTs will further

define its role as 1st line (NCT04876534; versus IVGC 4.5g) or 2nd

line/rescue treatment (NCT01297699; versus placebo) in active GO.
Sirolimus

Background and scientific basis
Sirolimus is a mammalian target of rapamycin (mTOR)

inhibitor widely used in the field of transplantation medicine.

Given its antiproliferative action, it is also useful in several

diseases characterized by abnormal cellular proliferation (e.g.

tuberous sclerosis, autosomal dominant polycystic kidney

disease, lymphangioleimyomatosis). As mTOR is an integral

component of the phosphatidylinositol 3-kinase (PI3K)-Akt-

mTOR pathway which mediates downstream signaling of IGF-1R

(91), sirolimus may play a role in GO management. An in-vitro

study showed that rapamycin/sirolimus significantly reduced

fibrosis in orbital fibroblasts from GO patients and this effect

was independent of, and in addition to its immunosuppressive
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effect (92). In a GO mouse model, rapamycin significantly

decreased the incidence of GO. This was accompanied by the

reduction of both CD4+ cytotoxic T-cells and the reduction of

orbital inflammation, adipogenesis, and fibrosis. CD4+ cytotoxic

T-cells from patients with active GO showed upregulation of the

mTOR pathway, while rapamycin decreased their proportions and

cytotoxic function (93).

Summary of key clinical trials and
clinical application

The efficacy of sirolimus in GO was first described in 2 case

reports of patients with refractory DON and ocular dysmotility

(94, 95). In a prospective comparative case series, the combination

of IVGC/orbital radiotherapy and sirolimus resulted in better

improvement of diplopia when compared with combination of

IVGC/orbital radiotherapy and mycophenolate (96). An

observational study compared the efficacy of low dose sirolimus

(2mg orally on first day, followed by 0.5mg daily for 12 weeks) and a

second course of 4.5g IVGC as second-line treatments for 30

patients with glucocorticoid resistant active moderate-to-severe

GO (97). When compared to IVGC, significantly more patients in

sirolimus group achieved overall response (86.6% vs 26.6%),

proptosis response (80% vs 13.3%) and CAS response (86.6% vs

33.3%) by week 24. There was also a trend towards better diplopia

response in sirolimus group, but it did not reach statistical

significance (63.6% vs 23%, p = 0.052). Patients treated with

sirolimus reported significantly better GO-QoL scores (total and

visual functioning subscale). No serious adverse events were

observed. However, all treatment outcomes, except for CAS

response, did not differ between the 2 groups at week 48 (98).

The optimal dose and duration of sirolimus therapy remains to be

determined in future RCTs.
Teprotumumab

Background and scientific basis
TSH-R is the principal autoantigen in GH/GO and its

stimulation leads to activation of GO orbital fibroblasts (GO-OF).

Both TSH-R and IGF-1R were over-expressed in GO-OF. They

formed a physical and functional complex, whose activity was

important for TSH-R downstream signaling. TSH-R and IGF-1R

were in proximity in a signalosome, and b-arrestin 1 acted as a

scaffold to mediate receptor crosstalk. Simultaneous activation of

both TSH-R and IGF-1R synergistically increased hyaluronic acid

(HA) secretion by GO-OF. In-vitro studies showed that TSH-R

antagonist (ANTAG3) fully suppressed M22 induced HA secretion

by GO-OF regardless of M22 concentration. In contrast, linsitinib

(IGF-1R kinase inhibitor) and 1H7 (IGF-1R blocking antibody)

fully antagonized HA secretion induced by M22 at low

concentration, but their efficacy diminished at high concentration

of M22. The combination of ANTAG3 and linsitinib/1H7

synergistically suppressed HA secretion. The stimulation of TSH-

R activates two signal transduction pathways, one being IGF-1R

independent and the other IGF-1R dependent (i.e. TSH-R/IGF-1R
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crosstalk pathway), resulting in more intense activation of GO-OF

(91, 99, 100). Teprotumumab (TPT) is a fully human IgG1

monoclonal blocking antibody. TPT was initially designed as an

anti-cancer therapy but its development program was discontinued

in 2009 for commercial reasons. TPT was subsequently repurposed

for potential use in GO based on preclinical data. It has been proven

that inhibition of TSH-R/IGF-1R crosstalk via b-arrestin 1 was the

mechanism explaining the remarkable efficacy of TPT (101).

Reversal of tissue modelling may also be attributed to GO-OF/

adipocyte death via the cell-extrinsic pathway of apoptosis because

of inhibition of IGF-1R signaling (102).

Summary of key clinical trials and
clinical application

The safety and efficacy of TPT was evaluated sequentially in two

randomized, placebo-controlled multicenter trials, which recruited

a total of 171 patients with active moderate-to-severe GO (103,

104). Both trials had almost identical design and patients were

randomly assigned to TPT (84 patients; once every 3 weeks

intravenously for 8 doses over 24 weeks) or placebo (87 patients).

The primary endpoint of the initial phase 2 study was a composite

of ≥2 point CAS reduction and ≥ 2mm proptosis reduction at week

24, whereas the subsequent phase 3 study only focused on proptosis

reduction as the primary outcome. The integrated outcomes from

both trials were analyzed and summarized below (105).

TPT demonstrated remarkable all-round efficacy in terms of

disease activity, severity, and QoL when compared to placebo. At

week 24, 62% in TPT group achieved disease inactivation with CAS

0/1 (vs 22% in placebo group). The mean CAS reduction in TPT

group was 3.99 (vs 2.31). Proptosis response was observed in 77%

among TPT-treated patients (vs 15%) and the mean proptosis

reduction was 3.14mm (vs 0.37mm). Proptosis response occurred

early at week 6 in most patients. The proptosis response was similar

across all subgroups stratified according to age, sex, smoking status,

GO duration, baseline CAS, and baseline TSH-R-Ab levels. An

overall response (≥2 point CAS reduction AND ≥ 2mm proptosis

reduction) was observed in 74% of patients in TPT group (vs 14%).

Diplopia response (≥1 grade improvement from baseline) was

significantly more prevalent in TPT group (70% vs 31%), and

53% in TPT group even reported resolution of diplopia (vs 25%).

Among patients with constant diplopia at baseline, 71% in TPT

groups experience ≥1 grade improvement (vs 18%). TPT group had

a greater improvement in GO-QoL (mean total/visual functioning/

appearance subscales) compared to placebo group.

Patients in the previous phase 3 study (104) who received

placebo, were proptosis non-responders or were initially proptosis

responder but developed disease flare (≥ 2mm increase in

proptosis, ≥ 2 point increase in CAS, or both) entered an open-

label extension study where they were either treated with TPT for

the first time (previous placebo patients, n = 37) or re-treated with

the second course of TPT (non-responders, n = 5 or flare, n = 8)

(106). Thirty-three of 37 patients (89.2%) became proptosis

responders with a median time to response of 6.4 weeks and a

mean reduction of 3.5mm. Diplopia response, CAS response and

overall response were observed in 60.9%, 65.6%, and 78%,
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respectively. Two of 5 non-responders (40%) showed proptosis

response after re-treatment. Five of 8 patients (62.5%) who flared

responded again. The findings suggested that GO with longer

disease duration responded to TPT in a similar fashion as those

treated earlier (12.3 vs 6.4 months), and patients with initial

suboptimal response or relapse may benefit from additional

TPT therapy.

The treatment responses of TPT were durable from a recent

extended follow-up outcome analysis of 112 patients from the above

three trials (107). At 1 year after the last dose of TPT, 91.2% (vs

86.6% at week 24), 89.5% (vs 91.1%), 72.9% (vs 70.2%), 67.9% (vs

86.6%), and 66.1% (vs 76.8%) of patients were responders for CAS,

composite outcome, diplopia, proptosis, and overall response,

respectively. Over 2 years following TPT therapy, 18% of patients

underwent additional GO therapy (e.g. systemic steroid,

rehabilitative surgery). In another retrospective series of 119 TPT-

treated patients, the re-treatment rate was 24% and older age was

the only risk factor identified (108). Additionally, TPT has also

demonstrated efficacy in GO of long duration and low disease

activity. In a randomized, double-masked, placebo-controlled trial

(109), 62 patients with significant proptosis, long GO duration of 2-

10 years, low CAS ≤1 and stable disease for ≥1 year were

randomized to TPT and placebo. A significantly greater

proportion of patients in TPT group had a proptosis response

(62% vs 25% in placebo group) and the mean proptosis reduction

was 2.41mm in TPT group (vs 0.92mm in placebo group).

While over 80% of participants in the two pivotal RCTs were

Caucasian (103, 104), a recent small RCT of similar study design

evaluated TPT exclusively in Japanese patients with active

moderate-to-severe GO and 54 patients were randomized to TPT

and placebo (110). At week 24, TPT group demonstrated superior

efficacy in terms of proptosis reduction (89% vs 11%; mean

reduction 2.36mm vs 0.37mm), disease inactivation (59% vs

22%), overall response (89% vs 11%), diplopia resolution (e.g.

50% vs 20%) and GO-QoL. Hence, the efficacy of TPT is

consistent across different ethnic groups.

TPT was generally well tolerated, and most adverse events were

mild to moderate in severity (103–105). The most common side effect

was muscle spasm (18%). Two important adverse events, namely

hyperglycemia and hearing dysfunction, were noted in around 10% of

TPT-treated patients in RCTs and deserve special attention. In an

observational longitudinal study (111), 22 of 42 (52%) TPT-treated

patients developed hyperglycemia, although 19 of 22 cases were graded

as mild to moderate. Age, pre-existing diabetes, Hispanic and Asian

race/ethnicity were significant risk factors for hyperglycemia. Patients

with pre-existing prediabetes and diabetes had a significant mean

increase in HbA1c at 3 months by 0.7% and 1.3%, respectively. Only

eight of 22 patients who developed hyperglycemia returned to baseline

glycemic status at 1 year post-treatment. The risk of TPT-related

hyperglycemia appears to be higher in real-world practice. Therefore,

patients who receive TPT should optimize their glycemic control

before treatment, undergo close glycemic monitoring during

treatment and receive timely management of hyperglycemia if it

arises (112). Real-world data (113–116) suggested that around 30%

of TPT users reported hearing loss or other otologic symptoms (e.g.
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tinnitus, autophony, ear fullness). The mean symptom onset was after

around 3 to 4 TPT infusions and these otologic complaints were

persistent in approximately 30-50% of cases. In a prospective study of

52 TPT-treated patients with serial audiometry testing (116), baseline

hearing loss was documented in 20/52 (38%) patients. The risk of post-

treatment hearing dysfunction was significantly higher in older

patients and those with baseline hearing loss (9/20, 45%) compared

with those having normal baseline hearing (1/32, 3%). 4/20 (20%)

patients had persistent hearing dysfunction at 6 months post-

treatment. TPT-related hearing dysfunction mainly affected the high

and middle frequencies (115). Clinical and audiological evaluation

both at baseline and during treatment is a reasonable monitoring

strategy, although the management of TPT-related hearing

dysfunction is still unclear.

TPT represents the first pharmacological treatment of GO

which offers all-round efficacy (in terms of disease activity,

severity and QoL) and it is effective regardless of the disease

duration across a wide spectrum of GO, from inactive to active

moderate-severe diseases and possibly sight-threatening dysthyroid

optic neuropathy as well (117). TPT has become the first drug

approved by the US Food and Drug Administration (FDA) for the

treatment of adult GO since January 2020. ATA/ETA also

recommends TPT as first-line treatment in active or progressive

disease with significant proptosis or diplopia (50). Its safety profile

is overall favorable but potential limitations in clinical application

include issue of hearing dysfunction, relatively restricted

geographical availability, and high cost (99).
Linsitinib

Background and scientific basis
Linsitinib is an oral small molecule kinase inhibitor of IGF-1R

and insulin receptor. In a mouse model, linsitinib effectively

prevented development and progression of GO in terms of

macrophage and T cell infi ltration, inflammation and

adipogenesis (118). By suppressing PI3K/Akt and extracellular

signal-regulated kinase (ERK) pathways, linsitinib inhibited

insulin-like growth factor 1 (IGF-1) induced cellular proliferation

and HA secretion of GO-OF (119). Linsitinib induced apoptosis

and inhibited proliferation of both IGF-1R and TSH-R expressing

target cells in another in-vitro study (120).

Summary of key clinical trials and
clinical application

The efficacy and safety of linsitinib in 90 patients with active

moderate-to-severe GO was evaluated in a phase 2b/3, multicenter,

randomized, double-masked, placebo-controlled study with

proptosis reduction as its primary endpoint. Patients were

randomized to linsitinib (75mg/150mg twice daily) or placebo for

24 weeks. Its positive topline results have recently been announced

(121). Linsitinib at 150mg twice daily achieved significant proptosis

response rate of 52% at week 24 (p = 0.01). No drug related hearing

dysfunction was reported, and 1 of 29 patients (3%) developed

hyperglycemia requiring no intervention. The full trial results will
Frontiers in Immunology 09
be released in due course and the confirmatory phase 3 study will

commence in 2025. The advantage of oral administration, together

with promising clinical efficacy and favorable safety profile, makes

linsitinib an attractive therapeutic option for patients with GO.
Batoclimab

Background and scientific basis
Immunoglobulin G (IgG) is an essential component of our

adaptive humoral immunity against infection. Compared with other

immunoglobulins, IgG is characterized by high circulating level, long

half-life, and ability to move across mucosal surface and placenta.

These properties are conferred by interactions with neonatal fragment

crystallizable receptor (FcRn). FcRn is expressed in a diverse variety of

body tissues, and it is predominantly located in the intracellular

compartment with the highest concentration inside acidic

endosomes. IgGs first enter the cells by pinocytic uptake as they

cannot bind to FcRn at neutral pH on the cell surface. The

formation of an early acidic endosome facilitates binding of FcRn to

the Fc portion of IgGs. FcRn-bound IgGs are protected from lysosomal

degradation. The complexes are diverted into recycling endosomes and

exocytosed within exosomes, where IgGs are released from FcRn at

neutral pH. When the interaction between FcRn and IgGs becomes

saturated, the unbound IgGs will be subjected to lysosomal

degradation. As a result, FcRn-mediated recycling prolongs the half-

life of IgGs to around 20-23 days and help maintain their high

circulating levels (122, 123). FcRn blockade becomes an attractive

strategy to reduce circulating levels of pathogenic autoantibodies and

FcRn inhibitors have shown positive effects in various autoimmune

hematological and neurological conditions. Of note, selected FcRn

inhibitors have already received regulatory approval for the treatment

of immune thrombocytopenia purpura and generalized myasthenia

gravis (123, 124).
Summary of key clinical trials and
clinical application

Batoclimab (BTC) is a selective, fully human monoclonal

antibody with high affinity for the IgG binding site on FcRn. In a

proof-of-concept (POC), phase 2a, open-label single-arm trial

(125), 7 patients with active moderate-to-severe GO received

subcutaneous BTC 680mg weekly for 2 weeks, followed by 340mg

weekly for 4 weeks. The primary endpoint was the change in TSH-

R-Ab levels. There were significant reversible reductions in total

TSH-R-Ab and TSAb levels during the treatment, which reached

nadir by week 3 post-baseline and increased toward baseline level

after BTC withdrawal.

The subsequent multicenter, randomized, double blind,

placebo-controlled, phase 2b trial evaluated the efficacy and

safety of 3 BTC dosing regimens (255/340/680mg weekly for 12

weeks) in patients with active moderate-to-severe GO (125). The

primary endpoint was the proptosis responder rate (≥2mm

reduction) at 12 weeks post-baseline. Initially the trial planned

to include 77 patients, however it was paused and subsequently

terminated due to hypercholesterolemia as an unexpected drug-
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TABLE 2 Targeted immunotherapies for Graves’ orbitopathy: summary of key clinical trials.

Therapeutics Mechanism of action
Study Design/

Patient population
Key findings

Comments/Important
toxicities

Mycophenolate Dual antiproliferative effect on B/T-
cells via inhibiting IMPDH

◼ Multicenter RCT (53)

◼ 164 patients with active
moderate-to-severe GO

◼ MPS 720mg daily +
Weekly IVGC 4.5g vs
Weekly IVGC 4.5g

Combination
group demonstrated:
◼ 71% response rate at week

24 (vs 53%)

◼ 67% sustained response at
week 36 (vs 43%)

◼ No difference in primary endpoints
(response rate at week 12; relapse
rates at week 24/36)
between groups

◼ Combination group
reported slightly more
gastrointestinal intolerance
but showed no increased
risks of serious toxicities
(e.g. serious infection,
hepatotoxicity, cytopenia)

Rituximab(Italian) Anti-CD20 MAb ◼ Single-center RCT (70)

◼ 32 euthyroid patients with
active moderate-to-
severe GO

◼ RTX (2g/500mg IV) vs
weekly IVGC 7.5g

RTX group demonstrated:
◼ 100% CAS response (vs 69%

in placebo)

◼ 0% recurrence (vs 33%)

◼ Better ocular dysmotility and
GO-QoL visual functioning
subscale score

◼ Less requirement
for rehabilitative surgery

◼ Another RCT conducted in the
US showed that RTX was not
superior to placebo (71)

◼ Several patient characteristics in
the Italian trial may explain its
positive results (younger age,
lower TSH-R-Ab and shorter
disease duration)

◼ Risk of precipitating DON due
to cytokine release syndrome

Tocilizumab Anti-IL-6R MAb ◼ Multi-center RCT (89)

◼ 32 euthyroid patients with
glucocorticoid resistant
active moderate-to-
severe GO

◼ TCZ (8mg/kg IV once
every 4 weeks for 4 doses)
vs placebo

Significantly more patients in
TCZ group showed:
◼ CAS response: ≥2 CAS

reduction (87-93% vs 59%
in placebo at week 16/40);
CAS <3 (80-87% vs 35-
47% at week 16/40)

◼ GO-QoL improvement (47%
vs 35%)No difference in
proptosis/diplopia between
the 2 groups

◼ A systematic review and meta-
analysis of 12 studies (1 RCT, 11
cohort studies) showed that TCZ
resulted in significant
improvement in CAS, proptosis,
diplopia, and TSH-R-Ab levels
in patients with glucocorticoid
resistant active moderate-to-
severe GO

◼ Common side effects: mild
neutropenia,
hypercholesterolemia, transient
rise in liver enzymes

Sirolimus mTOR inhibitor ◼ Observational study (97)

◼ 30 patients
with glucocorticoid
resistant active moderate-
to-severe GO

◼ Sirolimus (2mg as loading
then 0.5mg daily for 12
weeks) vs weekly
IVGC 4.5g

At week 24, significantly more
patients in sirolimus
group showed:
◼ Overall response

(86.6% vs 26.6%)

◼ Proptosis response
(80% vs 13.3%)

◼ CAS response
(86.6% vs 33.3%)

◼ All treatment outcomes (except
for CAS response) did not differ
between the 2 groups at week 48

Teprotumumab Anti-IGF1-R blocking MAb ◼ 3 multi-center RCTs*

◼ 221 euthyroid patients with
active moderate-to-severe
GO in total

◼ TPT (once every 3 weeks
for 8 IV infusions; 1st dose
10mg/kg, remaining 7
doses 20mg/kg) vs placebo

At week 24, significantly more
patients in TPT group
showed ^:
◼ Overall responders

(73-89% vs 11-14%)

◼ CAS 0/1 (59-62% vs 22%)

◼ Proptosis response
(77-89% vs 11-15%)

◼ Diplopia response
(68% vs 27%)

◼ Diplopia resolution
(50-53% vs 20-25%)

◼ Better GO-QoL scales

◼ All-round efficacy regardless of
disease duration across a wide
spectrum of disease phenotypes

◼ Common side effects:
• muscle spasm
• hyperglycemia (risk factors:
older age, pre-existing diabetes,
Asian/Hispanic)
• hearing dysfunction (risk
factors: older age, baseline
hearing loss)

◼ Regular glycemic and audiological
monitoring recommended
during treatment

◼ Open-label extension study
(106)

◼ 33/37 proptosis response

◼ 2/5 proptosis response

◼ 5/8 responded again

(Continued)
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related adverse event. An interim analysis was performed when 65

patients were randomized and included in the safety and

intention-to-treat populations. At the time of trial pause, 45

patients (69%) completed the 12-week treatment and 2

withdrew. 18 (28%) patients discontinued study medication

because of trial pause. 44 of 65 (68%) patients completed the 7-

week follow-up.

Consistent with the findings from the POC trial, BTC resulted in

an early, remarkable and dose-dependent reduction (up to >60%) in

both total TSH-R-Ab and TSAb levels with a nadir at 12 weeks post-

baseline when compared to placebo. The 3 TSH-R-Ab binding and

bioassays (luciferase, cAMP) showed high correlation, and all were
Frontiers in Immunology 11
strongly and significantly correlated with CAS and proptosis (126).

Significantly greater proportion of patients in the 2 higher dose groups

(340/680mg) achieved proptosis response at multiple timepoints,

however the difference does not reach statistical significance at 12

weeks post-baseline (i.e. pre-defined primary endpoint; ~30% vs 5% in

placebo). The discrepancy was most likely explained by the incomplete

clinical assessment due to trial discontinuation and COVID

restrictions. There were also significantly more CAS responders

(score 0 or 1) in BTC group at week 7 (255mg) and week 11

(680mg). No change in Gorman score for diplopia was noted. The

low baseline prevalence of diplopia (40%) among participants and the

imbalance of diplopia between BTC and placebo groups (55% vs 72%)
TABLE 2 Continued

Therapeutics Mechanism of action
Study Design/

Patient population
Key findings

Comments/Important
toxicities

◼ Patients in previous RCT
who received placebo
(n =37), did not respond
(n = 5), or flared (n = 8)

◼ Same TPT regimen as
previous RCTs

◼ Extended follow-up outcome
analysis (107)

◼ 112 patients from 3 trials

◼ TPT displayed durable
response

◼ At 1 year after the last
dose of TPT, 91.2% (vs
86.6% at week 24), 89.5%
(vs 91.1%), 72.9% (vs
70.2%), 67.9% (vs 86.6%),
and 66.1% (vs 76.8%) of
patients were responders
for CAS, composite
outcome, diplopia,
proptosis, and overall
response, respectively.

◼ Over 2 years following
TPT therapy, 18% of
patients underwent
additional GO therapy

◼ RCT (109)

◼ 62 patients with proptosis,
long GO duration (2-10
years) and low CAS ≤1

◼ TPT vs placebo

◼ Proptosis response in TPT
group 62% (vs 25%
in placebo)

Batoclimab Anti-FcRn MAb ◼ Multicenter phase 2 RCT
(125)

◼ 65 patients with active
moderate-to-severe GO

◼ BCT (3 regimens: 255/340/
680mg weekly sc for 12
weeks) vs placebo

◼ BCT resulted in
early, marked, dose
dependent, and reversible
reduction (up to >60%) in
both total TSH-R-Ab
and TSAb

◼ Significantly more patients
in BCT group (especially
higher doses) showed:
• Proptosis response at
multiple timepoints
• CAS response
• GO-QoL improvement

◼ Common side effects
include reversible, dose
dependent reduction in both
serum albumin level and LDL-C
BTC, batoclimab; CAS, clinical activity score; DON, dysthyroid optic neuropathy; FcRn, neonatal fragment crystallizable receptor; GO, Graves’ orbitopathy; GO-QoL, Graves’ orbitopathy quality
of life questionnaire; IGF-1R, insulin-like growth factor-1 receptor; IL-6R, interleukin-6 receptor; IMPDH, inosine monophosphate dehydrogenase; IV, intravenous; IVGC, intravenous
glucocorticoid; LDL-C, low-density lipoprotein cholesterol; MAb, monoclonal antibody; MPS, mycophenolate sodium; mTOR, mammalian target of rapamycin; RCT, randomized controlled
trial; RTX, rituximab; TCZ, tocilizumab; TPT, teprotumumab; TSH-R-Ab, thyrotropin receptor antibody.
*refers to the following trials (103, 104, 110).
^pooled data from all 3 RCTs (103–105, 110):.
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may limit the detection of beneficial treatment effect. The EUGOGO

GO-QoL appearance subscale significantly improved at 19 weeks post-

baseline in BTC 680mg group. Only the two higher dose groups (340/

680mg) demonstrated clinically relevant improvement (≥ 6 points) of

both GO-QoL total score and appearance subscale at both 12 and 19

weeks’ post-baseline. Paired CT scans were available in 11 patients, and

significant dose-dependent reduction in orbital muscle volume was

observed at 12 weeks post-baseline in the 2 higher dose groups (340/

680mg) compared with placebo. BTC was associated with significant

reduction in thyroid hormones, although its effect on GH could not be

independently assessed due to the concomitant use of ATD.

Most treatment-related adverse events were mild or moderate.

There was no death or permanent discontinuation of study medication

due to adverse events. There were no significant changes in blood cell

counts, complement factors and liver enzymes. Peripheral edema was

reported in five patients in BTC 680mg group, which resolved

spontaneously in four cases despite continuation of study

medication. Two special adverse events deserved attention. Reversible

dose-dependent decline in serum albumin level (nadir at 7 weeks) and

up to 59% increase in low-density lipoprotein cholesterol (LDL-C; peak

at 7 weeks) were evident in BTC groups, and both abnormalities

resolved within 8 weeks after treatment discontinuation. The reduction

of serum albumin negatively correlated with the rise of total cholesterol

and LDL-C (127). FcRn-mediated recycling and transcytosis rescue

both albumin and IgG antibodies from intracellular lysosomal

degradation, although their binding sites on FcRn are distinct and do

not overlap (128). Therefore, albumin catabolism is accelerated in the

presence of FcRn inhibitors. Hypercholesterolemia is a typical feature

of patients with significant hypoalbuminemia (e.g. nephrotic

syndrome). The proposed mechanisms of this phenomenon include:

hepatic overproduction of apolipoprotein B (129); reduced metabolism

of acetyl-CoA and more cholesterol synthesis by 3-hydroxy-3-methyl-
Frontiers in Immunology 12
glutaryl-CoA reductase (HMG-CoA reductase); and redistribution of

albumin-bound fatty acids onto lipoproteins (127). As FcRn inhibitor-

related hypercholesterolemia is fully reversible upon treatment

withdrawal, its impact on cardiovascular risk is expected to be

clinically insignificant if the treatment duration is short. Overall BCT

is safe and well tolerated. Based on the promising findings from the

above pilot RCT, the upcoming phase 3 randomized placebo-

controlled trials (NCT05524571 and NCT05517421) and the

associated open-label extension study (NCT05517447) will further

define the efficacy, safety, and optimal regimen of BTC in the

management of active moderate-to-severe GO.

The key clinical trials and mechanisms of action of targeted

immunotherapies for GO are summarized in (Table 2 and

Figure 2), respectively.
Conclusions

Targeted immunotherapies have started to revolutionize our

principles and approaches in the management of thyroid

autoimmunity. Novel therapeutics which target the underlying

immune dysregulation and TSH-R-Ab/TSH-R interactions may

prove to be superior to inhibition of thyroid hormone synthesis by

ATD in the setting of GH, when their clinical trials enter later phases

of development. As a non-specific systemic immunosuppressant,

glucocorticoid has been established as a standard treatment of GO

for decades. Over the past 10 years, new therapeutic strategies have

been developed to enhance treatment efficacy, including combination

therapy (IVGC with mycophenolate or statin) and the application of

immunotherapies, which target various specific pathogenic

mechanisms. Teprotumumab represents a breakthrough due to its

all-round efficacy, which allows extension of clinical benefits across a
FIGURE 2

Targeted immunotherapies for Graves’ orbitopathy – mechanisms of action. FcRn, neonatal fragment crystallizable receptor; IGF-1R, insulin-like
growth factor-1 receptor; IL-6, interleukin-6; IL-6R, interleukin-6 receptor; IR, insulin receptor; MAb, monoclonal antibody; mTOR, mammalian
target of rapamycin; TSAb, thyrotropin receptor stimulating antibody; TSH-R, thyrotropin receptor.
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wider spectrum of disease phenotypes. The heated race for new

treatments for GO with multiple upcoming drug trials will continue

to optimize our management GO in an effective and safe

manner (130).
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ATA American Thyroid Association
Frontiers in Immunol
ATD Antithyroid drug
BTC Batoclimab
CAS Clinical activity score
CD40L CD40 ligand (CD154)
DON Dysthyroid optic neuropathy
ERK Extracellular signal-regulated kinase
ETA European Thyroid Association
EUGOGO European Group on Graves’ Orbitopathy
FcRn Neonatal fragment crystallizable receptor
FDA Food and Drug Administration
FU Follow-up
GD Graves’ disease
GH Graves’ hyperthyroidism
GO Graves’ orbitopathy
GO-QoL Graves’ orbitopathy quality of life questionnaire
HA Hyaluronic acid
HMG-CoA 3-hydroxy-3-methyl-glutaryl-CoA
IGF-1 Insulin-like growth factor 1
IGF-1R Insulin-like growth factor-1 receptor
IgG Immunoglobulin G
IL-6 Interleukin-6
IL-6R Interleukin-6 receptor
IM Intramuscular
ogy 17
IMPDH Inosine monophosphate dehydrogenase
IR Insulin receptor
IV Intravenous
IVGC Intravenous glucocorticoid
LDL-C Low-density lipoprotein cholesterol
MAb Monoclonal antibody
MHC Class II Major histocompatibility class II molecule
MPA Mycophenolic acid
MPS Mycophenolate sodium
mTOR Mammalian target of rapamycin
OF Orbital fibroblast
PI3K Phosphatidylinositol 3-kinase
POC Proof-of-concept
RAI Radioactive iodine
RCT Randomized controlled trial
RTX Rituximab
TCR T cell receptor
TCZ Tocilizumab
TPT Teprotumumab
TSAb Thyrotropin receptor stimulating antibody
TSH Thyrotropin
TSH-R Thyrotropin receptor
TSH-R-Ab Thyrotropin receptor antibody
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