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Introduction: The pathogenesis of preeclampsia remains unclear, highlighting

the need for the creation of dependable biomarkers. This study aimed to pinpoint

genetic risk factors linked to preeclampsia through the utilization of weighted

gene co-expression network analysis (WGCNA).

Methods: A gene expression profile dataset from the placentas of patients with

preeclampsia was acquired from the Gene Expression Omnibus (GEO) database

and employed as a discovery cohort to construct a WGCNA network. Functional

enrichment analysis, pathway analysis, and the construction of protein–protein

interaction (PPI) networks were performed on core genes within these modules

to pinpoint hub genes. The GSE25906 dataset was utilized as a validation cohort

to evaluate the diagnostic significance of the hub genes. Immunohistochemistry

assays were employed to validate the protein expression levels of these genes in

placental tissues from both preeclampsia and control groups.

Results: Through WGCNA, 33 co-expression modules were identified, with 4

modules significantly associated with multiple clinical traits (≥3). Among these, 75

core genes were highlighted, predominantly enriched in pathways related to the

adaptive immune response and platelet activation. Notably, TYROBP, PLEK, LCP2,

HCK, and ITGAM emerged as hub genes with high PPI network scores and strong

diagnostic potential, all prominently associated with immunity-related pathways.

Protein expression analysis revealed that these genes were downregulated in

placental tissues from preeclampsia patients compared to healthy controls.

Discussions: TYROBP, PLEK, LCP2, HCK, and ITGAM are closely linked to

preeclampsia and hold promise as potential biomarkers for its diagnosis and

for advancing the understanding of its pathogenesis.
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Introduction

Preeclampsia is a common obstetric condition affecting 5–7% of

pregnant women, resulting in over 70,000 maternal deaths and

500,000 fetal deaths annually (1). It is defined by elevated blood

pressure (BP, systolic >140 mmHg, diastolic >90 mmHg) after 20

weeks of pregnancy, accompanied by proteinuria or severe

complications. Numerous studies have shown that preeclampsia

significantly increases the long-term risk of cardiovascular disease

for both the mother and fetus (1, 2). Furthermore, it raises the

likelihood of mental and neurological disorders in offspring due to

premature birth (3).While the exact etiology of preeclampsia remains

unclear, research has demonstrated that abnormal placental

formation and impaired placental vascularization play key roles in

its pathophysiology (4). Identifying genetic risk factors associated

with preeclampsia is essential for understanding its pathogenesis and

could provide valuable biomarkers for prediction and early diagnosis.

Genetic factors are increasingly recognized as critical contributors to

preeclampsia, particularly in the context of trophoblast dysfunction.

Trophoblasts, which are essential for placental development and

fetal-maternal communication, exhibit altered gene expression

patterns in preeclampsia. These genetic changes can disrupt

trophoblast invasion, spiral artery remodeling, and placental

angiogenesis, leading to placental insufficiency and the clinical

manifestations of preeclampsia.

Bioinformatics analysis of placental gene expression profiles is a

powerful approach for identifying genes involved in the progression

of preeclampsia (5). WGCNA is an advanced method that clusters

genes associated with clinical traits using sophisticated algorithms.

These gene clusters, or modules, are then correlated with specific

clinical characteristics (6). Notably, WGCNA has been shown to

identify immune-related molecular markers linked to immune cell

infiltration in preeclampsia (7).

In this study, we analyzed the GSE75010 dataset, which includes

gene expression profiles from the placentas of 80 preeclampsia

patients and 77 healthy pregnant women. With its comprehensive

clinical data, this dataset is well-suited for investigating gene-cluster

associations with clinical traits. Core genes were identified and

further analyzed using Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis and functional annotation.

To explore the biological characteristics of these core genes, we

employed Gene Set Enrichment Analysis (GSEA), which integrates

datasets and gene expression levels to predict biological functions.

Additionally, the protein expression of five core genes was validated

through immunohistochemistry in placental tissue sections from 18

preeclampsia patients and 15 healthy controls. Our study

distinguishes itself by focusing on a novel aspect of the dataset

exploring the role of a newly identified gene network in disease
Abbreviations: GEO, Gene Expression Omnibus; WGCNA, Weighted gene co-

expression network analysis; PPI, Protein-protein interaction; GSEA, Gene set

enrichment analysis; BMI, Body mass index; PI, Perfusion index; BP, Blood

pressure; NICU, Neonatal intensive care unit; TOM, Topological matrix; MM

Module membership; GO, Gene Ontology; KEGG Kyoto encyclopedia of genes

and genomes; AUC, Area under the ROC curve.

Frontiers in Immunology 02
progression, which has not been investigated in earlier analyses. By

employing WGCNA, a well-established and effective method, we

ensure consistency with prior studies while uncovering new

insights. Our work not only builds on existing findings but also

advances the field by integrating additional validation experiments

and proposing potential biomarkers for its diagnosis and for

advancing the understanding of its pathogenesis.
Materials and methods

Data collection and processing

Gene expression profile datasets GSE75010 and GSE25906 were

downloaded from the Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/geo) (8). GSE75010 served as the

primary cohort for discovery, while GSE25906 was utilized as the

validation cohort. The GSE75010 dataset comprised gene

expression profiles from 80 preeclampsia placentas and 77 non-

preeclampsia placentas, generated using the GPL6244 platform

(Affymetrix Human Gene 1.0 ST Array). The GSE25906 dataset,

generated with the Illumina Human-6 v2.0 expression beadchip on

the GPL6102 platform, included gene expression profiles from 23

preeclampsia and 37 normal control placental samples.

Probe-to-Gene Annotation: Probe names in the GSE75010

dataset were converted to gene names using the platform

annotation file. For genes with multiple corresponding probes, the

average expression value of these probes was calculated to represent

the gene expression level. This step ensured that each gene was

uniquely represented in the dataset. Quality Control: Raw

expression data from both datasets were subjected to quality

control checks, including the removal of probes with missing or

low expression values across samples. Normalization: The datasets

were normalized to correct for batch effects and technical variations

using the limma package in R. This step ensured comparability

between samples within and across datasets. Gene Filtering: Genes

with low expression or minimal variability across samples were

filtered out to reduce noise. Only genes with detectable expression

in at least 80% of the samples were retained for further analysis.

Final Annotation: After processing, a total of 21,045 genes were

meticulously annotated and retained for downstream analysis.
WGCNA in R software

Before conducting WGCNA, the gene expression profiles of 80

preeclampsia placentas were validated for quality using the

“goodSamplesGenes” function in R software (version 3.6.3). A mean

FPKM threshold of 0.5 was applied to filter out low-expression genes.

Pearson correlation analysis was utilized to cluster the samples and

identify outliers, with an outlier threshold set at 60, resulting in the

exclusion of one sample (GSM1940547). Thus, 79 preeclampsia placenta

samples, containing 21,045 genes, along with clinical characteristics such

as age, bodymass index (BMI), nulliparity, previous hypertension, mean

uterine perfusion index (PI), mean umbilical PI, maximum systolic BP,
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maximum diastolic BP, proteinuria, delivery mode, gestational days,

infant gender, newborn weight z-score, neonatal intensive care unit

(NICU) transfer, placental weight z-score, and umbilical cord diameter,

were included for WGCNA.

The WGCNA analysis was performed using the R package

“WGCNA” (https://www.r-project.org/; version 3.6.2). Gene co-

expression relationships were assessed through Pearson’s

correlation test, leading to the construction of a similarity matrix.

A suitable soft-thresholding power was determined to ensure scale

independence (>0.85) and a mean connectivity of approximately 0.

The adjacency matrix was then transformed into a topological

overlap matrix (TOM), and genes were clustered using the hclust

function based on a TOM-based dissimilarity measure (1-TOM).

To identify gene modules, the dynamic tree cut method was applied,

with a minimum module size set at 30 genes.
Identification of key clinically significant
gene modules and module core genes

The associations between gene modules and clinical traits were

examined, focusing on traits such as maternal age, BMI, nulliparity,

previous hypertension, mean uterine PI, mean umbilical PI,

maximum systolic BP, maximum diastolic BP, proteinuria, mode

of delivery, gestational days, infant sex, newborn weight z-score,

NICU transfer, placental weight z-score, and umbilical cord

diameter. Clinically significant gene modules were established

based on the criteria of a correlation score (cor) > 0.3 and a P

value < 0.05. Key clinically significant gene modules were identified

if they were significant for more than three clinical traits.

Subsequently, the module membership (MM) of each gene within

these clinically significant modules was calculated, with genes

having MM scores ≥ 0.8 designated as module core genes.
Functional enrichment and KEGG pathway
analysis of module genes

All core genes within the module were submitted to DAVID 6.8 (9)

(http://david-d.ncifcrf.gov/) for Gene Ontology (GO) functional

annotation, which encompasses biological processes, molecular

functions and cellular components. KEGG enrichment pathway

analysis was performed using Kobas 3.0 (10) (http://

kobas.cbi.pku.edu.cn/). Results meeting the criteria for an

adjusted P-value < 0.05 were visualized using R software. The

following steps were undertaken for the functional enrichment

and KEGG pathway analysis of the module genes:
Construction of protein-protein interaction
networks and identification of hub genes

STRNG (11) (version 11.0; https://string-db.org/) was employed

to predict interactions among the core genes within the module.

The constructed PPI network was then visualized using Cytoscape
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software (version: 3.7.2; https://cytoscape.org/). Using R software,

the associations between genes were quantified, with the count of

these associations serving as an indicator of gene connectivity. Hub

genes, which are pivotal in the network, were identified by selecting

genes with degree scores within the top 10% for further in-

depth analysis.
Validation of hub gene expression

The expression levels of hub genes were assessed in 79 preeclampsia

placentas and 77 non-preeclampsia placentas from the GSE75010 gene

expression profile dataset, using GraphPad Prism (version 7.0;

GraphPad Software, Inc.). Data were presented as mean ± standard

deviation. Statistical analysis was conducted using an unpaired

independent t-test, with a significance threshold set at P < 0.05.
Diagnostic assessment of hub genes

The GSE75010 dataset was employed to validate the diagnostic

performance of hub genes through Receiver Operating

Characteristic (ROC) curve analysis. This dataset comprised 80

preeclampsia placentas and 77 non-preeclampsia placentas. ROC

curves were generated using SPSS 22.0 (IBM Corp.), and genes were

considered to possess significant diagnostic value when the area

under the ROC curve (AUC) exceeded 0.6. Following this, the

GSE25906 dataset was utilized as a validation cohort for sensitivity

and specificity analysis via ROC curve assessments, employing the

same methodology. This approach allowed for a comprehensive

evaluation of gene significance across multiple datasets.
GSEA

GSEAwas conducted to investigate the potential roles of hub genes

in preeclampsia. In the GSE75010 dataset, 80 preeclampsia samples

were divided into two groups—high-expression and low-expression—

based on the median levels of hub gene expression. The

c2.cp.kegg.v7.1.symbols.gmt dataset was used to assess significant

expression differences between these groups. Significance was defined

by a P value < 0.05 and a normalized enrichment score (NES) > 1.5.
Ethical considerations regarding
tissue collection

Human placental tissues were obtained and used for this study

following written informed consent from patients and approval by the

Clinical Ethics Management Committee of Nanfang Hospital of

Southern Medical University (NFEC-2019-133, July 26, 2019).

Between February 2020 and May 2020, a total of 15 normal placental

tissues and 18 preeclamptic placental tissues were collected. Women

with a history of smoking, alcohol consumption, multiple gestations, or

other complicating conditions were excluded from the study.
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Immunohistochemical staining

All placental tissues were promptly collected within 30 minutes

post-delivery and fixed in paraformaldehyde at room temperature

for at least 24 hours. After gradual dehydration and paraffin

embedding, the tissues were sectioned into 4-mm-thick slices. The

sections were then heated at 60°C for one hour, dewaxed with

xylene at room temperature, and rehydrated using graded ethanol

concentrations (100%, 80%, 60%, and 40%). Antigen retrieval was

performed using 100 mmol/L sodium citrate, followed by treatment

with 3% hydrogen peroxide (H2O2) for 20 minutes and 3% bovine

serum albumin for 30 minutes at room temperature.

All samples were exposed to primary antibodies for 12 hours at

4°C. After rinsing with PBS, the slides were incubated with

horseradish peroxidase (HRP)-labeled goat anti-mouse and rabbit

secondary antibodies at room temperature for 2 hours. Imaging was

conducted using a fluorescence microscope (Olympus BX51).

Immunohistochemistry results were assessed by multiplying the

staining intensity by the percentage of positive cells. Staining

intensity was graded as follows: 0 (no staining), 1 (+), 2 (++), and

3 (+++), while the proportion of positive cells was scored as: 0 (0-1%),

1 (1-33%), 2 (34-66%), and 3 (67-100%). The antibodies employed in

this study were sourced as follows: Anti-TYROBP (DF7316, Affinity
Frontiers in Immunology 04
Biosciences); Anti-PLEK (cat. no. A6305, ABclonal, dilution 1:200);

Anti-LCP2 (cat. no. 12728-1-AP, Proteintech, dilution 1:200); Anti-

HCK (cat. no. A2083, ABclonal, dilution 1:100); Anti-ITGAM (cat.

no. A1581, ABclonal, dilution 1:100).
Results

Construction of WGCNA co-
expression network

After removing one outlier sample (GSM1940547), the remaining

gene expression profiles and corresponding clinical traits of 79

preeclampsia samples from the GSE75010 dataset were utilized to

construct the WGCNA network (Figure 1). A soft-thresholding power

of b = 6 was selected to ensure optimal scale independence (>0.85) and

mean connectivity (~0). The assessment of scale-free topology

confirmed the appropriateness of the chosen soft-thresholding

power, achieving a scale-free R² ≥ 0.85 (Figure 2C). Subsequently, 33

co-expression modules were identified, including modules named

floral white, light green, maroon, thistle2, cyan, dark orange, pale

turquoise, light pink4, plum2, light cyan, brown4, dark magenta,

purple, Navajo white2, grey60, pale violet red3, sky blue3, ivory,
FIGURE 1

Sample clustering tree and clinical trait heat map in preeclampsia. The cut-off value was set as 60, and one outlier (GSM1940547) was found and
removed. In this study, 16 clinical traits were described, including age, BMI, nulliparity, previous hypertension, mean uterine PI, mean umbilical PI,
maximum systolic BP, maximum diastolic BP, proteinuria, delivery mode, gestation days, infant sex, newborn weight z-score, NICU transfer,
placental weight z-score and umbilical cord diameter.
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pink, yellow-green, midnight blue, dark turquoise, light yellow, bisque4,

white, salmon4, steel blue, dark slate blue, yellow, dark orange2, blue,

and green. Genes without significant co-expression relationships were

grouped into the grey module (Figure 2D).
Identification of clinically relevant modules
and core genes

To elucidate the associations between clinical traits in preeclampsia

and gene modules, Pearson correlation analyses were conducted for

each module against the clinical traits. Notable findings include: Light

Green Module: Genes in this module exhibited significant associations

with gestation duration (R=0.31, P=0.006) and nulliparity (R=-0.4,
Frontiers in Immunology 05
P=0.0003). Cyan Module: Genes in this module showed significant

correlations with umbilical cord diameter (R=-0.39, P=0.0003). Dark

Orange Module: Genes in this module were significantly associated

with newborn weight z-score (R=-0.39, P=0.0005) and also with

umbilical cord diameter (R=-0.32, P=0.004). Light Cyan Module:

Genes in this module exhibited significant associations with age

(R=-0.31, P=0.005). Navajo White2 Module: Genes in this module

showed significant associations with BMI (R=0.49, P=0.000004).

Purple Module: Genes in this module were significantly associated

withmean umbilical PI (R=-0.32, P=0.004). PinkModule: Genes in this

module were significantly associated with mean uterine PI (R=0.38,

P=0.0005) and gestation days (R=-0.41, P=0.0002). Moreover, the

Floral White, Plum2, Dark Magenta, and Yellow-Green modules

demonstrated strong associations with multiple clinical traits (more
FIGURE 2

Selection of soft threshold power in WGCNA. (A) Scale independence and (B) mean connectivity of various soft-thresholding powers (b). (C) Scale-
free topology when b=6. (D) Clustering tree map of GSE75010 gene. Each branch represents a gene, and the different colours below represent
different co-expression modules.
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than three), designating them as significant modules for further

investigation (Figure 3). By evaluating the MM of each gene within

these significant modules, a set of 75 genes with MM > 0.8 was

identified as core genes of these modules (Table 1).
Functional enrichment and KEGG pathway
analysis for module core genes

The module core genes were submitted to the DAVID database

for GO functional annotation. The top 10 results revealed

significant enrichments in key biological processes and cellular

components for the genes within clinically important modules:

Adaptive immune response (BP, GO: 0002250); Innate immune

response (BP, GO: 0045087); Integral component of plasma

membrane (CC, GO: 0005887); Inflammatory response (BP, GO:

0006954); Plasma membrane (CC, GO: 0005886); B cell receptor

signaling pathway (BP, GO: 0050853); Toll-like receptor signaling

pathway (BP, GO: 0002224); Positive regulation of T cell

proliferation (BP, GO: 0042102); MyD88-dependent Toll-like

receptor signaling pathway (BP, GO: 0002755); Leukocyte

migration (BP, GO: 0050900) (Figure 4). The KEGG pathway

enrichment analysis highlighted that the module core genes were

s ign ificant ly enr iched in pathways assoc ia ted wi th :

Platelet activation

Fc gamma R-mediated phagocytosis; Tuberculosis; Natural

killer cell-mediated cytotoxicity; Fc epsilon RI signaling pathway;

NF-kappa B signaling; Toll-like receptor signaling; Cell adhesion
Frontiers in Immunology 06
molecules; Phospholipase D signaling; Phagosomes (Figure 5).

These analyses provide insights into the functional roles and

pathways related to the module core genes, shedding light on

their potential involvement in the pathogenesis and progression

of preeclampsia.
Differential expression analysis of core
genes in preeclampsia placentas

The module core genes were used to construct a PPI network

via the String database (Figure 6A). Using R, gene connectivity was

calculated, identifying those with degree scores in the top 10%, such

as PTPRC, TYROBP, PLEK, LCP2, HCK, ITGAM, BTK, and CD86,

as hub genes (Figure 6B). The expression patterns of these core

genes were compared between preeclampsia placentas and non-

preeclampsia placentas. Notably, in the GSE75010 dataset, the

expression levels of the identified hub genes were significantly

downregulated in preeclampsia placentas compared to non-

preeclampsia placentas (Figure 7).

Receiver Operating Characteristic (ROC) curves were used to

evaluate the diagnostic potential of the hub gene expression profile.

For GSE25906 dataset, which included 23 preeclampsia placentas

and 37 non-preeclampsia placentas, The analysis demonstrated that

TYROBP (AUC=0.744), PLEK (AUC=0.783), LCP2 (AUC=0.732),

HCK (AUC=0.669), and ITGAM (AUC=0.746) exhibited notable

diagnostic efficacy (Figure 8A). Consistently, for GSE75010 dataset,

the analysis demonstrated that TYROBP (AUC=0.660), PLEK
FIGURE 3

Identification of key modules. Heatmap of the correlation between module genes and clinical traits. Among them, the flower white module, plum2
module, deep magenta module and yellow-green module were closely related to a number of clinical traits (>3) and were regarded as important
modules. 1, Age; 2. BMI; 3. Nulliparity; 4. Previous hypertension; 5. Uterine Pl; 6. Umbilical PI; 7. Max systolic BP; 8. Max diastolic BP; 9. Proteinuria;
10. Delivery mode; 11. Gestation days; 12. Infant gender; 13. Newborn weight zscore; 14. NICU transfer; 15. Placenta weight zscore; 16. Umbilical
cord diameter.
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TABLE 1 Identification of module core genes.

Gene Module color

PECAM1.1 dark magenta

GUCY1B3 dark magenta

CD34 dark magenta

GJC1 dark magenta

TCF4 dark magenta

PLSCR4 dark magenta

SPTAN1 dark magenta

MEF2C dark magenta

FLI1 dark magenta

EGFLAM dark magenta

KL dark magenta

ADGRL2 dark magenta

PCDHB14 dark magenta

ADAMTSL3 dark magenta

CYTH4 floral white

BTK floral white

CYBB floral white

CD53 floral white

CD4 floral white

ITGAM floral white

TFEC floral white

HNMT floral white

TBXAS1 floral white

MS4A14 floral white

MILR1 floral white

SLC7A7 floral white

SYK floral white

TMSB4X floral white

HCK floral white

TYROBP floral white

AOAH floral white

CD84 floral white

NCKAP1L floral white

CORO1A floral white

CTSS floral white

LRMP floral white

CD86 floral white

TNFSF8 floral white

(Continued)
F
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TABLE 1 Continued

Gene Module color

PIK3CG floral white

TRPS1 floral white

LAIR1 floral white

PLEK floral white

PRKCB floral white

PTPRC floral white

SH3BGRL floral white

TLR1 floral white

TLR4 floral white

GPR65 floral white

C3AR1 floral white

FCER1G floral white

AIF1 floral white

DOCK2 floral white

LCP2 floral white

LAPTM5 floral white

MYO1F floral white

SAMHD1 floral white

TLR7 floral white

TLR8 floral white

ADAP2 floral white

ARHGAP15 floral white

RASSF4 floral white

HAVCR2 floral white

OLFML2B plum2

SEC14L1 plum2

AFF2 plum2

HIP1.1 plum2

KCNK3 plum2

PLCG1 plum2

TMEM204 plum2

ATP1A1 yellow green

ZMYND11 yellow green

TMEM139 yellow green

THSD4 yellow green

FBN2 yellow green

SLC23A2 yellow green
Annotation: Genes in significant modules with MM ≥ 0.8 were set as module core genes and
showed in the list.
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FIGURE 4

GO analysis results of module core genes.
FIGURE 5

KEGG analysis results of module core genes.
FIGURE 6

PPI network construction and selection of hub genes. (A) Flower white, plum2, dark magenta and yellow-green module genes for PPI network
construction. (B) Genes with the top 10% of scores based on number of connections.
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(AUC=0.702), LCP2 (AUC=0.701), HCK (AUC=0.690), and

ITGAM (AUC=0.672) (Figure 8B). This analysis supports the

diagnostic relevance of these genes in preeclampsia.
GSEA and immunohistochemical validation
of hub genes

To explore the potential biological roles of the identified hub

genes in preeclampsia, the GSE75010 dataset was utilized for GSEA.

The findings revealed that these five hub genes were collectively

enriched across 17 pathways, including T cell receptor signaling,

leukocyte transendothelial migration, viral myocarditis, primary
Frontiers in Immunology 09
immunodeficiency, FC epsilon RI signaling, prion diseases, cell

adhesion molecules, natural killer cell-mediated cytotoxicity,

complement and coagulation cascades, leishmania infection,

systemic lupus erythematosus, antigen processing and

presentation, intestinal immune network for IgA production,

pantothenate and CoA biosynthesis, NOD-like receptor signaling,

pathogenic Escherichia coli infection, and glutathione

metabolism (Table 2).

To validate the differential expression of hub genes between the

two cohorts, immunohistochemistry assays were conducted on 18

preeclamptic placental tissues and 15 normal control placental

tissues. Notably, there were no significant differences in

gestational age or BMI between the two groups of expectant
FIGURE 7

Verification of hub gene expression. Comparison of the expression levels of core genes (PTPRC, TYROBP, PLEK, LCP2, HCK, ITGAM, BTK, CD86) in
the GSE75010 dataset in the preeclampsia and control groups. Blue squares represent the gene expression levels in the control group (n=77), and
red squares represent the gene expression levels in the preeclampsia group (n=79). *P<0.05.
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mothers (Table 3). The outcomes of the immunohistochemical

analysis revealed lower expression levels of these hub genes

(TYROBP, PLEK, LCP2, HCK, ITGAM) in the preeclampsia

group compared to the normal group (Figure 9). These findings

provide further evidence for the involvement of these hub genes in

the pathogenesis of preeclampsia and underscore their potential as

key regulators in this complex disorder.
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Discussion

Preeclampsia is one of the most serious pregnancy

complications, posing significant risks to both maternal and fetal

health. Extensive research into the pathogenesis of preeclampsia has

identified various contributing factors, including genetic influences,

angiogenic imbalances, immune maladaptation, disrupted lipid
FIGURE 8

Diagnostic efficiency verification of hub genes. The expression of hub genes in the GSE25906 dataset (A) and GSE75010 dataset (B) was obtained,
and a receiver operating curve was constructed to verify the diagnostic value. The 5 genes (TYROBP, PLEK, LCP2, HCK, ITGAM) shown in the figure
have significant diagnostic efficiency.
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metabolism, impaired trophoblast invasion, increased cell death,

aberrant placental development, and heightened maternal

inflammation. Notably, most studies suggest that irregularities in

placental formation and alterations in the placental gene expression

profile play crucial roles in compromising trophoblast migration

and invasion, ultimately leading to the onset of preeclampsia (12).
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Exploring changes in the placental gene profile within the context of

preeclampsia is of paramount importance. Recent work by Kang

et al. employed Robust Rank Aggregation (RRA) to analyze

differentially expressed genes, subsequently using methodologies

such as WGCNA to identify genes potentially linked to

preeclampsia onset (13). While Kang’s WGCNA approach

incorporated three clinical traits, our investigation encompassed a

broader array of clinical information, utilizing the entire dataset to

establish the WGCNA framework. It is essential to note that even

genes that do not show significant differences in differential

expression analyses cannot be dismissed as irrelevant to the

disease process.

In this study, we retrieved datasets GSE75010 (discovery

cohort) and GSE25906 (validation cohort) from the GEO

database. Through WGCNA, GO analysis, KEGG analysis, PPI

network construction, expression profiling, diagnostic validation,

and immunohistochemistry (IHC) experiments, we identified

TYROBP, PLEK, LCP2, HCK, and ITGAM as central hub genes

potentially implicated in the pathogenesis of preeclampsia. These

findings contribute to a deeper understanding of the molecular

mechanisms underlying preeclampsia and may pave the way for

novel diagnostic and therapeutic strategies targeting these

key genes.

In the study by Awamleh (14), it was demonstrated that ITGAM

mRNA expression is reduced in the placentas of patients with

preeclampsia and intrauterine growth restriction. Furthermore, it
TABLE 2 Pathways enriched in 5 genes in GSEA analysis.

Gene
Pathways

HCK ITGAM LCP2 PLEK TYROBP

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 2.12 2.01 1.82 1.83 1.9

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 1.99 2.05 1.81 1.75 1.97

KEGG_VIRAL_MYOCARDITIS 1.88 1.71 1.62 1.62 1.72

KEGG_PRIMARY_IMMUNODEFICIENCY 1.88 1.76 1.61 1.86 1.94

KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY 1.88 1.89 1.69 1.89 1.81

KEGG_PRION_DISEASES 1.86 1.76 1.76 1.81 1.83

KEGG_CELL_ADHESION_MOLECULES_CAMS 1.86 1.86 1.65 1.77 1.79

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 1.84 1.73 1.52 1.62 1.8

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 1.81 1.71 1.58 1.72 1.79

KEGG_LEISHMANIA_INFECTION 1.8 1.7 1.64 1.69 1.67

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 1.77 1.68 1.65 1.67 1.62

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 1.68 1.66 1.53 1.57 1.63

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 1.67 1.52 1.52 1.56 1.58

KEGG_PANTOTHENATE_AND_COA_BIOSYNTHESIS 1.66 1.52 1.53 1.55 1.69

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 1.63 1.65 1.61 1.74 1.63

KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION 1.61 1.88 1.57 1.68 1.64

KEGG_GLUTATHIONE_METABOLISM 1.59 1.61 1.53 1.78 1.53
Annotation: The GSE75010 was used for GSEA analysis. The values in the table represent the NES value. The table listed KEGG pathways in which all genes satisfy P<0.05. The number in units
means the NES value of each for the pathway.
TABLE 3 Clinical characteristics of two groups of pregnant women.

Clinical traits Group

Control (n=15)
Preeclampsia
(n=18)

Gestational age, weeks 37.20 ± 2.66 35.99 ± 3.30

Birth weight, g 2847.33 ± 603.83 2247.78 ± 749.61*

Placenta weight, g 584.67 ± 106.90 493.33 ± 139.58*

Systolic pressure,
mm Hg 111.67 ± 7.67 163.67 ± 13.58*

Diastolic pressure,
mm Hg 74.67 ± 4.05 102.78 ± 9.37*

Maternal BMI, kg/m2 26.13 ± 2.40 27.45 ± 2.70

Proteinuria, (-,+,++,+
++) 15-0-0-0 0-15-3-0***
Annotation: Clinical characteristics of two groups of pregnant women for
immunohistochemical staining. The values were expressed as mean ± SD. The P value
between the preeclampsia group and the control group was given. *P<0.05, ***P<0.001.
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was noted that ITGAM is regulated by miR-210-5p and contributes

to the pathogenesis of preeclampsia by inhibiting the invasion and

migration of HTR8 cells. Our current investigation identified the

ITGAM gene within the floral white module, revealing a negative

correlation with the mean uterine PI and mean umbilical PI, while

showing a positive correlation with the total days of pregnancy.

Additionally, through immunohistochemistry and expression

analysis, we observed that ITGAM expression is diminished in

preeclampsia and holds promising diagnostic value. Consequently,

we postulate that ITGAM serves as a protective factor in

preeclampsia, consistent with prior research findings.

TYROBP encodes a transmembrane signal peptide that

contains a tyrosine-based immunoreceptor activation motif

(ITAM) (15). Identified as a universal marker for macrophages in

both mouse and human tissues (16), TYROBP is associated with the

maternal innate immune response to proinflammatory stimuli from
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the placenta, a hallmark of preeclampsia pathogenesis. LCP2

encodes a substrate that activates the protein tyrosine kinase

pathway via the T cell antigen receptor (17). Notably, reduced

LCP2 protein expression has been observed in the colonic epithelial

cells of a spontaneously hypertensive rat model (18). Studies by Pan

(19) suggested a potential link between TYROBP and LCP2 and the

development of atherosclerosis in a high-fat diet Tibetan minipig

model. Furthermore, PLEK, as discovered by Song et al., is

implicated in interactions with IRF-8, contributing to periodontal

inflammation based on expression profile analyses of periodontitis

and normal gingival tissues, indicating its potential involvement in

inflammatory responses (20). PLEK has also been associated with

the pathogenesis of abdominal aortic aneurysms, a vascular disease

possibly linked to oxidative stress and inflammation (21). Lastly,

HCK, a member of the Src family of protein kinases, participates in

various signal transduction pathways that regulate cell functions
FIGURE 9

Validation results of immunohistochemical staining of hub genes. Representative images of immunohistochemical staining of the TYROBP, PLEK,
LCP2, HCK, and ITGAM genes in the placental tissues of controls and preeclampsia patients.
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such as growth, proliferation, differentiation, migration, and

apoptosis (22). In colorectal tumors, HCK is linked to prognosis

and immune cell responses during local inflammation (23).

While these genes are recognized for their roles in inflammatory

responses, immune reactions, cell migration, and invasion, their

association with preeclampsia has not been extensively reported.

Our research identified these genes within the floral white module,

revealing a negative correlation with the mean uterine PI and mean

umbilical PI, as well as a positive correlation with the total days of

pregnancy, indicating substantial diagnostic value. Furthermore,

gene expression analyses and immunohistochemistry results

indicated lower placental expression levels of these genes in

preeclampsia patients compared to controls. Hence, we speculate

that TYROBP, PLEK, LCP2, and HCK may serve as protective

factors in preeclampsia.

However, it is important to acknowledge the limitations of our

study. One of the limitations is the relatively small sample size used

in this research, which may impact the generalizability of the

findings. Additionally, the study focused on a specific population

group, limiting the broader applicability of the results to a more

diverse population. Furthermore, the cross-sectional nature of the

study design restricts our ability to establish causal relationships

between the identified genes and the progression of preeclampsia.

Future longitudinal studies with larger and more diverse cohorts are

needed to validate our findings and further elucidate the potential

roles of these genes in the pathogenesis of preeclampsia.

Additionally, it is difficult to conclude whether these genes

actually play a causal role in the development of preeclampsia or

are merely correlated with the condition. Moreover, many factors

such as diet, stress, environment and even may aggravate

preeclampsia associated with these genes.

Despite these limitations, our study provides valuable insights

into the potential protective role of the identified genes in

preeclampsia and sets the stage for future research in this area.

Addressing these limitations in future studies will contribute to a

more comprehensive understanding of the molecular mechanisms

underlying preeclampsia and may lead to the development of novel

diagnostic and therapeutic approaches for this complex disorder.

In conclusion, through WGCNA, GO analysis, KEGG analysis,

expression profiling, diagnostic value assessments, GSEA, and

immunohistochemical staining, our study has identified five genes

(TYROBP, PLEK, LCP2, HCK, ITGAM) that may play a protective

role in the progression of preeclampsia. These genes show promise

for improving diagnostic and treatment strategies for this condition.
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