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strategy to treat breast cancer
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Breast cancer is among the most prevalent malignant tumors worldwide, with

triple-negative breast cancer (TNBC) being the most aggressive subtype and

lacking effective treatment options. Circular RNAs (circRNAs) are noncoding

RNAs that play crucial roles in the development of tumors, including breast

cancer. This article examines the progress of research on circRNAs in breast

cancer, focusing on four main areas: 1) breast cancer epidemiology, classification,

and treatment; 2) the structure, discovery process, characteristics, formation, and

functions of circRNAs; 3) the expression, mechanisms, clinical relevance, and

recent advances in the study of circRNAs in breast cancer cells and the immune

microenvironment, particularly in TNBC; and 4) the challenges and future

prospects of the use of circRNAs in BC research.
KEYWORDS
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1 Introduction

Breast cancer remains a leading cause of cancer-related morbidity and mortality among

women worldwide (1). According to the latest statistics, it accounts for a significant

proportion of new cancer cases and deaths, underscoring the urgent need for effective

prevention and treatment strategies (2). Among the various subtypes of breast cancer,

triple-negative breast cancer (TNBC) is particularly notorious due to its aggressive nature

and poor prognosis (3). TNBC is characterized by the absence of estrogen receptors,

progesterone receptors, and human epidermal growth factor receptor 2 (HER2), which

limits the options for targeted therapies that are effective in other breast cancer subtypes

(4). Consequently, patients with TNBC often face a higher risk of recurrence and

metastasis, making it imperative to explore novel therapeutic approaches and

biomarkers (5).

Recent advances in molecular biology have shed light on the complex regulatory

networks that govern cancer development and progression (6). One of the most intriguing

discoveries in this context is the role of non-coding RNAs, particularly circular RNAs

(circRNAs) (7). Unlike linear RNAs, circRNAs are characterized by their covalently closed

circular structure, which confers them with increased stability and resistance to degradation
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(8). This unique feature enables circRNAs to function as molecular

sponges for microRNAs (miRNAs), thereby modulating gene

expression and influencing various cellular processes, including

proliferation, apoptosis, and invasion (9).

The dysregulation of circRNAs has been implicated in

numerous cancers, including breast cancer. Emerging evidence

suggests that circRNAs can play multifaceted roles in tumor

biology, acting as oncogenes or tumor suppressors depending on

the context (10). For instance, certain circRNAs have been shown to

promote tumor growth and metastasis by sequestering miRNAs

that would otherwise inhibit oncogenic pathways. Conversely, other

circRNAs may exert tumor-suppressive effects by promoting the

expression of tumor suppressor genes or by interfering with pro-

tumorigenic signaling pathways (11).

In the context of TNBC, circRNAs have garnered significant

attention due to their potential to contribute to drug resistance, a

major challenge in the treatment of this aggressive subtype (6).

Studies have demonstrated that circRNAs can modulate the

response of TNBC cells to chemotherapy and targeted therapies

by regulating key signaling pathways, such as the PI3K/AKT/mTOR

pathway (12). Furthermore, circRNAs may influence the tumor

microenvironment (TME) by interacting with various immune

cells, thereby shaping the immune landscape of the tumor and

affecting its response to immunotherapy (13).

Despite the promising insights into the role of circRNAs in

breast cancer, several challenges remain. The mechanisms by which

circRNAs exert their effects on tumor biology are still not fully

understood, and the functional diversity of circRNAs necessitates a

comprehensive investigation into their specific roles in different

breast cancer subtypes. Additionally, the potential of circRNAs as

biomarkers for diagnosis, prognosis, and therapeutic response

remains to be explored in clinical settings.

This review aims to provide a comprehensive overview of the

current understanding of circRNAs in breast cancer, with a particular

focus on TNBC. We will discuss the biogenesis, cellular localization,

and degradation mechanisms of circRNAs, as well as their

interactions with miRNAs and other molecular players in the

tumor microenvironment. Furthermore, we will highlight the

emerging evidence linking circRNAs to drug resistance and their

potential as therapeutic targets. By synthesizing the existing literature,

we hope to elucidate the multifaceted roles of circRNAs in breast

cancer and pave the way for future research aimed at harnessing their

potential for clinical application. Ultimately, understanding the

intricate interplay between circRNAs and breast cancer biology

could lead to innovative strategies for improving patient outcomes

and advancing the field of cancer therapeutics.
2 Breast cancer

2.1 Epidemiology of breast cancer

Breast cancer arises from the carcinogenesis of breast epithelial

tissue and has become one of the most prevalent malignant tumors

worldwide, with an incidence rate second only to that of lung cancer
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(1) (Table 1). In 2022, breast cancer became the fifth leading cause

of cancer-related deaths globally, accounting for 665,684 fatalities—

a significantly greater number of deaths than other gynecological

malignancies, such as cervical and ovarian cancers. Additionally,

approximately 2.31 million women worldwide were newly

diagnosed with breast cancer. The global incidence of breast

cancer continues to increase at an annual rate of approximately

3.1% (2) (Table 2). In addition, the growth rate of breast cancer in

Chinese women is much greater than that in the rest of the world

(14). Furthermore, the age of breast cancer onset is decreasing.

Combined with factors such as societal development, population

growth, and an aging population, the economic burden of cancer on

women worldwide has been steadily increasing (15).
2.2 Classification, immune
microenvironment and treatment of
breast cancer

There are three main subtypes of breast cancer: ER/PR-

overexpressing breast cancer (accounting for approximately 60% of

cases), HER2-overexpressing breast cancer (approximately 20%), and

triple-negative breast cancer (TNBC) (approximately 20%) (3). These

subtypes differ in terms of gene expression, progression rates,

metastasis potential, treatment approaches, and prognoses (4). The

immune microenvironment of breast cancer is a complex network of

immune cells, signaling molecules, and tumor components that play
TABLE 1 The top ten cancers with estimated incidence rates and
mortality rates in the female population, United States, 2024.

Estimated
new cases

Estimated
deaths

Breast cancer 310,720
Lung cancer/

Bronchial carcinoma
59,280

Lung cancer/
Bronchial
carcinoma

118,270 Breast cancer 42,250

Endometrial
carcinoma

67,880 Pancreatic cancer 24,480

Colon cancer 52,380
Colon cancer/
rectum cancer

24,310

Melanoma of
the skin

41,470
Endometrial
carcinoma

13,250

Non-
Hodgkin
lymphoma

36,030 Ovarian cancer 12,740

Pancreatic cancer 31,910
Liver cancer/
Intrahepatic

cholangiocarcinoma
10,720

Thyroid carcinoma 31,520
Non-

Hodgkin lymphoma
8,360

Renal carcinoma/
Carcinoma of
renal pelvis

29,230
Brain and other

nervous
system tumors

8,070

Bladder cancer 20,120 Myeloma 5,520
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critical roles in tumor progression and immune evasion (16). The

microenvironment includes various immune cells, such as T cells,

macrophages, dendritic cells, and regulatory T cells, each of which

contributes to either promoting or inhibiting the immune response.

Tumor cells often employ immune checkpoint pathways, such as PD-

L1, and secrete immunosuppressive factors such as TGF-b to

evade immune detection (17). The characteristics of the

immune microenvironment are closely linked to tumor

aggressiveness, prognosis, and response to treatment, making the

microenvironment a crucial focus for developing targeted

immunotherapies (18). Breast cancer mortality rates have decreased

due to early screening, detection, diagnosis, and improved treatment

methods. However, TNBC is still associated with a poor prognosis and

limited treatment options (19). Drug resistance, along with the

potential for recurrence and metastasis, further complicates

treatment (5). Recent evidence suggests that circRNAs may indirectly

influence cancer progression through regulating gene expression (7). In

particular, multiple circRNAs linked to breast cancer progression have

been identified, which may serve as biomarkers and therapeutic targets

for triple-negative breast cancer (6).
3 CircRNAs

3.1 Structure and classification of CircRNAs

CircRNAs are noncoding, closed loop RNA molecules without

3’ and 5’ end caps that connect different splicing domains through

covalent bonds. They have a highly stable structure and are resistant

to degradation by nucleases (8). CircRNAs can be categorized into

three types: exonic circRNAs (ecircRNAs), which contain only exon

sequences; circular intronic RNAs (ciRNAs), which contain only

intron sequences; and exon−intron circRNAs (EIciRNAs), which

contain both exon and intron sequences (9). While most circRNAs

are located in the cytoplasm, a few consisting solely of intron

sequences are found in the nucleus (10).
3.2 Discovery process of CircRNAs

CircRNAs were first discovered in 1976 in RNA viruses that

cause diseases in higher plants (20). Subsequent research revealed

additional circRNAs, with Hsu et al. identifying circRNA structures
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in the cytoplasm of HeLa cells in 1979 (21) and their presence in the

hepatitis delta virus in 1986 (22). The stable structure of circRNAs

was confirmed in 1988 (23), and endogenous circRNAs were

identified in human cells in 1991 (24). Later, in 1995, Chen et al.

demonstrated that engineered circRNAs can be translated in vitro,

with the formation of circRNAs requiring reverse repeated

recyclization (25, 26). In 1998, Perriman et al. confirmed that

engineered circRNAs can be translated in vivo (27). In 2006,

Suzuki et al. first enriched circRNAs using RNase R (28). Salzman

et al. identified circRNAs using the gene expression program of

human cells in 2012 (29). In 2013, Memczak et al. conducted

functional analyses on circRNAs, providing insights into their

potential roles in gene regulation (30). In 2016, researchers

discovered that abnormally fused circRNAs can promote tumor

growth and development (31), and in 2017, it was reported that

some endogenous circRNAs can be translated, whereas others have

no biological function in vivo (32, 33). In 2018, Huang et al.

identified the regulatory mechanism of circRNA localization and

posttranscriptional enucleation (34). Owing to the development of

bioinformatics, over 183,000 circRNAs have been discovered in the

human body (35) (Figure 1).
3.3 Characteristics of CircRNAs

3.3.1 Abundance
CircRNAs are widely distributed throughout organisms and are

specifically expressed and regulated in various tissues and cells (36).

Furthermore, they are detected in bodily fluids such as saliva (37),

plasma (38), and exocrine bodies (39).

3.3.2 Specificity
The specificity of circRNAs is prominently reflected in their

dynamic and context-dependent expression patterns. CircRNAs

exhibit strong tissue and cell type specificity, with distinct

expression profi les across various biological contexts.

Additionally, their spatiotemporal regulation allows them to play

roles in specific developmental stages or physiological states, while

aberrant expression is often linked to disease progression, including

cancer, cardiovascular disorders, and neurodegenerative diseases

(40, 41). These features make circRNAs highly specific biomarkers

for diagnosis and potential therapeutic targets. A study in rats

revealed that, during different lactation stages, many circRNAs are

specifically expressed (42).

3.3.3 Stability
CircRNAs possess highly stable, closed-loop structures with

connected 3’ and 5’ ends, rendering them resistant to degradation

by nucleases, and their lack of 5’ cap and 3’ tail structures prevents

degradation reactions such as decapping and deadenylation (43).

3.3.4 Conservativeness
In terms of conservativeness, circRNAs are more conserved

than their linear counterparts (44). Studies have shown that 4,522 of

15,849 circRNAs in mice have homologous sequences in humans
TABLE 2 New cases of the top five cancers with the highest incidence
in 2022.

cancer cases rate

Lung cancer 2,480,301 12.40%

Female breast cancer 2,308,897 11.60%

Colorectum cancer 1,926,118 9.60%

Prostate cancer 1,466,680 7.30%

Stomach cancer 968,350 4.90%

others 10,814,465 54.20%
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(45), highlighting the potential translational value of circRNAs in

future research.
3.4 Formation of CircRNAs

CircRNAs are formed through one of three main models. The

first model of circRNA formation is lasso-driven cyclization, in

which partially folded pre-mRNAs cause exon hopping, connecting

the downstream exon’s 3-SD (splicing donor) with the upstream

exon’s 5’SA (splicing acceptor) to form an RNA lasso with both

exons and introns. The introns are removed, resulting in

ecircRNAs. The second model is intron-pairing-driven

cyclization, which involves pairing and complementary binding

between introns on the side of pre-mRNAs, forming a lasso that can

either remove introns to create ecircRNAs or retain introns to form

EIciRNAs. Finally, the third model involves RNA-binding protein-

dependent cyclization, in which RNA-binding proteins (RBPs) bind

to introns during transcription, leading to the formation of

circRNAs (11, 12, 46–49). EcircRNAs are the most common type

of circRNA (50) (Figure 2).
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3.5 Biological functions of CircRNAs

3.5.1 CircRNAs as MicroRNA sponges
MicroRNAs (miRNAs) are small ncRNA molecules,

approximately 19-24 nucleotides in length (51). By binding to genes

through complementary base pairing, miRNAs can inhibit mRNA

translation into proteins or cause mRNA degradation (52). CircRNAs

possess various miRNA response elements (MREs) that

complementarily bind to miRNAs, enabling interactions such as the

sponge effect, where circRNAs regulate miRNA activity (53). Hansen

et al. discovered the first sponge structure of a miRNA reaction element

containing 74 miR-7 (54). The most well-known circRNA that acts as a

miRNA sponge is cirRS-7 (55). By inhibiting miR-7, ciRS-7 can

upregulate the expression of related genes (56). CcircRNA-Sry has

been found to regulate tumor progression by sponging miR-138 (13).

Studies have shown that circRNAs, as miRNA sponges, play crucial

roles in regulating tumor progression (57, 58).

During the progression of breast cancer, various circRNAs are

activated, including upregulated circRNAs such as hsa_circ_100876,

which promote metastasis by inhibiting miR-361-3p (59), and circCER,

which promotes metastasis by inhibiting miR-136 (60). Additionally,
FIGURE 1

Discovery process of circRNAs.
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the downregulation of circRNAs such as hsa_circ_000911 via the

inhibition of miR-449a negatively regulates the invasion of BC (61).

Moreover, circGFRA1 promotes fat phagocytosis in TNBC through

miR-34a (62).

3.5.2 CircRNAs regulate host gene expression
CircRNAs have the ability to directly or indirectly regulate host

gene expression. For example, circRNAs containing a starting

codon, such as circ_CNOT2, can regulate linear genes by forcing

them to use another starting codon for translation (63). Moreover,

circRNAs can promote mRNA transcription (64) and are indirectly

regulated by increasing the activity of RNA polymerase II (65).

Li et al. reported that EIcRNAs can interact with nuclear

ribonucleoprotein (U1snRNP) to promote host gene transcription

(66). Additionally, SOX8 is involved in the maintenance of stem-

like capacities in TNBC cells (67).

3.5.3 Interactions between CircRNAs
and proteins

RBPs are crucial for posttranscriptional regulation, including

mRNA splicing, stabilization, localization, modification, and

translation (68). CircRNAs can interact with RBPs, altering the

function of related proteins (69). For example, circCCNB1 can

interact with cyclin-dependent kinase 1 and cyclin B1, affecting p53

gene mutation in breast cancer (70). Circ-PABPN1 can bind to the

RBP HuR, hindering PABPN1 translation (71). Moreover, some

circRNAs can act as scaffold molecules for protein−protein

interactions. For example, circAmotl1 can bind to protein kinase
Frontiers in Immunology 05
B (AKT1) and inositol 3-phosphate-dependent protein kinase 1

(PDK1) (72).

3.5.4 CircRNAs participate in the
immune response

CircRNAs reshape the tumor microenvironment (TME) by

regulating epithelial–stromal transition, tumor angiogenesis, immune

cell function, and the inflammatory response. Immune cells are the

most abundant TME components and play a critical role in breast

cancer cell progression (73). CircRNAs have been shown to promote

cellular responses to external stimuli by binding to specific proteins.

This is particularly evident in the rapid generation of immune

responses following viral infections (74). Furthermore, some

exogenous circRNAs can recognize the receptor RIG-1, consequently

stimulating immune signal transduction in mammalian cells (75).

CircRNAs in the TME can increase the expression of immune

checkpoint molecules, including PD-L1, PD-1 and CD73, on the

surface of tumor cells through miRNA sponge action and help

tumor cells escape the toxic killing of immune cells (76).

3.5.5 CircRNAs participate in protein translation
Although circRNAs lack 3’ and 5’ end caps, experiments have

revealed that artificial circRNAs containing open reading frames for

green fluorescent protein can be translated into these proteins in E.

coli (77). Some circRNAs containing open reading frames can

participate in protein translation (11). CircRNAs are primarily

involved in protein translation via the N6-methyladenosine-

dependent pathway and the IRES-dependent pathway (78). They

drive initial transcription and protein translation through base-
FIGURE 2

Formation of circRNAs.
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modified N6 methyl adenosine (m6A) sites (79). CircRNAs with

IRES sites are instrumental in protein translation after binding to

ribosomes (80). Proteins translated by circRNAs potentially

possess antitumor properties by blocking tumor metastasis or

metabolism (81).
4 Progress of CircRNAs in
breast cancer

4.1 Expression of CircRNAs in
breast cancer

CircRNAs significantly impact the progression of BC by

influencing various cellular processes, such as proliferation,

invasion, apoptosis, and drug resistance (82). Wang et al.

demonstrated that estrogen-induced circPGR plays a crucial role

in ER-positive BC through circRNA sequencing (83). High-

throughput sequencing has revealed a vast number of

differentially expressed circRNAs in BC tissue compared with

healthy tissue (84). Through gene chip analysis, 19 upregulated

and 22 downregulated circRNAs were identified in breast cancer

tissues compared with normal tissues (85). Specific circRNAs, such

as circKIF4A, which is correlated with the survival rate of patients

with TNBC (86), are upregulated, and circMYO9B is correlated
Frontiers in Immunology 06
with prognosis (87). Conversely, some circRNAs, such as

circTADA2As, are downregulated, which is associated with the

survival rate of patients with TNBC (88), and circ-NOL10, which is

downregulated in breast cancer tissue (89) (Figure 3).
4.2 Mechanisms of CircRNAs in
breast cancer

4.2.1 CircRNAs regulate the regeneration and
proliferation of breast cancer stem cells

Breast cancer stem cells have been identified as major factors in

the onset of breast cancer (90). These cells are also responsible for the

frequent metastasis and recurrence of the disease because of their

ability to promote tumor growth and their resistance to conventional

treatments (91). Accordingly, research has identified breast cancer

stem cells as potential targets for BC treatment (92, 93). Yan et al.

hypothesized that circRNAs could act as miRNA sponges,

influencing the regulation of breast cancer stem cell proliferation

and renewal (94). Lin et al. discovered that TV-CircRGPD6 targets

circRGPD6, which results in increased expression of p-H2AX, a DNA

damage marker, and reduced expression of CD44, a stem cell marker

(95). Additionally, circ_002178 overexpression promotes increased

ALDH1 activity and increases the expression of stem cell markers in

SUM149PT cells (96).
FIGURE 3

The main biological mechanisms of circRNAs.
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4.2.2 CircRNAs regulate the cell cycle and
proliferation in breast cancer

One of the circRNAs shown to play a role in BC is circRNF10-

DHX15. This circRNA inhibits the proliferation of cancer cells by

sponging the DHX15-NF-kB p65 positive feedback loop (97).

Another circRNA, circZFAND6, which is a sponge of miR-647,

promotes cell migration and proliferation in breast cancer (98).

CircRNAs can also regulate the cell cycle and proliferation of BC

through cancer-related signaling pathways. For example, circRNA-

069718 promotes cell proliferation and invasion in TNBC via the

Wnt activation/b-catenin pathway (99), whereas circ-ITCH

inactivates the Wnt/b-catenin signal, inhibiting cell proliferation

in TNBC (100).

4.2.3 CircRNAs regulate the epithelial
mesenchymal transformation, invasion and
metastasis of breast cancer

EMT is a process in which epithelial cells transform into a

mesenchymal phenotype through a specific program. As a result, a

reduction in adhesion between tumor cells promotes tumor

invasion and metastasis (101). EMT is known to cause

tumorigenic changes in the tumor microenvironment (102).

Several circRNAs have been shown to regulate EMT in BC. For

example, circROBO1 promotes breast cancer carcinogenesis and

liver metastasis via the circROFO1/KLF5/FUS feedback loop.

Furthermore, circROBO1 inhibits the transcription of BECN1

and prevents the selective autophagy of afadin (103). Leng et al.

reported that CIRC_0000043 regulates the miR-136/Smad3 axis to

promote the EMT, invasion and metastasis of breast cancer (104).

Several studies have examined the role of specific circRNAs in

breast cancer metastasis. Song et al. reported that circHMCU targets

EMT and G phase cell cycle checkpoints, thereby promoting the

progression of BC (105). Additionally, the upregulation of

circ_IRAK3 (hsa_circular RNA_0005505) in metastatic breast

cancer is related to the recurrence of distant organs (106).

Furthermore, Mao et al. reported that circRNA_000554 binds to

miR-182 and suppresses epithelial stromal transformation in breast

cancer (107). Conversely, Pan et al. demonstrated that the CIRC-

TFF1 gene regulates the miR-326/TFF1 axis, thereby inhibiting the

progression of BC (108).

4.2.4 CircRNAs are related to the tumor
microenvironment and the immune escape of
breast cancer

Breast cancer cells thrive in a hypoxic tumor microenvironment,

and one circRNA, HIF1a-associated circDENND4C, is known to

promote their proliferation by combining with miR-200b and miR-

200c, promoting glycolysis, invasion, and metastasis (109, 110). Li et al.

reported that hsa_circ_0067842 is expressed in breast cancer, which

promotes immune escape by stabilizing CMTM6 via HuR,

subsequently inhibiting PD-L1 ubiquitination and degradation

ultimately leading to increased PD-L1 expression and enhanced

tumor immune evasion (111).
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4.2.5 CircRNAs regulate apoptosis in
breast cancer

The most upregulated circRNA among the candidate genes in

TNBC cells, circ-EPSTI1, can inhibit apoptosis, whereas knockout

of circ-EPSTI1 can induce apoptosis (112). In addition, circ-

FOXO3 is downregulated in BC cells but upregulated during

apoptosis (113).

4.2.6 CircRNAs regulate the breast tumor
immune microenvironment

Many circRNAs have been shown to regulate the tumor immune

microenvironment and cause immune escape of tumor cells (114).

Several circRNAs have been proven to be related to the tumor immune

microenvironment in breast cancer. Circ_0001142 is highly expressed

in breast cancer cells, and the circ_0001142/miR-361-3p/PIK3CB

pathway is involved in the polarization and autophagy of

macrophages (115). In addition, circRNAs can regulate T-cell activity

and immune checkpoint molecules. The circular RNA circWWC3 can

increase IL-4 expression and secretion in breast cancer cells, which

further enhances the expression of PD-L1 and facilitates breast cancer

immune evasion (116). Ectopic circ_002172 expression could inhibit

cytotoxic T lymphocyte infiltration in breast cancer and promote

immune escape (117). CircRNAs have also been found to be

associated with macrophages in breast cancer. Circ-Ccnb1 interacts

with wild-type p53 and allows Bclaf1 to bind Bcl2, resulting in the

induction of cell death (70). The circular RNACDR1as/ciRS-7 plays an

essential role in the immune microenvironment of breast cancer,

including M2 macrophages. CDR1as regulates the TGF-b signaling

pathway and ECM-receptor interaction to contribute to the immune

microenvironment of breast cancer (118). These findings identify

several circRNAs as diagnostic biomarkers and potential targets for

breast cancer therapy.
4.3 Clinical correlation between CircRNAs
and breast cancer

4.3.1 CircRNAs can be used as potential
biomarkers for the diagnosis, staging, prognosis
of breast cancer and therapeutic target

CircRNAs are promising biomarkers for liquid biopsy because of

their wide distribution in the body, stable structure, high sensitivity,

and strong specificity (119, 120). There is a link between circUSP42

downregulation and the late clinical stage and lymph node metastasis

of TNBC (121). The plasma concentration of hsa_circ_0001785

decreases significantly after surgical removal of breast cancer

masses, suggesting its potential as a biomarker for evaluating

prognosis (85). This may be attributed to the decrease in the

amount of tumor-derived nucleic acid released after surgery (122).

The overexpression of circWWC3 activates the RAS signaling

pathway, which is associated with poor prognosis in BC patients (123).

Owing to their demonstrated association with cancer

progression, multiple circRNAs have been identified as potential
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therapeutic targets for BC (124). CircRAD18 promotes the

progression of TNBC by functioning as a miR-208a/3164 sponge to

regulate IGF1 and FGF2 expression. Therefore, circRAD18 is a

therapeutic target for TNBC (125). Through its involvement in the

miR-675/NEDD4L axis, circKDM4B impedes breast cancer

progression, particularly in terms of angiogenesis and tumor

metastasis. Given these findings, circKDM4B has significant

potential as a therapeutic target (126).

4.3.2 CircRNAs affect chemoresistance of
breast cancer

Chemotherapy reduces cancer metastasis and recurrence and

ensures successful surgery. However, chemotherapy resistance arising

from long-term use is the primary reason for breast cancer treatment

failure (127). Common chemotherapy medications include

adriamycin, cyclophosphamide, doxorubicin, paclitaxel, and 5-

fluorourazalidine (128). Through the miR-361-5p/TLR4 pathway,

circGFRA1 reduces TNBC cell sensitivity to paclitaxel (PTX) (129),

whereas circ_0006528 promotes the progression of paclitaxel-resistant

breast cancer cells. Nevertheless, it is possible to inhibit the growth of

drug-resistant cells by silencing circ_0006528 (130). CircKDM4C binds

to miR-548p and reduces breast cancer progression, thus slowing drug

resistance to doxorubicin (131). Furthermore, circUBE2D2 disruption

inhibits the invasion of TNBC and decreases doxorubicin resistance

(132). Finally, studies have suggested that the downstream molecule

Rafl of the hsa_circ_0006528/miRNA-7-5p axis influences BC cell

resistance to doxorubicin (133).
4.4 The latest research on CircRNAs
in TNBC

4.4.1 Mechanism of CircRNAs in TNBC
CircRNAs affect the progression of TNBC, primarily as miRNA

sponges. For example, Chen et al. discovered that estrogen receptor

b2 (ERb2) is responsible for mediating hsa_cir_0000732, acting as a

sponge of miR-1184 and promoting the migration, growth and

invasion of TNBC (134). Gong et al. reported that circUBR5

maintains the malignant growth of TNBC through miR-1179

absorption and UBR5 upregulation both in vitro and in vivo

(135). According to Shao et al., circ_0004676 regulates miR-377-

3p/E2F6/PNO1, playing a carcinogenic role in TNBC (136). In

addition, hsa_cir_102229 regulates the expression of PFTK1

through combining with miR-152-3p, hence impacting TNBC cell

function (137). In a study by Li et al., circ_0041732 promoted

TNBC invasion and metastasis and regulated tumor characteristics

via miR-149-5p/FGF5 (138). Finally, circFAM64A targets the

3’UTR of Cdc10-dependent transcript 1 (CDT1), and elevated

CDT1 expression often correlates with a dismal prognosis (139).

The circular RNA CDR1as/ciRS-7 has a comprehensive role in

interacting with various immune cells, including T cells, NK cells

and macrophages, and leads to TME reshaping and breast cancer

progression (118).
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4.4.2 Biological function of CircRNAs in TNBC
Differential expression of circRNAs in TNBC and adjacent

tissues has been previously observed. Magalhães et al. reported

that 16 kinds of circRNAs were differentially expressed between

TNBC patients and control individuals. Some circRNAs interact

with RBPs involved in cancer and gene regulation pathways,

including PTBP1, ELAVL1, EIF4A3, and AGO1/2 (140).

CircRNAs also impact cell cycle and proliferation of TNBC cells.

For example, IGF2BP2 and HuR use circEIF3H as a scaffold to

promote TNBC proliferation and metastasis, as reported by Song

et al. (141). Additionally, Barznegar et al. reported that the

upregulation of circ-ELP3 promotes TNBC development (142). The

authors showed that circ_0076611 interacts with proliferation-related

transcripts, thereby amplifying the progression of TNBC (143). In

addition, Ruan et al. reported that circMETTL3 acts as a miR-34c-3p

sponge to inhibit TNBC invasion and metastasis (144).

In TNBC, CircRNAs play a significant role in epithelial

mesenchymal transformation, invasion, and metastasis. For

example, overexpression of circBACH2 induces TNBC cell

proliferation and epithelial mesenchymal transformation (145).

CircCD44 promotes TNBC proliferation and invasion via the

miR-502–5p/KRAS and IGF2BP2/Myc pathways (146). Zan

et al. demonstrated that by targeting the miR-28-5p/LDHA

pathway, circ-CSNK1G1 promotes TNBC cell invasion,

metastasis, and glycolysis (147). CircPRKCI, as a miR-545-3p

sponge, regulates the phosphorylation of WBP2 and AKT to

increase TNBC migration (148). Via the miR-136–5p/PDK4

pathway, circERBB2 facilitates the Warburg effect and increases

the growth of TNBC (149). Furthermore, the downregulation of

circPTK2 promotes TNBC proliferation and invasion (150).

Additionally, the knockdown of some circRNAs, such as

circ_0062558, affects the miR-876-3p/SLC1A5 axis (151),

circ_000520 affects the miR-1296/ZFX axis (152), and

circDHDDS affects the miR-362-3p/DDX5 axis (153), induces

the apoptosis of TNBC cells.

4.4.3 Clinical correlation between CircRNAs
and TNBC

As a potential prognostic biomarker for TNBC, circNR3C2,

combined with miR-513a-3p, inhibits HRD1-mediated

tumor growth (154). Xing et al. reported that circ-PDCD11

overexpression is an independent risk factor associated with poor

prognosis in TNBC patients (155). Similarly, circ-TRIO regulates

miR-432-5p/CCD58 and can be a new prognostic marker for TNBC,

as reported by Wang et al. (156). Moreover, Li et al. demonstrated

that both the Wnt/beta-catenin pathway and MYH9 stabilization

promote the progression of TNBC and that circ-EIF6-encoded EIF6-

224a is involved in this process (157). These findings suggest that

targeting circ-EIF6/EIF6-224 aa could be an approach for both

prognostic and therapeutic purposes in TNBC treatment.

CircPSMA1 can activate the miR-637/Akt1/b-catenin (cyclin D1)

axis, promoting TNBC tumorigenesis and metastasis. These findings

highlight the potential of circPSMA1 as a biomarker and target for
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TNBC immunotherapy (158). Chen et al. reported that circHIF1A

regulates NFIB expression and translocation to promote TNBC

progression. Additionally, circHIF1A is upregulated in the plasma,

making it a potential target for TNBC diagnosis and treatment (159).

The circRNA hsa_cir_0006220 has been found to inhibit tumor

growth in TNBC by regulating miR-197-5p/CDH19, making it

another promising therapeutic target (160). Furthermore,

CircRAD54L2 modulates the miR-888 family/PDK1 axis to

promote TNBC proliferation, invasion, and metastasis, making it

another potential therapeutic target in TNBC (161).
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CircRNAs can also affect the chemoresistance of TNBC. For

example, cirCWAC induces chemoresistance by targeting miR-142,

activating the PI3K/AKT pathway, and upregulating WWP1 (162).

The circRNA CREIT reduces the stability of PKR and thus

improves the drug resistance of TNBC to doxorubicin (163);

moreover, CircINTS4 promotes the chemoresistance of TNBC

through competitive binding with the miR-129-5p/POM121 axis

(164). CircUBAP2, as a sponge of miR-300, upregulates ASF1B and

triggers PI3K/AKT/mTOR (PAM) signaling to increase TNBC

resistance to cisplatin (165) (Table 3).
TABLE 3 Conclusion on the functions of circRNAs in breast cancer.

circRNA Up/Down Target Functions Reference

hsa_circ_100876 Up microRNA-361-3p Oncogene (59)

circRNA-CER Up miR-136 Oncogene (60)

hsa_circ_000911 Down miR-449a Tumor Suppressor (61)

circGFRA1 Up miR-34a Oncogene (62)

circKIF4A Up miR-375 Oncogene (86)

circMYO9B Up miR-4316 Oncogene (87)

circTADA2As Down miR-203a-3p Tumor Suppressor (88)

circ-NOL10 Down miR-149-5p Tumor Suppressor (89)

circ-NOL10 Down miR-330-3p Tumor Suppressor (89)

circ-NOL10 Down miR-452-5p Tumor Suppressor (89)

circRGPD6 Down miR-26b Tumor Suppressor (95)

circ_002178 Up miR-1258 Oncogene (96)

circRNF10 Down DHX15 Tumor Suppressor (97)

circZFAND6 Up miR-647 Oncogene (98)

circRNA-069718 Up Wnt/b-catenin pathway Oncogene (99)

circ-ITCH Down miR-214 and miR-17 Tumor Suppressor (100)

circROBO1 Up miR-217-5p Oncogene (103)

circ_0000043 Up miR-136 Oncogene (104)

circHMCU Up let-7 Family Oncogene (105)

circIRAK3 Up miR-3607 Oncogene (106)

circRNA_000554 Down miR-182 Tumor Suppressor (107)

circ_0061825 Down miR-326 Tumor Suppressor (108)

circDENND4C Up miR-200b/c Oncogene (110)

hsa_circ_0067842 Up HuR Oncogene (111)

circEPSTI1 Up miR-4753 and miR-6809 Oncogene (112)

circ-FOXO3 Down p53 and MDM2 Tumor Suppressor (113)

circ_0001142 Up miR-361-3p Oncogene (115)

circWWC3 Up miR-26b-3p and miR-660-3p Oncogene (116)

circUSP42 Down miR182 Tumor Suppressor (121)

(Continued)
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TABLE 3 Continued

circRNA Up/Down Target Functions Reference

circRAD18 Up miR-208a/3164 Oncogene (125)

circKDM4B Up miR-675 Oncogene (126)

circGFRA1 Up miR-361-5p Oncogene (129)

circ_0006528 Up miR-1299 Oncogene (130)

circKDM4C Down miR-548p Tumor Suppressor (131)

circUBE2D2 Up miR-512-3p Oncogene (132)

hsa_circ_0006528 Up miRNA-7-5p Oncogene (133)

hsa_cir_0000732 Up miR-1184 Oncogene (134)

circUBR5 Up miR-1179 Oncogene (135)

circ_0004676 Up miR-377-3p Oncogene (136)

hsa_cirRNA_102229 Up miR-152-3p Oncogene (137)

circ_0041732 Up miR-149-5p Oncogene (138)

circFAM64A Up miR-149-5p Oncogene (139)

circEIF3H Up IGF2BP2/HuR Oncogene (141)

circ-ELP3 Up ELP3 mRNA Oncogene (142)

circ_0076611 Up VEGFA Oncogene (143)

circMETTL3 Down miR-34c-3p Tumor Suppressor (144)

circBACH2 Up miR-186-5p/miR-548c-3p Oncogene (145)

circCD44 Up miR-502-5p and IGF2BP2 Oncogene (146)

circ-CSNK1G1 Up miR-28-5p Oncogene (147)

circPRKCI Up miR-545-3p Oncogene (148)

circ-ERBB2 Up miR-136-5p Oncogene (149)

circPTK2 Down miR-136 Oncogene (150)

circ_0062558 Up miR-876-3p Oncogene (151)

circ_000520 Up miR-1296 Oncogene (152)

circDHDDS Up miR-362-3p Oncogene (153)

circNR3C2 Down miR-513a-3p Tumor Suppressor (154)

circ-PDCD11 Up miR-432-5p Oncogene (155)

circ-TRIO Up miR-432-5p Oncogene (156)

circ-EIF6 Up Wnt/beta-catenin pathway Oncogene (157)

circPSMA1 Up miR-637 Oncogene (158)

circHIF1A Up NFIB Oncogene (159)

hsa_cir_0006220 Down miR-197-5p Tumor Suppressor (160)

CircRAD54L2 Up miR-888 Oncogene (161)

cirCWAC Up miR-142 Oncogene (162)

circRNA-CREIT Up PKR Oncogene (163)

circINTS4 Up miR-129-5p Oncogene (164)

circUBAP2 Up miR-300 Oncogene (165)
F
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5 Discussion

5.1 Challenges of CircRNAs in Breast
Cancer Research

1. Current studies have focused primarily on the role of circRNAs

as miRNA molecular sponges in breast cancer, with less attention

given to their interactions with other potential molecules, such as

proteins or other RNA types. The biological functions of circRNAs

and their role in regulating the breast tumor microenvironment

remain incompletely understood. Furthermore, the clinical

relevance of circRNAs in breast cancer, particularly with respect to

chemotherapy resistance, has yet to be fully elucidated.

2. Some circRNAs undergo nuclear-to-cytoplasmic localization

conversion, but the mechanisms underlying this process and their

nuclear export remain poorly understood. Additionally, while

circRNAs are characterized by stable closed-ring structures, their

biogenesis and degradation mechanisms require further investigation.

3. Owing to their stability, abundance, and tissue specificity,

circRNAs hold great potential in cancer diagnosis, prognosis, and

treatment. They can serve as noninvasive biomarkers and therapeutic

targets by regulating key pathways, such as miRNA sponging and drug

resistance. Synthetic circRNAs or delivery systems could restore tumor-

suppressing functions or counteract oncogenic signals. Additionally,

their role in immune modulation offers prospects for enhancing

immunotherapies. With further clinical validation, circRNAs could

revolutionize precision medicine and address challenges such as drug

resistance in cancer treatment. However, applying these findings to

clinical practice presents a significant challenge.
6 Conclusion

Currently, research on circRNAs in breast cancer is an emerging

field, and future directions can focus on the following areas:
Fron
1. Clarify circRNA biogenesis, cellular localization, and

degradation mechanisms.

2. Investigate additional “sponge” effects of circRNAs on

miRNAs and elucidate the mechanisms behind other

biological functions of circRNAs.

3. Identify the mechanisms by which circRNAs interact with

multiple immune cell types, reshape the breast TME, regulate

breast cancer cells, and provide potential therapeutic targets.

4. Examine and identify the functions of circRNAs in BC,

particularly their role in contributing to drug resistance in
tiers in Immunology 11
breast cancer treatments beyond chemotherapy (e.g.,

radiotherapy and immunotherapy).

5. Further screen and verify circRNA biomarker candidates

and therapeutic targets are needed, with an emphasis on

early clinical application.

6. Develop a standardized classification method for circRNA

sources, distribution, functions, and naming conventions.
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