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Background: Colorectal cancer (CRC) is a malignant tumor of the digestive tract

that significantly impacts human health. LDL receptor-related protein 1B (LRP1B)

may play a crucial role in tumorigenesis and disease progression.

Methods: We performed a comparative analysis of differential gene expression,

mutation patterns, drug sensitivity, and cellular phenotypes across different

subgroups with varying LRP1B expression levels. Cellular and molecular

experiments were conducted to validate our findings.

Results:Our analysis implicated LRP1B as a tumor suppressor gene. Experimental

results confirmed that LRP1B expression was reduced in CRC and its knockdown

was associated with poor prognosis. Molecular mechanism studies revealed that

LRP1B negatively regulated the Hedgehog (Hh) signaling pathway, influencing

cell cycle and apoptosis processes. Single-cell analysis showed significant

differences in the infiltration of T cells, B cells, epithelial cells, and myeloid cells

between high and low LRP1B expression groups. Immune cell infiltration and

drug sensitivity analyses demonstrated that LRP1B plays a crucial role in

immunotherapy and targeted therapy, suggesting that restoring LRP1B

function could be a promising treatment strategy for CRC.

Conclusion: Our results indicate that LRP1B may function as a tumor suppressor

factor in CRC, playing a significant role in mutation, therapy, and immune

infiltration. Knockdown of LRP1B activates the Hh pathway in tumor cells,

leading to the inhibition of several malignant biological behaviors.
KEYWORDS

colorectal cancer (CRC), LRP1B, hedgehog (Hh) signaling pathway, immune cell
infiltration, tumor microenvironment
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1 Introduction

In 2020, among 36 cancers across 185 countries, colorectal cancer

(CRC) ranked third in incidence and second in mortality (1). Despite

growing interest in therapeutic targets for chemotherapy and

immunotherapy (2), including the gut microbiota (3) and immune

checkpoint inhibitors (4–6), clinical benefits remain limited. LDL

receptor-related protein 1B (LRP1B) has been identified as a negative

prognostic factor in various cancers, with its mutation status and

expression levels playing a crucial role (7–9). LRP1B has been

validated as a key component of a mutational prognostic signature,

potentially serving as an independent predictor of recurrence and

prognosis in patients with stage III colon cancer (10, 11). However, its

specific mechanism remains unclear.

A genome-wide significance (GWS) meta-analysis for CRC

involving over 125,000 individuals identified the Hedgehog (Hh)

signaling pathway as a key genetic component of CRC and

highlighted its role in immune function (12). The Hh signaling

pathway regulates numerous tissue patterning events during

developmental processes through interaction among secreted Hh

ligands, the transmembrane receptor protein patched (PTCH), the

transmembrane protein smoothened (SMO), the suppressor of

fused (SUFU), and Gli transcription factors, including GLI1–3 in

vertebrates (13). Three mammalian counterparts of the Hh have

been identified: Sonic hedgehog (SHH), Indian hedgehog (IHH),

and Desert hedgehog (DHH), with SHH serving as the primary

organizing center (14). When Hh ligands bind to PTCH, primarily

PTCH1, the ligand–receptor complexes are internalized and

degraded, leading to SMO phosphorylation. This process

facilitates SUFU-GLI dissociation, releasing GLI and inducing

target gene transcription (15). The pathway regulates a wide array

of genes involved in development, cell cycle control, and apoptosis,

either directly or indirectly (16).

The immune microenvironment plays a crucial role in the

proliferation and metastasis of tumors (17, 18). With the clinical

success of cancer immune checkpoint blockade (ICB), infiltrating

immune cells, particularly T cells, have gained increasing attention

(19, 20). Moreover, novel multidimensional analysis platforms,

such as single-cell RNA sequencing and high-dimensional flow
Abbreviations: CRC, colorectal cancer; LRP1B, LDL receptor-related protein 1B;

GWS, genome-wide significance; PTCH, patched; SMO, smoothened; SUFU,

suppressor of fused; SHH, Sonic hedgehog; IHH, Indian hedgehog; DHH, Desert

hedgehog; ICB, immune checkpoint blockade; tSNE, t-Distributed Stochastic

Neighbor Embedding; UMAP, Uniform Manifold Approximation and

Projection; SCEA, Single Cell Expression Atlas; DEGs, differentially expressed

genes; FDR, false discovery rate; STRING, Search Tool for the Retrieval of

Interacting Genes/Proteins database; PPI, protein–protein interactions; GDSC,

Genomics of Drug Sensitivity in Cancer; COSMIC, Catalogue of Somatic

Mutations in Cancer; CMS, consensus molecular subtypes; HCC,

hepatocellular carcinoma; OC, ovarian cancer; GB, glioblastoma; GC, gastric

cancer; SRC, steroid receptor coactivator; GPR126, G-protein-coupled receptor

126; HDAC2, histone deacetylase 2; CTCF, CTCC-binding factor; UA,

ursolic acid.

Frontiers in Immunology 02
cytometry, have facilitated the study of tumor-infiltrating immune

cell heterogeneity (21).

Our bioinformatics analysis revealed that LRP1B is negatively

associated with the prognosis of CRC patients. Additionally, LRP1B

may regulate the malignant behavior of cancer cells through the Hh

signaling pathway. We also examined the relationship between the

LRP1B expression and immune cell infiltration using single-cell

expression analysis. These findings suggest that LRP1B could serve

as a marker for assessing T-cell infiltration and predicting prognosis

and immunotherapy efficacy in CRC patients.
2 Materials and methods

2.1 Data collection and preprocessing

Gene expression data and clinical features of CRC samples were

retrieved from public datasets of the NCBI GEO (https://

www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas

(TCGA) (https://cancergenome.nih.gov/) databases. The

expression data of the GSE39582 dataset, obtained from the GEO

database on the Affymetrix GPL570 platform, underwent

preprocessing using the RMA algorithm with the “affy” package.

Duplicate probes were merged by calculating the median value,

thereby reducing redundancy in the expression data. As for the

TCGA datasets, the data of TCGA-Colon Adenocarcinoma

(COAD) and TCGA-Rectal Adenocarcinoma (READ) datasets,

which together form the TCGA-CRC cohort, were downloaded

from cBioPortal (https://www.cbioportal.org/) and the USCS Xena

(https://xenabrowser.net/datapages/) database. The transcriptome

data have been processed and quantified into FPKM format to

estimate transcript abundances and provide gene-level expression

estimates for downstream analysis. To enhance the precision of

detecting the impact of LRP1B expression levels, we applied a

filtering process to include only samples with expression levels

above 0. The samples were then categorized into high- and low-

expression groups based on the median expression level.
2.2 Single-cell expression analysis

We collected the bulk RNA-seq and single-cell RNA-seq data

from a CRC study by Khaliq et al. (22), which dissected the tumor

microenvironment with LRP1B dysregulation. Samples with

matched bulk and single-cell RNA-seq were retained, and a total

of 22,344 high-quality CRC cells from 15 samples were subjected to

further analysis using the Seurat package. We applied the t-

Distributed Stochastic Neighbor Embedding (tSNE) method to

visualize the high-dimensional data. The major cell type and

subtype annotation were adopted from the study by Ateeq et al.

Additionally, we employed the Uniform Manifold Approximation

and Projection (UMAP) method to visualize the data from the

Single Cell Expression Atlas (SCEA, https://www.ebi.ac.uk/gxa/sc/

home) database, which was derived from a study by Lee et al. (23).

Both tSNE and UMAP are nonlinear dimensionality reduction

techniques that map high-dimensional data to a lower-
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dimensional space. These approaches allow for the visualization of

datasets and the reduction of data dimensionality, facilitating

further analysis (24, 25). The single-cell analysis plots using the

tSNE method were customized based on the cell types labeled by

Khaliq et al., while other plots using the UMAP method followed

the cell types labeled by Lee et al.
2.3 Gene set enrichment analysis

The “limma” package was used to evaluate the differential

expression of more than 20,000 genes in samples from different

expression groups. The gene expression data were processed using

the lmFit and eBayes functions to calculate differential statistics

with the package (26). The ranked logFC values produced by limma

were used to perform gene set enrichment analysis (GSEA) with a

fast GSEA algorithm against Hallmark Gene Sets and Kyoto

Encyclopedia of Genes and Genomes (KEGG) gene sets (27).
2.4 PPI network associated with different
expression and prognosis

We determined differentially expressed genes (DEGs) between

high- and low-expression groups using the limma package (26). The

expression-related DEGs were further filtered by intersecting them

with DEGs between tumor and nontumor tissues. The normalized

gene expression data were processed using the lmFit and eBayes

functions to calculate expression statistics. The significance criteria

for DEGs were set as a false discovery rate (FDR) of less than 0.001

and a log2-fold change of more than 0.5 and 2, respectively.

The Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING, https://string-db.org/) database was used to investigate

gene interactions and visualization (28, 29). Prognostic DEGs

obtained above were submitted to the STRING database to

analyze their protein–protein interactions (PPI). The network was

imported into Cytocape software to organize the interactions and

exclude nodes without betweenness.
2.5 Immune cell infiltration and
signature estimation

The deconvolution approach xCell algorithm was selected to

characterize molecular features related to immunology between

expression groups (30). xCell utilizes a gene expression signature

matrix that includes marker genes specific to various cell types. Its

output provides estimates of the abundance of different immune

and stromal cell types in each sample, which can be further analyzed

and integrated with other clinical or molecular data.

“The IOBR” package integrates 255 published signature gene

sets related to the tumor microenvironment, tumor metabolism,

m6A, exosomes, microsatellite instability, and tertiary lymphoid

structures (31). The PCA method was used in the feature score

evaluation process in our study.
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2.6 Estimation and validation of
drug sensitivities

The “oncoPredict” package was used to build the drug

sensitivity prediction procedure. Imputations were performed

based on the expression matrix of a training set with known drug

treatment information from the Genomics of Drug Sensitivity in

Cancer (GDSC) database (32). The drug sensitivity scores of the

samples were calculated using Ridge regression.
2.7 Genomic operation on the
mutational signature

TCGA-CRC genomic data were curated using the

“TCGAbiolink” package. The “maftools” package was used for

mutational landscape depiction and signature extraction (33). The

extract signatures function, based on Bayesian variant nonnegative

matrix factorization, factorized the mutation portrait matrix into

two nonnegative matrices: “signatures” and “contributions”, where

signatures represent mutational processes and contributions

represent the corresponding mutational activities (34). The

signature enrichment function can automatically determine the

optimal number of extracted mutational signatures and assign

them to each sample based on mutational activities. The extracted

mutational portrait of CRC was compared and annotated using

cosine similarity analysis against the Catalogue of Somatic

Mutations in Cancer (COSMIC) database (35).
2.8 Cell culture and transfection

The LS180 cell line was obtained from the Cell Resource Center,

Peking Union Medical College (which is part of the National

Science and Technology Infrastructure, National Biomedical Cell-

Line Resource, NSTI-BMCR. http://cellresource.cn). It was grown

in MEM medium (KeyGEN BioTECH, Jiangning District, Nanjing

City, Jiangsu Province, China) containing 10% fetal bovine serum

(PAN), penicillin (100 U/mL, Thermo Fisher, Meiyou Road, China

(Shanghai) Pilot Free Trade Zone), and streptomycin (100 U/mL,

Thermo Fisher). HCT116 cell line (Procell, Wuhan City, Hubei

Province, China) was grown in McCoy’s 5A medium (KeyGEN

BioTECH) supplemented with 10% fetal bovine serum (PAN),

penicillin (100 U/mL, Thermo Fisher), and streptomycin (100 U/

mL, Thermo Fisher). The HCT116 cell line was obtained on 13 May

2023 and tested by STR. Other colorectal cell lines (RKO, HCT15,

SW480, SW620, DLD-1) were obtained from ATCC. The RKO cell

line was grown in RPMI-1640 medium (Gibco), while the other cell

lines were cultured in DMEM (Gibco), with 10% fetal bovine serum

(PAN), penicillin (100 U/mL, Thermo Fisher), streptomycin (100

U/mL, Thermo Fisher). All cells were cultured in 95% air and 5%

CO2 at 37°C.

The LRP1B-RNAi and negative control lentiviruses were

purchased from Shanghai Jikai Company (Shanghai, China). The

cells were infected with lentivirus for 24 h and selected with
frontiersin.org
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puromycin (1.5 mg/mL, MedChemExpress, Zhangheng Road,

Pudong New District, Shanghai, China) for 7 days.
2.9 Real-time quantitative PCR

Total RNA from cells was isolated using a Trizol reagent

(Vazyme, Kechuang Road, Nanjing Economic and Technological

Development Zone, China). RNA was reversely transcribed into

cDNA using HiScript III RT SuperMix for qPCR (Vazyme, China),

following the manufacturer’s instructions. Quantitative real-time

polymerase chain reaction (qRT-PCR) was performed using

Applied Biosystems QuantStudio 1 Real-Time PCR system

(Applied Biosystems, Thermo Fisher) with ChamQ Universal

SYBR qPCR Master Mix (Vazyme, China). The relative

expression levels of mRNA were calculated by using the 2−DDCt

method, where a higher 2−DDCt indicates higher expression.
2.10 Western blotting

Cells were lysed with RIPA buffer (Solarbio, Beijing, China)

containing 1% PMSF and 1% Phosphatase Inhibitor Cocktail I.

After centrifugation, total protein was quantified using a BCA

protein assay kit (Solarbio). Equivalent amounts of protein were

separated by SDS-PAGE and transfected to PVDF membranes. The

membranes were incubated with primary antibodies at 4°C overnight,

followed by incubation with the corresponding secondary antibodies

at room temperature for 1 h the next day. Immunoreactive bands

were visualized using an ECL detection kit (Vazyme, China) and

imaged with the Amersham ImageQuant 800 system.

The following primary antibodies were purchased: SHH (1:1,000,

2207T, Cell Signaling Technology, Shengxia Road, Pudong New Area,

Shanghai, China), PTCH1 (1:1,000, 2468T, Cell Signaling Technology,

USA), PTCH2 (1:1,000, 2470T, Cell Signaling Technology, USA),

SMO (1:1,000, 92981T, Cell Signaling Technology, USA), SUFU

(1:1,000, 2520T, Cell Signaling Technology, USA), GLI1 (1:1,000,

3538T, Cell Signaling Technology, USA), CHEK2 (1:1,000, 13954-1-

AP, Proteintech, Chicago, USA), E2F1 (1:200, sc-251, Santa Cruz

Biotechnology, USA), Cyclin D1 (1:1,000, 2978S, Cell Signaling

Technology, USA, Jianye Road Pudong New District, Shanghai,

China), Cyclin B1 (1:1,000, 12231S, Cell Signaling Technology,

USA), p53 (1:1,000, 2527S, Cell Signaling Technology, USA), CDK1

(1:2,000, 19532-1-AP, Proteintech, Chicago, USA), CDK2 (1:1,000,

2546S, Cell Signaling Technology, USA), p21 (1:1000, 2947S, Cell

Signaling Technology, USA), BCL-2 (1:1,000, 15071S, Cell Signaling

Technology, USA), and b-actin (1:2,000, 20536-1-AP, Proteintech,

Chicago, USA).
2.11 Cell Counting Kit-8 assays

To assess cell viability, 10 µL/well of Cell Counting Kit-8 (CCK8)

reagent (DojinDo, Japan) was added to a 96-well plate containing

3,000 cells per well, followed by incubation at 37°C for 2 h. The

absorbance value of each pore was measured at 450 nm using a

Multiskan Sky microplate reader (Thermo Scientific) at 0, 24, 48, 72,
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and 96 h. Cell viability was calculated using GraphPad Prism 8

software. All experiments were repeated three times.
2.12 Colony formation assays

Based on the growth rate of the cells, different seeding densities

were selected for the six-well plates, with 3,000 cells per well for

LS180 and 2,000 cells per well for HCT116. The culture medium

was refreshed every 3 days. After 7 days of culture, the plates were

washed twice with 4°C precooled PBS, fixed with 4%

paraformaldehyde at 4°C for 30 min, and stained with crystal

violet for 30 min. After drying, the colonies were photographed,

and their numbers were quantified using Image J software. Each

experiment was conducted in triplicate.
2.13 Apoptosis and cell cycle analysis

Apoptosis and cell cycle status were evaluated using the BD

Pharmingen™ PE Annexin V Apoptosis Detection Kit I (BD

Biosciences, Nanjing West Road, Shanghai, China) and the

KeyGEN BioTECH Cell Cycle Detection Kit, respectively. For

apoptosis assessment, cells were resuspended in 200 µL of binding

buffer and incubated with 10 µL of 7-AAD and 10 µL of PE Annexin

V for 15 min at room temperature in the dark. For cell cycle analysis,

cells were incubated with 500 µL of PI/RNase A for 30 min. Samples

were then analyzed using a CytoFLEX S Flow Cytometer (Beckman

Coulter, Eshan Road, China (Shanghai) Pilot Free Trade Zone).
2.14 Statistical analysis

Data processing, statistical analysis, and plotting were conducted

using R 4.2.3. The Wilcoxon rank-sum test or t-test was used to

compare differences between two groups for quantitative data, while

two-sided Fisher’s exact tests were applied to analyze categorical

variables. Kaplan–Meier analysis and Cox regression analysis were

performed using the “survival” and “survminer” packages. All statistical

tests were two-sided, with p < 0.05 considered statistically significant.

Error bars represent 95% confidence intervals. The Benjamini–

Hochberg method was used to control the FDR for multiple

hypothesis testing where appropriate. Experiment statistical analyses

were performed using GraphPad Prism 8 software, with each

experiment repeated at least three times. Statistical significance was

assessed using the Student’s t-test or Wilcoxon’s rank-sum test, with p

< 0.05 considered statistically significant.
3 Results

3.1 The implications of LRP1B expression
in CRC

To explore the dysregulation of LRP1B, we analyzed CRC

sample data and observed significant differences in expression
frontiersin.org
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levels between cancer tissues and cancer-adjacent normal tissues

from public datasets of GEO and TCGA. Specifically, the expression

level of LRP1B was significantly lower in cancer tissues compared to

several paired normal tissues (Figure 1A), indicating a potential role

for LRP1B in inhibiting tumor development. Furthermore, single-

cell sequencing analysis revealed that LRP1B expression was

predominantly low in tumor immune cells, falling below the

expression cutoff (Supplementary Figure S1A). When compared

to adjacent normal tissues as a reference, few stromal, glial, and

endothelial cells exhibited detectable LRP1B expression

(Supplementary Figure S1B). Subsequently, the significant

downregulation of LRP1B was verified using the HPA platform

(Supplementary Figure S1C). These findings support the conclusion

that LRP1B is primarily expressed in normal tissues. Although

survival analyses grouped by median expression did not show

significant results (Supplementary Figure S1D), possibly due to a

small sample size, further analysis—including only samples with

expression above the upper quartile and below the lower quartile—

revealed statistically significant findings. This suggests that the

downregulation or loss of LRP1B expression is associated with

poor prognosis and decreased patient survival in CRC (Figure 1B).

We identified a total of 1,590 DEGs between tumor and normal

samples (FDR < 0.001, log2-fold change > 2). Additionally, 931 DEGs

were found to be related to LRP1B expression (FDR < 0.001, log2-fold

change > 0.5). We subsequently overlapped the two sets of DEGs,

culminating in a consolidated list of 436 genes. After performing Cox

regression analysis (153 genes left, Supplementary Table S1) and

removing isolated nodes and genes with zero betweenness, 68 genes

were identified and utilized to form the PPI network (Supplementary

Table S2). Genes such as KIF5A, SOX10, MYL9, TRIM9,MYH11, and

SNAP25 are known to play important roles in biological development,

suggesting that LRP1B may also be a key factor in cancer (Figure 1C).
3.2 Relationship between LRP1B expression
with mutation landscapes in CRC

The mutational landscape analysis included mutational

frequencies and tumor mutation burden (TMB) levels

(Supplementary Figure S2A). We found that six genes (B2M,

ARID1A, SMAD4, AMER1, SOX9, and FBXW7) had higher

mutation frequencies in the low-expression group among the

commonly mutated genes in CRC (Figure 2A). Furthermore, the

low-expression group also had a high TMB level (Figure 2B). To

explore the underlying mutational processes, we curated mutation

processes against the COSMIC database using somatic genomic

alteration data and found three signatures—COSMIC 10, 1, and 6—

were best enriched based on NMF analysis cophenetic metric and

cosine similarity (Supplementary Figures S2B, C). The three

signatures were separately annotated as defects in polymerase

POLE, spontaneous deamination of 5-methylcytosine, and

defective DNA mismatch repair (Figure 2C). Importantly,

COSMIC 10 and 6 scored highly in the low-expression group

compared to the high-expression group (Figure 2D). Additionally,

while the low-expression group exhibited a higher TMB than the
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high-expression group, it is noteworthy that the high-expression

group had a higher frequency of co-mutations. This suggests a

greater likelihood of multiple genes being simultaneously affected in

the high-expression group (Figure 2E). Overall, these findings

indicate that LRP1B expression levels may influence the

occurrence and pattern of mutations.
3.3 The significance of LRP1B in drug
sensitivity and immune infiltration

The drug sensitivity scores obtained from the GDSC database

were used to assess the variation in the distribution of individual

drugs across different expression groups (Figure 3A). Out of the 198

drugs analyzed, 44 exhibited significant differences between the

expression groups. Several drugs used for the treatment of CRC

(such as 5-fluorouracil, acetalax, and oxaliplatin) had high sensitivity

scores in the high-expression group, whereas doramapimod and

ribociclib showed the opposite trend (Figures 3B, C).

Furthermore, we utilized the xCell method to analyze the

immune infiltration landscape across different expression groups.

Interestingly, we observed a higher infiltration of dendritic cells,

endothelial cells, and macrophages in the high-expression group,

whereas helper T cells (Th1 and Th2) were more abundant in the

low-expression group (Figure 3D). Additionally, comprehensive

oncology-immune signature analysis (IOBR) revealed an overall

accumulation of immune cells in the high-expression group, except

for helper T cells (Figure 3E). Overall, these findings suggest that

LRP1B expression may influence immune infiltration patterns and

related signature characteristics, with potential implications for

immune response modulation.
3.4 The expression of LRP1B was
associated with different cellular
phenotypes in tumor microenvironment.

To further understand the association between LRP1B

dysregulation and tumor immune microenvironment alteration,

we performed a combined bulk RNA-seq and single-cell RNA-seq

analysis based on 15 racially diverse, treatment-naïve CRC patient

tissue samples (22). A total of 22,344 high-quality single cells were

analyzed to profile the immune cell composition across different

LRP1B expression statuses. We divided the CRC cells into high and

low subgroups according to the expression level of LRP1B in bulk

RNA-seq, which matched the cellular distribution in scRNA-seq

(Figure 4A). Next, we reorganized the CRC cells based on LR1PB

expression, consensus molecular subtypes (CMS), tumor location,

and MSI status (Figure 4B). The CMS comprises four types: CMS1

(microsatellite instability immune, 14%), characterized by

hypermutation, microsatellite instability, and strong immune

activation; CMS2 (canonical, 37%), epithelial, with marked WNT

and MYC signaling activation; CMS3 (metabolic, 13%), epithelial,

with evident metabolic dysregulation; and CMS4 (mesenchymal,

23%), featuring prominent transforming growth factor-b activation,
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stromal invasion, and angiogenesis (36). We discovered that CMS2

tended to cluster in the high-expression group, while CMS4 was

more frequent in the low-expression group (Supplementary Figure

S3A). Regarding cell cycle phase analysis, cells in the G1 stage were

more enriched in the high-expression group (Supplementary Figure
Frontiers in Immunology 06
S3B). Furthermore, we compared the distribution of the six major

cell types, as annotated by Khaliq et al. (22), between the LRP1B

high- and low-expression subgroups. We found that T cells, B cells,

epithelial cells, and myeloid cells were significantly differentially

distributed across the LRP1B subgroups (Figure 4C). Therefore, we
FIGURE 1

The implications of LRP1B in colorectal cancer. (A) Violin plot showing the distribution of LRP1B expression between tumor tissues and adjacent
normal tissues. (B) Kaplan–Meier curves depicting progression-free survival (PFS) across expression subgroups. (C) Protein–protein interaction (PPI)
network was constructed with 68 filtered DEGs, where node size and color indicate betweenness. ***p < 0.001.
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further analyzed the counts and proportions of cell subpopulations,

subdividing them into T cells, B cells, epithelial cells, myeloid cells,

endothelial cells, and fibroblast cells, respectively (Supplementary

Figures S3D, E). Comparative analyses showed that the cell

subcluster distributions of CD4+ T cells, CD8+ T cells
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(Figure 4D), memory B cells (Figure 4E), stem-like epithelial cells

(Figure 4F), and tumor-associated macrophages (Figure 4G) were

significantly increased in the LRP1B high-expression group.

However, the relationship between endothelial cells and fibroblast

cells was inconspicuous (Figures 4H, I).
FIGURE 2

The mutational landscape across different LRP1B expression groups. (A) Oncoplot illustrating the distribution of somatic mutations (SNV/indel) and
copy number variation (CNV) events in frequently mutated genes. (B) Tumor mutation burden distribution across different groups. (C) Annotations of
curated mutational signatures. (D) Distribution of SBS10 and SBS6 mutational signatures across different groups. (E) Somatic interactions of the top
25 mutated genes in high- and low-expression groups. *p < 0.05.
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3.5 LRP1B regulates the cell proliferation,
apoptosis, and cell cycle in colorectal
cancer cells

Firstly, we extracted mRNA from different colorectal cancer cell

lines (RKO, HCT15, SW480, SW620, LS180, DLD-1, and HCT116)

and tested the expression of LRP1B. The qPCR results showed that

the expression level of LRP1B in the LS180 and HCT116 cell lines
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was significantly higher than in the other cell lines (Figure 5A). We

transfected LS180 and HCT116 cell lines with LRP1B-RNAi and

negative control lentiviruses and used the qPCR analysis to verify

the transfection efficiency (Figure 5B). We then performed CCK8

and colony formation assays to assess the effect of LRP1B on cell

proliferation. The proliferation rate was significantly higher in the

shLRP1B group than in the control group (Figure 5C), and the

colony numbers in the shLRP1B group were greater than those in
FIGURE 3

Drug sensitivity and immune infiltration analysis across different expression groups. (A) Workflow of the drug sensitivity prediction procedure.
Distribution of the relatively low- (B) and high-estimated (C) drug sensitivity scores across different expression groups. (D) Immune cell infiltration
score distribution across different expression groups. (E) Fraction of oncology-immune signatures across expression groups based on the ssGSEA
algorithm. *p < 0.05; **p < 0.01; ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1567102
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1567102
the control group (Figure 5D), indicating that knocking down

LRP1B can increase cell proliferation. Flow cytometric analysis

showed that knocking down LRP1B led to a decrease in apoptotic

cells (Figure 5E), a decrease in the proportion of cells in the G0/G1

phase, and an increase in the S phase, suggesting that the cell cycle

was accelerated in shLRP1B group (Figure 5F).
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3.6 LRP1B inhibits the Hedgehog pathway
in colorectal cancer cells

To investigate the potential mechanism underlying LRP1B

expression, we performed pathway enrichment analysis using

HALLMARK and KEGG gene sets and identified several
FIGURE 4

Single-cell analysis of LRP1B expression and immune cell infiltration. (A) tSNE plots showing LRP1B expression in 22,344 single cells, categorized into
high- and low-expression groups based on bulk RNA-seq. (B) Cells clustered by patient, consensus molecular subtypes (CMS), location, and MSI status.
(C) Cells were clustered into six major cell types, differentially distributed in high and low LRP1B expression groups. Cell subpopulations (upper) and bar
plots of cell proportion and counts (lower) for T cells (D), B cells (E), epithelial cells (F), myeloid cells (G), fibroblast cells (H), and endothelial cells (I).
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significantly different biological pathways between the high and low

LRP1B groups. The results showed that the Hedgehog signaling

pathway and cell cycle-related pathways were enriched in the

HALLMARK database, including E2F targets, the p53 pathway, and

the G2M checkpoint (Figure 6A). The KEGG dataset analysis

consistently revealed the enrichment of the Hedgehog signaling
Frontiers in Immunology 10
pathway and cell cycle pathway across different gene sets

(Figure 6B). Together, we also found that cell cycle- and DNA

repair-related processes (such as DNA damage response,

homologous recombination, and DNA replication) exhibited a high

score in the low LRP1B expression group, while the epithelial–

mesenchymal transition process was enriched in the high LRP1B
FIGURE 5

The function of LRP1B in CRC cell lines. (A) LRP1B expression levels in different CRC cell lines using quantitative-PCR (qPCR) analysis. (B)
Confirmation of LRP1B knockdown in LS180 and HCT116 cells using q-PCR analysis. Cell proliferation assay in LS180 and HCT116 cells transfected
with LRP1B-scr (negative control), shLRP1B#1, and shLRP1B#2 (LRP1B knockdown), assessed by the cell counting kit-8 (CCK8) assay (C) and colony
formation (D). Flow cytometric analysis in LS180 and HCT116 cells transfected with LRP1B-scr, shLRP1B#1, and shLRP1B#2 through cell apoptosis (E)
and cell cycle experiments (F). **p < 0.01; ***p < 0.001.
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expression group (Figure 3E). Notably, the Hedgehog signaling

pathway was enriched in both the HALLMARK and KEGG gene

sets. Similarly, there is considerable evidence of interaction between the

Hh signaling pathway and several other critical signaling cascades

across various tumor types (37), such as the Notch pathway (38, 39),

the Wnt pathway (40, 41), the RAS signaling pathway (42, 43),

epithelial–mesenchymal transition (EMT) (44). Subsequently, we

hypothesized that LRP1B exerts its influence by modulating the Hh

signaling pathway. To further investigate the association between this

pathway and LRP1B, we examined the expression levels of key

molecules, including PTCH1, PTCH2, and SUFU, and found that

they were significantly upregulated in the high LRP1B expression

group (Figure 6C). Furthermore, we examined the expression levels
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of crucial cell cycle genes across the different expression groups.

Significantly, CCNE1, CDK1, and CDK2 exhibited higher expression

levels in the low LRP1B expression group (Figure 6D). Correlation

analysis also showed that LRP1B was positively correlated with several

Hedgehog signaling pathway molecules, such as PTCH2, SUFU, SMO,

and GLI1 (Figure 6E). We applied GSE39582 cohort analysis and

found that the cell cycle pathway was also enriched (Supplementary

Figure S4). In addition, we downloaded the cell cycle signature score

data from Teresa et al. Their study found that the cell cycle signature

score was significantly higher in the low LRP1B expression group

(Figure 6F), which further confirms our findings (45).

Next, according to Western blotting, knocking down LRP1B

increased the expression of SHH, SMO, GLI1, CDK1, CDK2,
FIGURE 6

Biological processes and key molecular analysis of the Hedgehog signaling and cell cycle-related pathways. Bar plot presenting the results of
HALLMARK (A) and top 30 KEGG (B) biological pathway enrichment analyses across different expression groups. Distribution of several key gene
expressions associated with Hedgehog signaling (C) and cell cycle process (D) in different groups. (E) Correlation matrix illustrating relationships
among key molecules in the Hedgehog signaling pathway and the cell cycle process. The size and color intensity of the circles represent the
strength of correlation, with numbers inside the circles indicating the correlation coefficients (only statistically significant coefficients are displayed).
(F) Distribution of cell cycle signature scores across different expression groups. *p < 0.05; **p < 0.01.
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CHEK2, E2F1, and BCL-2 while decreased the protein levels of

PTCH1, PTCH2, SUFU, p53, and p21. These findings were

consistent with the above enrichment analysis and experimental

functional verification, further demonstrating the negative

regulation of Hh signaling by LRP1B expression (Figure 7A). In

the Hh signaling pathway, PTCH1 is regarded as the primary

regulator (46, 47), and it modulates the intracellular localization

of Cyclin B1, thereby linking its tumor-suppressive role to the

regulation of cellular division (48). Therefore, we reasoned that the

mechanism by which LRP1B inhibits CRC through the Hedgehog

signaling pathway is shown in Figure 7B.
4 Discussion

The mutation of LRP1B has been identified in various cancers,

including hepatocellular carcinoma (HCC) (7), ovarian cancer

(OC) (49), glioblastoma (GB) (50), Merkel cell carcinoma (51),

and gastric cancer (GC) (52), and is speculated to play a negative

regulatory role in cancers. Simultaneously, LRP1B mutation has

been reported to be critical in promoting immunotherapy in

NSCLC patients (53, 54). Its mutation frequency has also been

observed to increase after anti-EGFR therapy in CRC patients (55).

Moreover, LRP1B variants have been associated with progression-

free survival in patients receiving lenvatinib combined with

immune checkpoint inhibitors following early hepatocellular

carcinoma recurrence (56). However, due to its large size—

comprising 4,599 amino acids encoded by a 13,800-base-pair

mRNA—LRP1B is one of the largest transmembrane receptors

(57). Although segmented amplification has been proposed to

achieve overexpression of LRP1B (58), the varying infectivity of

tumor cells and the specificity of antibodies continue to limit its

validation. As a result, the underlying mechanism behind the role of

LRP1B remains unclear.
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The Hh signaling pathway is instrumental in regulating various

aspects of animal development, including tissue homeostasis,

regenerative mechanisms (59), and the maintenance of stem cells

and tissues (14). However, aberrant activation of the Hh pathway

has been linked to tumorigenesis, disease progression, metastasis,

and drug resistance in multiple cancers, including basal cell

carcinoma (BCC) (60), medulloblastoma (MB) (61), as well as

various solid and hematological malignancies (14). Furthermore,

research has implicated abnormal Hh signaling in the pathogenesis

of breast (62), lung (48), pancreatic (63), and prostate cancers (64,

65), highlighting its potential role in the development of these

diseases. Hh signaling pathways can be classified into canonical and

noncanonical, both of which have been implicated in the

pathogenesis of CRC (66). These pathways may influence CRC

progression by interacting with other signaling pathways or

regulating secretion mechanisms (67). Experimental studies have

confirmed that phosphorylated c-Jun, activated by kinase JNK,

prevents Gli2 from undergoing proteasomal-ubiquitin

degradation through the PGE2-JNK signaling axis, thereby

promoting Hh activation and colorectal cancer cell proliferation

(68). Additionally, SRC-1, a member of the steroid receptor

coactivator (SRC) family, has been identified as an enhancer of

Gli2-mediated Hh signaling, contributing to CRC progression (69).

The G-protein-coupled receptor 126 (GPR126) engendered

increased transcription and translation of histone deacetylase 2

(HDAC2), which regulated Gli2 expression and enhanced

colorectal cancer cell proliferation (70). CTCC-binding factor

(CTCF) was verified to enhance malignant behaviors and

chemotherapy resistance for 5-FU in CRC via the p53-Hedgehog

axis (71). A series of analysis assays showed that the Hedgehog-Gli

signaling pathway was necessary for increasing resistance to 5-

fluorouracil in CRC cells (72). Ursolic acid (UA), a pentacyclic

triterpenoid, may inhibit AKT signaling-dependent activation of

the Smo-independent noncanonical Hedgehog pathway to protect
FIGURE 7

Association of LRP1B with the Hedgehog signaling pathway in CRC. (A) Western blot analysis of SHH, PTCH1, PTCH2, SMO, SUFU, GLI1, CHEK2,
E2F1, Cyclin D1, Cyclin B1, p53, CDK1, CDK2, p21, BCL-2, and b-actin in LS180 and HCT116 cells with or without knockdown. (B) Potential
mechanism of LRP1B in the suppression of CRC.
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against CRC (73). All of above highlighted the clinical utility of Hh

signaling factors for CRC.

In the present study, we observed decreased LRP1B expression in

CRC, and high LRP1B expression tended to be associated with better

survival. The core gene in the PPI network SNAP25, associated with

the microenvironment and immune response, has been identified as a

predictor of poor outcomes in colon cancer (74). Additionally, we

observed that the low-expression group exhibited a high mutational

load, with FBXW7, SOX9, AMER1, SMAD4, ARID1A, and B2M

being the most frequently mutated genes in colorectal cancer.

Remarkably, in the low-expression group, LRP1B was found to be

co-mutated with eight out of the top 25 significantly mutated genes.

However, in the high-expression group, LRP1B was co-mutated with

18 major mutated genes. The co-occurrence of mutations in these

genes was more pronounced in the low-expression group. These

findings indicate a potential inverse relationship between LRP1B

expression andmutation occurrence. From the single-cell analysis, we

found that the expression of LRP1B was associated with immune cell

infiltration, especially T cells.

Knocking down LRP1B promoted proliferation, accelerated the

cell cycle, and inhibited apoptosis in colorectal cells. These results

suggested that LRP1B was a tumor suppressor gene in CRC.

Furthermore, we performed pathway enrichment analysis to

analyze the possible mechanisms of LRP1B in CRC and found

that the enrichment of Hedgehog pathway-related gene set

signatures is notably related to LRP1B expression, besides cell

cycle-related gene. Meanwhile, we proved that silencing LRP1B

enhanced SHH, GLI1, CDK1, CDK2, CHEK2, E2F1, and BCL-2

expressions, while it decreased PTCH1, PTCH2, SUFU, p53, and

p21 levels. Hence, we have reasonable speculation that LRP1B

regulated cell cycle and apoptosis signals by influencing members

of the Hh pathways. Several lines of evidence supported that m6A

methylation of PTCH1 facilitated the hepatic stellate cell activation

(75) and stem cell properties of esophageal cancer (76). PTCH2

ubiquitination has been proven to be involved in directing

differentiation of embryonic stem cells (77). SUFU can be

hydroxylated by the complex of P4HA2 and KIF7, which inhibits

its function and amplifies Hh signaling in B-cell lymphoma (78).

The sumoylation and phosphorylation of SMO have also been

reported to be important in the Hh signaling pathway (79). All of

these studies provided possible directions for potential target

modifications of LRP1B in the Hh pathway.

In conclusion, our results demonstrate that high LRP1B

expression is also associated with the infiltration of immune cells,

such as dendritic cells, endothelial cells, and macrophages, in the

immune microenvironment of CRC. The substantial disparity in

drug response between the high- and low-expression groups

highlights the potential of LRP1B as a valuable indicator for

guiding drug therapy. Meanwhile, LRP1B may function as a

tumor suppressor factor in CRC. Knockdown of LRP1B can

activate the Hh pathway in tumor cells, inhibiting apoptosis and

improving proliferation along with other malignant biological

behaviors. Additionally, LRP1B is a promising target for CRC in

immunotherapy or targeted therapy.
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